002-Contents.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

002-Contents.Pdf CubeRoot Contents Contents Contents Purple denotes upcoming contents. 1 Preface 2 Signatures of Top Cubers in the World 3 Quotes 4 Photo Albums 5 Getting Started 5.1 Cube History 5.2 WCA Events 5.3 WCA Notation 5.4 WCA Competition Tutorial 5.5 Tips to Cubers 6 Rubik's Cube 6.1 Beginner 6.1.1 LBL Method (Layer-By-Layer) 6.1.2 Finger and Toe Tricks 6.1.3 Optimizing LBL Method 6.1.4 4LLL Algorithms 6.2 Intermediate 进阶 6.2.1 Triggers 6.2.2 How to Get Faster 6.2.3 Practice Tips 6.2.4 CN (Color Neutrality) 6.2.5 Lookahead 6.2.6 CFOP Algorithms 6.2.7 Solve Critiques 3x3 - 12.20 Ao5 6.2.8 Solve Critiques 3x3 - 13.99 Ao5 6.2.9 Cross Algorithms 6.2.10 Xcross Examples 6.2.11 F2L Algorithms 6.2.12 F2L Techniques 6.2.13 Multi-Angle F2L Algorithms 6.2.14 Non-Standard F2L Algorithms 6.2.15 OLL Algorithms, Finger Tricks and Recognition 6.2.16 PLL Algorithms and Finger Tricks 6.2.17 CP Look Ahead 6.2.18 Two-Sided PLL Recognition 6.2.19 Pre-AUF CubeRoot Contents Contents 7 Speedcubing Advice 7.1 How To Get Faster 7.2 Competition Performance 7.3 Cube Maintenance 8 Speedcubing Thoughts 8.1 Speedcubing Limit 8.2 2018 Plans, Goals and Predictions 8.3 2019 Plans, Goals and Predictions 8.4 Interviewing Feliks Zemdegs on 3.47 3x3 WR Single 9 Advanced - Last Slot and Last Layer 9.1 COLL Algorithms 9.2 CxLL Recognition 9.3 Useful OLLCP Algorithms 9.4 WV Algorithms 9.5 Easy VLS Algorithms 9.6 BLE Algorithms 9.7 Easy CLS Algorithms 9.8 Easy EOLS Algorithms 9.9 VHLS Algorithms 9.10 Easy OLS Algorithms 9.11 ZBLL Algorithms 9.12 ELL Algorithms 9.13 Useful 1LLL Algorithms 10 2×2 Cube 10.1 Beginner 10.1.1 FF Algorithms 10.1.2 Ortega Method 10.2 Advanced 高级 10.2.1 EG Methods 10.2.2 CLL Algorithms 10.2.3 EG1 Algorithms 10.2.4 EG2 Algorithms 10.2.5 TCLL- Algorithms 10.2.6 TCLL+ Algorithms 10.2.7 EGn Collection 10.3 Supplement 10.3.1 FL Algorithms 10.3.2 Guimond 10.3.3 OLS Algorithms 11 4×4 Cube 11.1 Beginner Method 11.2 Yau Method 11.3 Yau F3E Algorithms CubeRoot Contents Contents 11.4 Yau Half Centers Method 11.5 Yau L2C Algorithms 11.6 Yau LCE Algorithms 11.7 Yau L8E 3-2-3 Method 11.8 Yau L2E and L3E Algorithms 11.9 Oparity Algorithms 11.10 Pparity Algorithms 12 5×5 Cube 12.1 Redux Method 12.2 Yau5 Method 12.3 Yau5 Techniques 12.4 F4C Algorithms 12.5 L2C Algorithms 12.6 F8E Algorithms 12.7 L4E Algorithms 12.8 L2E Algorithms 13 Big Cube 13.1 Redux Method 13.2 Yau6 and Yau7 Method 13.3 F4C Algorithms 13.4 L2C Methods 13.5 L2C Algorithms 13.6 L4E Method 13.7 L4E Algorithms 13.8 L2E Algorithms 14 Megaminx 14.1 Westlund Method 14.2 F2L, S2L Techniques 14.3 4LLL Algorithms 14.4 4LLL Recognition 14.5 OLL Algorithms 14.6 PLL Algorithms 15 Pyraminx 15.1 Beginner 15.1.1 LBL Method 15.1.2 Keyhole Method 15.2 Intermediate 15.2.1 Oka Method 15.2.2 Bell Method 15.3 Advanced 15.3.1 1-Flip, WO, Nutella Method 15.3.2 L4E Algorithms CubeRoot