Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
002-Contents.Pdf
CubeRoot Contents Contents Contents Purple denotes upcoming contents. 1 Preface 2 Signatures of Top Cubers in the World 3 Quotes 4 Photo Albums 5 Getting Started 5.1 Cube History 5.2 WCA Events 5.3 WCA Notation 5.4 WCA Competition Tutorial 5.5 Tips to Cubers 6 Rubik's Cube 6.1 Beginner 6.1.1 LBL Method (Layer-By-Layer) 6.1.2 Finger and Toe Tricks 6.1.3 Optimizing LBL Method 6.1.4 4LLL Algorithms 6.2 Intermediate 进阶 6.2.1 Triggers 6.2.2 How to Get Faster 6.2.3 Practice Tips 6.2.4 CN (Color Neutrality) 6.2.5 Lookahead 6.2.6 CFOP Algorithms 6.2.7 Solve Critiques 3x3 - 12.20 Ao5 6.2.8 Solve Critiques 3x3 - 13.99 Ao5 6.2.9 Cross Algorithms 6.2.10 Xcross Examples 6.2.11 F2L Algorithms 6.2.12 F2L Techniques 6.2.13 Multi-Angle F2L Algorithms 6.2.14 Non-Standard F2L Algorithms 6.2.15 OLL Algorithms, Finger Tricks and Recognition 6.2.16 PLL Algorithms and Finger Tricks 6.2.17 CP Look Ahead 6.2.18 Two-Sided PLL Recognition 6.2.19 Pre-AUF CubeRoot Contents Contents 7 Speedcubing Advice 7.1 How To Get Faster 7.2 Competition Performance 7.3 Cube Maintenance 8 Speedcubing Thoughts 8.1 Speedcubing Limit 8.2 2018 Plans, Goals and Predictions 8.3 2019 Plans, Goals and Predictions 8.4 Interviewing Feliks Zemdegs on 3.47 3x3 WR Single 9 Advanced - Last Slot and Last Layer 9.1 COLL Algorithms 9.2 CxLL Recognition 9.3 Useful OLLCP Algorithms 9.4 WV Algorithms 9.5 Easy VLS Algorithms 9.6 BLE Algorithms 9.7 Easy CLS Algorithms 9.8 Easy EOLS Algorithms 9.9 VHLS Algorithms 9.10 Easy OLS Algorithms 9.11 ZBLL Algorithms 9.12 ELL Algorithms 9.13 Useful 1LLL Algorithms -
THE UPPER BOUND of COMPOSITION SERIES 1. Introduction. a Composition Series, That Is a Series of Subgroups Each Normal in the Pr
THE UPPER BOUND OF COMPOSITION SERIES ABHIJIT BHATTACHARJEE Abstract. In this paper we prove that among all finite groups of or- α1 α2 αr der n2 N with n ≥ 2 where n = p1 p2 :::pr , the abelian group with elementary abelian sylow subgroups, has the highest number of composi- j Pr α ! Qr Qαi pi −1 ( i=1 i) tion series and it has i=1 j=1 Qr distinct composition pi−1 i=1 αi! series. We also prove that among all finite groups of order ≤ n, n 2 N α with n ≥ 4, the elementary abelian group of order 2 where α = [log2 n] has the highest number of composition series. 1. Introduction. A composition series, that is a series of subgroups each normal in the previous such that corresponding factor groups are simple. Any finite group has a composition series. The famous Jordan-Holder theo- rem proves that, the composition factors in a composition series are unique up to isomorphism. Sometimes a group of small order has a huge number of distinct composition series. For example an elementary abelian group of order 64 has 615195 distinct composition series. In [6] there is an algo- rithm in GAP to find the distinct composition series of any group of finite order.The aim of this paper is to provide an upper bound of the number of distinct composition series of any group of finite order. The approach of this is combinatorial and the method is elementary. All the groups considered in this paper are of finite order. 2. Some Basic Results On Composition Series. -
GROUP ACTIONS 1. Introduction the Groups Sn, An, and (For N ≥ 3)
GROUP ACTIONS KEITH CONRAD 1. Introduction The groups Sn, An, and (for n ≥ 3) Dn behave, by their definitions, as permutations on certain sets. The groups Sn and An both permute the set f1; 2; : : : ; ng and Dn can be considered as a group of permutations of a regular n-gon, or even just of its n vertices, since rigid motions of the vertices determine where the rest of the n-gon goes. If we label the vertices of the n-gon in a definite manner by the numbers from 1 to n then we can view Dn as a subgroup of Sn. For instance, the labeling of the square below lets us regard the 90 degree counterclockwise rotation r in D4 as (1234) and the reflection s across the horizontal line bisecting the square as (24). The rest of the elements of D4, as permutations of the vertices, are in the table below the square. 2 3 1 4 1 r r2 r3 s rs r2s r3s (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23) If we label the vertices in a different way (e.g., swap the labels 1 and 2), we turn the elements of D4 into a different subgroup of S4. More abstractly, if we are given a set X (not necessarily the set of vertices of a square), then the set Sym(X) of all permutations of X is a group under composition, and the subgroup Alt(X) of even permutations of X is a group under composition. If we list the elements of X in a definite order, say as X = fx1; : : : ; xng, then we can think about Sym(X) as Sn and Alt(X) as An, but a listing in a different order leads to different identifications 1 of Sym(X) with Sn and Alt(X) with An. -