Contents Contents 16 Skewb 16.1 LBL Method 16.2 Center-Control LBL Method 16.3 Sarah Advanced Method 16.4 FL Algorithms 16.5 1LLL Algorithms 16.6 KK Algorithms 16.7 NS 2.0 Algorithms 17 Rubik's Clock 17.1 Beginner Method 17.2 Advanced Technique 18 SQ1 (Square-1) 18.1 Beginner Lars Method 18.2 Intermediate Lars Method 18.3 EP Method 18.4 Techniques 18.5 CS Method 18.6 CS Algorithms by Shape 18.7 CS Algorithms by Depth 18.8 Look Ahead and Edge Control 18.9 Advanced Edge Control 18.10 EP Algorithms 18.11 CSP Cale Schoon Method 19 FMC (Fewest Moves Challenge) 19.1 Fewest Moves Techniques 19.2 Roux Method 19.3 Roux SB Algorithms 19.4 Roux CMLL Algorithms 19.5 Roux UL/UR Algorithms 19.6 Roux EOLR Algorithms 19.7 ZZ Method 19.8 Petrus Method 20 3BLD (3x3 Blindfolded) 20.1 Speffz Lettering Scheme 20.2 OP/OP Method (Old Pochmann) 20.3 M2/OP Method 20.4 M2/R2 Method 20.5 Commutator and Conjugate 20.6 3-Style Method 20.7 3-Style Beginner Algorithms 20.8 3-Style Parity Algorithms 20.9 3-Style Intermediate Algorithms 20.10 3-Style Edge Algorithms CubeRoot Contents Contents 20.11 3-Style Corner Algorithms 21 Big BLD (Big Cube Blindfolded) 21.1 4BLD 3-Style Method 21.2 5BLD 3-Style Method 21.3 Big BLD 3-Style Method 21.4 3-Style X-Center Algorithms 21.5 3-Style T-Center Algorithms 21.6 3-Style Wing Algorithms 21.7 3-Style Midge Algorithms 21.8 3-Style Oblique Algorithms 22 Unofficial Events 22.1 Pretty Cube Patterns 22.2 Pretty Cube Pattern Algorithms 22.3 Clover Cube Tutorial 22.4 223 Cube Tutorial 22.5 Cuboids 223,233,234 Tutorials 22.6 Meffert's Pocket Cube Tutorial 22.7 Master Pyraminx Tutorial 22.8 Face-Turning Octahedron Tutorial 22.9 Master Skewb and Multi-Skewb Tutorial 22.10 BiCube Tutorial (Bandaged Cube) 22.11 Lucky Baby 3x3 Tutorial 23 Cube Theory 23.1 Cube Permutation 23.2 Cube Group Theory (1) 23.3 Cube Group Theory (2) 23.4 Structure of Rubik's Cube Group 23.5 Isomorphism of Puzzles 23.6 God's Algorithm 23.7 God's Number 24 Reconstructions of Fancy Solves 24.1 5.97 3x3 WR Avg 5.97 24.2 5.80 3x3 WR Avg 5.80 24.3 10.21 OH WR Avg 10.21 24.4 3x3 Solves from Cube for Cambodia 2018 (4.22 WR Single) 24.5 PB Solves 24.6 Comp Solves 24.7 Fancy Solves 24.8 3x3 Unofficial Fancy Solves 24.9 3x3 WR Solves 24.10 2x2 WR Solves 24.11 4x4 WR Solves 24.12 Big Cube WR Solves CubeRoot Contents Contents 24.13 OH WR Solves 24.14 BLD WR Solves 24.15 FMC WR Solves 24.16 Other Events WR Solves 24.17 Big BLD Unoffical Fancy Solves 25 Cubing Resource 25.1 Best Cubes 25.2 Best Cubing Accessories 25.3 Best Cubing Websites 25.4 Cube PB Website 25.5 Spark M, Aofu GTSM Review 26 Appendix 26.1 WCA Regulations and Guidelines 26.2 NxN Cube Visualizer 26.3 Twisty Puzzle Visualizer 26.4 Cube Data 26.5 Cubing Glossary 26.6 NKR (Nankai University Cube Record) 26.7 TJUR (Tianjin University Cube Record) 26.8 My PB Sheet 26.9 Chinese Letter Pair Images 26.10 Letter Pair Images 26.11 1000 Digits of Pi 27 Bibliography .
Recommended publications
  • Benchmarking Beginner Algorithms for Rubik's Cube
    DEGREE PROJECT, IN COMPUTER SCIENCE , FIRST LEVEL STOCKHOLM, SWEDEN 2015 Benchmarking Beginner Algorithms for Rubik's cube ANDREAS NILSSON, ANTON SPÅNG KTH ROYAL INSTITUTE OF TECHNOLOGY CSC SCHOOL Supervisor: Michael Schliephake Examiner: Örjan Ekeberg Abstract Over the years different algorithms have been developed to step-by-step solve parts of the Rubik’s cube until fi- nally reaching the unique solution. This thesis explores two commonly known beginner algorithms for solving Rubik’s cube to find how they differ in solving speed and amount of moves. The algorithms were implemented and run on a large amount of scrambled cubes to collect data. The re- sults showed that Layer-by-layer with daisy algorithm had a lower average amount of moves than the Dedmore al- gorithm. The main difference in amount of moves lies in the steps that solve the last layer of the cube. The Layer- by-layer with daisy algorithm uses only one-seventh of the time-consuming operations that Dedmore algorithm uses, which concludes that it is more suitable for speedcubing. Sammanfattning Över åren har ett antal olika algoritmer utvecklats för att steg-för-steg lösa delar av Rubik’s kub för att till sist kom- ma fram till den unika lösningen. Denna rapport utforskar två allmänt kända nybörjaralgoritmer för att lösa Rubik’s kub, för att finna hur dem skiljer sig åt i tid samt antal operationer för att nå lösningen. Algoritmerna implemen- terades och kördes på ett stort antal blandade kuber för att samla data. Resultatet visar att Lager-för-lager med daisy algoritmen hade ett lägre genomsnittligt antal förflyttning- ar jämfört med Dedmore algoritmen.
    [Show full text]
  • Kurze Geschichte Des Würfels (Unknown Author)
    Kurze Geschichte des Würfels (unknown author) ........................................................................................ 1 Erno Rubik .......................................................................................................................................... 1 Die Herstellung des Original-Rubik-Würfels in Ungarn ................................................................ 3 Die Rubik-Würfel-Weltmeisterschaft ............................................................................................... 6 A Rubik's Cube Chronology (Mark Longridge) .............................................................................................. 8 From five thousand to fifteen millions ....................................................................................................... 11 Toy-BUSINESS KONSUMEX .......................................................................................................................... 14 HISTORY (Nagy Olivér) ................................................................................................................................ 15 Kurze Geschichte des Würfels (unknown author) Jede Erfindung hat ein offizielles Geburtsdatum. Das Geburtsdatum des Würfels ist 1974, das Jahr, in dem der erste funktionsfähige Prototyp entstand und die erste Patentanmeldung entworfen wurde. Der Geburtsort war Budapest, die Hauptstadt Ungarns. Der Name des Erfinders ist inzwischen überall bekannt. Damals war Erno Rubik ein Dozent an der Fakultät für Innenarchitektur an der Akademie
    [Show full text]
  • Mathematics of the Rubik's Cube
    Mathematics of the Rubik's cube Associate Professor W. D. Joyner Spring Semester, 1996{7 2 \By and large it is uniformly true that in mathematics that there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." John von Neumann COLLECTED WORKS, VI, p. 489 For more mathematical quotes, see the first page of each chapter below, [M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot. html 3 \There are some things which cannot be learned quickly, and time, which is all we have, must be paid heavily for their acquiring. They are the very simplest things, and because it takes a man's life to know them the little new that each man gets from life is very costly and the only heritage he has to leave." Ernest Hemingway (From A. E. Hotchner, PAPA HEMMINGWAY, Random House, NY, 1966) 4 Contents 0 Introduction 13 1 Logic and sets 15 1.1 Logic................................ 15 1.1.1 Expressing an everyday sentence symbolically..... 18 1.2 Sets................................ 19 2 Functions, matrices, relations and counting 23 2.1 Functions............................. 23 2.2 Functions on vectors....................... 28 2.2.1 History........................... 28 2.2.2 3 × 3 matrices....................... 29 2.2.3 Matrix multiplication, inverses.............. 30 2.2.4 Muliplication and inverses...............
    [Show full text]
  • Breaking an Old Code -And Beating It to Pieces
    Breaking an Old Code -And beating it to pieces Daniel Vu - 1 - Table of Contents About the Author................................................ - 4 - Notation ............................................................... - 5 - Time for Some Cube Math........................................................................... Error! Bookmark not defined. Layer By Layer Method................................... - 10 - Step One- Cross .................................................................................................................................. - 10 - Step Two- Solving the White Corners ................................................................................................. - 11 - Step Three- Solving the Middle Layer................................................................................................. - 11 - Step Four- Orient the Yellow Edges.................................................................................................... - 12 - Step Five- Corner Orientation ............................................................................................................ - 12 - Step Six- Corner Permutation ............................................................................................................. - 13 - Step Seven- Edge Permutation............................................................................................................ - 14 - The Petrus Method........................................... - 17 - Step One- Creating the 2x2x2 Block ..................................................................................................
    [Show full text]
  • Cube Lovers: Index by Date 3/18/17, 209 PM
    Cube Lovers: Index by Date 3/18/17, 209 PM Cube Lovers: Index by Date Index by Author Index by Subject Index for Keyword Articles sorted by Date: Jul 80 Alan Bawden: [no subject] Jef Poskanzer: Complaints about :CUBE program. Alan Bawden: [no subject] [unknown name]: [no subject] Alan Bawden: [no subject] Bernard S. Greenberg: Cube minima Ed Schwalenberg: Re: Singmeister who? Bernard S. Greenberg: Singmaster Allan C. Wechsler: Re: Cubespeak Richard Pavelle: [no subject] Lauren Weinstein: confusion Alan Bawden: confusion Jon David Callas: [no subject] Bernard S. Greenberg: Re: confusion Richard Pavelle: confusion but simplicity Allan C. Wechsler: Short Introductory Speech Richard Pavelle: the cross design Bernard S. Greenberg: Re: the cross design Alan Bawden: the cross design Yekta Gursel: Re: Checker board pattern... Bernard S. Greenberg: Re: Checker board pattern... Michael Urban: Confusion Bernard S. Greenberg: Re: the cross design Bernard S. Greenberg: Re: Checker board pattern... Bernard S. Greenberg: Re: Confusion Bernard S. Greenberg: The Higher Crosses Alan Bawden: The Higher Crosses Bernard S. Greenberg: Postscript to above Bernard S. Greenberg: Bug in above Ed Schwalenberg: Re: Patterns, designs &c. Alan Bawden: Patterns, designs &c. Alan Bawden: 1260 Richard Pavelle: [no subject] Allan C. Wechsler: Re: Where to get them in the Boston Area, Cube Language. Alan Bawden: 1260 vs. 2520 Alan Bawden: OOPS Bill McKeeman: Re: Where to get them in the Boston Area, Cube Language. Bernard S. Greenberg: General remarks Bernard S. Greenberg: :cube feature http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/ Page 1 of 45 Cube Lovers: Index by Date 3/18/17, 209 PM Alan Bawden: [no subject] Bernard S.
    [Show full text]
  • Rubiku Kuubiku Lahendamine Erinevaid Algoritme Kasutades
    TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Arvutitehnika instituut Eero Rahamägi 123837 RUBIKU KUUBIKU LAHENDAMINE ERINEVAID ALGORITME KASUTADES Bakalaureusetöö Juhendaja: Sergei Kostin PhD Teadur Tallinn 2017 Autorideklaratsioon Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud. Autor: Eero Rahamägi 21.05.2017 2 Annotatsioon Käesolevas bakalaureuse lõputöös kirjeldatakse erinevaid Rubiku kuubiku lahendamise algoritme. Analüüs ning võrdlus erinevate algoritmide vahel; kiirust ning optimaalsust arvesstades käikude arvu lühendamisel kuupi lahendades. Võrdlust aitab realiseerida ka prototüüpne programm mis lahendab kuubiku valitud algoritme kasutades. Töö eesmärk on anda lugejale selge, arusaadav ning detailne ülevaade Rubiku kuubiku algoritmidest analüüsides ning kirjeldades erinevaid algoritme ning nende seotust keerukuse ning optimaalsuse lähtepunktist. Samuti annan ülevaate kasutatavast prototüüpsest programmist mis on võimeline lahendama Rubiku kuubikut suvalisest algolekust. Lugejale esitatakse programne prototüüp visuaalsel kujul. Lõputöö on kirjutatud eesti keeles ning sisaldab teksti 31 leheküljel, 3 peatükki, 6 joonist, 1 tabel. 3 Abstract Solving Rubiks Cube using different algorithms This Bachelors thesis describes different Rubik’s cube solving algorithms. Analysis and comparison between various algorithms; considering speed and optimality in decreasing the amount of steps it takes to complete a cube. A prototype program will be presented as a tool to help put the thesis into practice using selected algorithms. However creating this kind of application can be quite complex taking into consideration the sheer size of algorithms and different patterns, searching methods and the complexity of the programming language itself. Developing this kind of program requires handling many different parts of code and algorithms simultaneously.
    [Show full text]
  • Paris Rubik's Cube World Championship to Be Biggest Ever
    Paris Rubik’s Cube World Championship to be Biggest Ever Submitted by: Rubik’s Cube Wednesday, 14 June 2017 The Rubik’s Cube World Championship (http://www.rubiksworldparis2017.com/en/home/), which sees competitors battle to solve the iconic cube (https://www.rubiks.com/) as quickly as possible, is being staged in France for the first time from Thursday 13 to Sunday 16 July 2017 and will see a record number of ‘speedcubers’ in action. Australian Feliks Zemdegs will defend the world title for the Rubik’s Cube, which he has held since winning in 2013 with an average solve time of 8.18 seconds and defended in 2015 with an average solve time of 7.56 seconds. Although the championship is traditionally aimed at individual competitors, this year the inaugural Nations Cup will see teams of three from 45 countries go head-to-head for the first time. Due to the excitement around the new Nations Cup format, it is anticipated that Ern Rubik, the legendary Hungarian creator of the iconic Rubik’s Cube, will be in attendance at the event. A professor of architecture from Budapest, he created the cube in 1974 to encourage his students to think about spatial relationships. Since its international launch in 1980, an estimated 450 million Rubik’s Cubes have been sold, making it the world’s most popular toy. The Rubik’s Cube World Championship will take place at Les Docks de Paris, France, and will welcome 1,100 competitors from 69 countries, competing in eighteen individual competition classes, including blindfolded solving, solving with feet and tackling different puzzles.
    [Show full text]
  • Rubik's Cube Solutions
    Rubik’s Cube Solutions Rubik’s Cube Solution – Useful Links http://www.geocities.com/jaapsch/puzzles/theory.htm http://www.ryanheise.com/cube/ http://peter.stillhq.com/jasmine/rubikscubesolution.html http://en.wikibooks.org/wiki/How_to_solve_the_Rubik's_Cube http://www.rubiks.com/World/~/media/Files/Solution_book_LOW_RES.ashx http://helm.lu/cube/MarshallPhilipp/index.htm Rubik’s Cube in a Scrambled State Rubik’s Cube in a Solved State – CubeTwister Front: Red, Right: Yellow, Up: Blue Back: Orange, Down: Green, Left: White Cube Colors: Red opposed to Orange, Yellow opposed to White, Blue opposed to Green Rubik’s Cube Solutions 06.12.2008 http://www.mementoslangues.fr/ Rubik’s Cube Commutators and Conjugates Introduction A Commutator is an algorithm of the form X Y X' Y', and a conjugate is an algorithm of the form X Y X', where X and Y denote arbitrary algorithms on a puzzle, and X', Y' denote their respective inverses. They are formal versions of the simple, intuitive idea of "do something to set up another task which does something useful, and undo the setup." Commutators can be used to generate algorithms that only modify specific portions of a cube, and are intuitively derivable. Many puzzle solutions are heavily or fully based on commutators. Commutator and Conjugate Notation [X, Y] is a commonly used notation to represent the sequence X Y X' Y'. [X: Y] is a well-accepted representation of the conjugate X Y X'. Since commutators and conjugates are often nested together, Lucas Garron has proposed the following system for compact notation: Brackets denote an entire algorithm, and within these, the comma delimits a commutator, and a colon or a semicolon a conjugate.
    [Show full text]
  • The Cubing Community Megasurvey 2021 Acknowledgements
    THE CUBING COMMUNITY MEGASURVEY 2021 ACKNOWLEDGEMENTS This work follows in the footsteps of the r/Cubers tradition of yearly Megasurveys, of which this is the fifth instalment. For the first time we've been able to integrate the responses and experience of our colleagues from China, whose communities do not always have access to the same online spaces. We're happy to present the results of this survey as a whole, reuniting these two big communities The following people contributed to this project: You guys were awesome, The r/Cubers mods: have been running the survey for the • welcoming and super supportive past 5 years, wrote and managed the bulk of it and proofread this during the whole analysis process! whole monster of a document. Thank you naliuj, gilzu, stewy, greencrossonleft, topppits, g253, pianocube93 and leinadium! It's been a blast discussing with you, Ruimin Yan / CubeRoot : provided great ideas for the • getting your ideas and seeing you recruit survey, helped coordinate between the east and the west, a thousand people in a matter of days! leveraged his online standing and following to gather all respondents across China and re-translated most this document • Justin Yang: translated the survey into mandarin and helped You have no excuse for speaking re-translate answers during the re-combination and cleanup flawless french (on top of all phase your other languages) at your ridiculously young age! About the author of this document: Basilio Noris is an older cuber, who has spent the past 15 years working on understanding and measuring human behaviour. He spends way too much time playing with data and looking for ways in which to present it.
    [Show full text]
  • How to Solve the 4X4 Rubik's Cube - Beginner's Method 12/17/17, 629 PM
    How to solve the 4x4 Rubik's Cube - Beginner's method 12/17/17, 629 PM Contribute Edit page (/edit-article/) New article (/new-article/) Home (/) Programs (/rubiks-cube-programs/) Puzzles (/twisty-puzzles/) Ruwix (/online-puzzle-simulators/) Rubik's Cube Wiki (/) (/the-rubiks-cube/how-to-solve-the-rubiks-cube-beginners-method/) Home page (/) (/online-rubiks-cube-solver-program/) (/shop/) Programs (/rubiks-cube-programs/) Rubik's Cube (/the-rubiks-cube/) (https://www.facebook.com/online.rubiks.cube.solver) Twisty Puzzles (/twisty-puzzles/) (https://twitter.com/#!/RuwixCube) Puzzles (https://ruwix.com/twisty- (https://plus.google.com/s/ruwix#112275853610877028537) puzzles/) Home (https://ruwix.com/) » Puzzles Designers (https://ruwix.com/twisty- puzzles/designers/) (https://ruwix.com/twisty-puzzles/) » 4x4x4 Puzzle Modding Rubik's Cube (https://ruwix.com/twisty-puzzles/twisty- puzzle-modding/) Siamese Twisty Puzzles (https://ruwix.com/twisty- puzzles/siamese-twisty-puzzles/) 4x4x4 Rubik's Electronic Cubes (https://ruwix.com/twisty- puzzles/electronic-rubiks-cube-puzzles- Cube - The touch-futuro-slide/) A scrambled Shape Mods (https://ruwix.com/twisty- Easiest Eastsheen puzzles/3x3x3-rubiks-cube-shape- 4x4x4 cube mods-variations/) Sticker Mods (https://ruwix.com/twisty- puzzles/rubiks-cube-sticker-mods-and- Solution picture-cubes-how-to-solve-orient- center-pieces-sudoku-shepherd-maze- The Rubik's Revenge is the 4x4 pochmann/) version of the Rubik's Cube Bandaged Cubes (https://ruwix.com/twisty- (/the-rubiks-cube/). This is also a puzzles/bandaged-cube-puzzles/)
    [Show full text]
  • Mike Mesenbrink Nicole Stevenson Math 305 Final Project May 9, 2012
    Mike Mesenbrink Nicole Stevenson Math 305 Final Project May 9, 2012 Introduction When most people hear about the Rubik’s Cube, they think about the 3 x 3 x 3 game cube that was invented in 1972 by Hungarian architect, designer, and university professor named Ernő Rubik. What many people do not know is the man who is credited with inventing the cube was not the first person to come up with the idea. In March 1970, two years before the patented Rubik’s cube came about, a Canadian man by the name of Larry Nichols invented a 2 x 2 x 2 “Puzzle with Pieces Rotatable in Groups,” which would soon become the Pocket Cube. The fist cube was held together with magnets, and did not become all the rage until a few years later. Eventually Ernő Rubik beat Nichols in the race to get the 2 x 2 x 2 cube patented on March 29, 1983. There are many people across the globe that compete to achieve a world record time in solving the Pocket Cube. According the World Cube Association, a person by the name of Christian Kaserer is the current world record holder in solving the Pocket Cube in competition, with a time of 0.69 seconds set at the Trentin Open 2011. The person with the best average time of five solves is Feliks Zemdegs, with a world record time of 2.12 seconds set at the Melbourne Cube day 2010. Solving the cube goes far beyond luck and speed, there are many mathematical theories that can help a person solve and understand the cube.
    [Show full text]
  • Mini Cube, the 2X2x2 Rubik's Cube 07/04/2007 03:22 PM
    Mini Cube, the 2x2x2 Rubik's Cube 07/04/2007 03:22 PM Mini Cube, the 2×2×2 Rubik's Cube http://www.geocities.com/jaapsch/puzzles/cube2.htm Page 1 of 7 Mini Cube, the 2x2x2 Rubik's Cube 07/04/2007 03:22 PM 1. Description 2. The number of positions http://www.geocities.com/jaapsch/puzzles/cube2.htm Page 2 of 7 Mini Cube, the 2x2x2 Rubik's Cube 07/04/2007 03:22 PM 3. JavaScript simulation 4. Notation 5. Solution 1 6. Solution 2 7. Nice patterns Links to other useful pages: Mefferts sells the Mickey Mouse puzzle head, Pyramorphix, 2x2x2 cubes by Eastsheen, and many other puzzles. Rubik sells the original 2x2x2 cubes, Darth Maul and Homer puzzle heads. Denny's Puzzle Pages A very nice graphical solution. Matthew Monroe's Page Although a solution for the 3x3x3 cube, it is corners first, and thus applies to the pocket cube as well. Philip Marshall's page A relatively short solution. A Nerd Paradise has solutions for the various cubes, Pyraminx, Skewb and Square-1. This puzzle is a simpler version of the Rubik's Cube. It goes under various names, such as Mini Cube and Pocket Cube. The puzzle is built from 8 smaller cubes, i.e. a 2×2×2 cube. Each face can rotate, which rearranges the 4 small cubes at that face. The six sides of the puzzle are coloured, so every small cube shows three colours. This puzzle is equivalent to just the corners of the normal Rubik's cube.
    [Show full text]