The Wreath Product Principle for Ordered Semigroups Jean-Eric Pin, Pascal Weil
The wreath product principle for ordered semigroups Jean-Eric Pin, Pascal Weil To cite this version: Jean-Eric Pin, Pascal Weil. The wreath product principle for ordered semigroups. Communications in Algebra, Taylor & Francis, 2002, 30, pp.5677-5713. hal-00112618 HAL Id: hal-00112618 https://hal.archives-ouvertes.fr/hal-00112618 Submitted on 9 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. November 12, 2001 The wreath product principle for ordered semigroups Jean-Eric Pin∗ and Pascal Weily [email protected], [email protected] Abstract Straubing's wreath product principle provides a description of the languages recognized by the wreath product of two monoids. A similar principle for ordered semigroups is given in this paper. Applications to language theory extend standard results of the theory of varieties to positive varieties. They include a characterization of positive locally testable languages and syntactic descriptions of the operations L ! La and L ! LaA∗. Next we turn to concatenation hierarchies. It was shown by Straubing that the n-th level Bn of the dot-depth hierarchy is the variety Vn ∗LI, where LI is the variety of locally trivial semigroups and Vn is the n-th level of the Straubing-Th´erien hierarchy. -
Proper Actions of Wreath Products and Generalizations
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 364, Number 6, June 2012, Pages 3159–3184 S 0002-9947(2012)05475-4 Article electronically published on February 9, 2012 PROPER ACTIONS OF WREATH PRODUCTS AND GENERALIZATIONS YVES CORNULIER, YVES STALDER, AND ALAIN VALETTE Abstract. We study stability properties of the Haagerup Property and of coarse embeddability in a Hilbert space, under certain semidirect products. In particular, we prove that they are stable under taking standard wreath products. Our construction also provides a characterization of subsets with relative Property T in a standard wreath product. 1. Introduction A countable group is Haagerup if it admits a metrically proper isometric action on a Hilbert space. Groups with the Haagerup Property are also known, after Gromov, as a-T-menable groups as they generalize amenable groups. However, they include a wide variety of non-amenable groups: for example, free groups are a-T-menable; more generally, so are groups having a proper isometric action either on a CAT(0) cubical complex, e.g. any Coxeter group, or on a real or complex hyperbolic symmetric space, or on a product of several such spaces; this includes the Baumslag-Solitar group BS(p, q), which acts properly by isometries on the product of a tree and a real hyperbolic plane. A nice feature about Haagerup groups is that they satisfy the strongest form of the Baum-Connes conjecture, namely the conjecture with coefficients [HK]. The Haagerup Property appears as an obstruction to Kazhdan’s Property T and its weakenings such as the relative Property T. Namely, a countable group G has Kazhdan’s Property T if every isometric action on a Hilbert space has bounded orbits; more generally, if G is a countable group and X a subset, the pair (G, X) has the relative Property T if for every isometric action of G on a Hilbert space, the “X-orbit” of 0, {g · 0|g ∈ X} is bounded. -
Deformations of Functions on Surfaces by Isotopic to the Identity Diffeomorphisms
DEFORMATIONS OF FUNCTIONS ON SURFACES BY ISOTOPIC TO THE IDENTITY DIFFEOMORPHISMS SERGIY MAKSYMENKO Abstract. Let M be a smooth compact connected surface, P be either the real line R or the circle S1, f : M ! P be a smooth map, Γ(f) be the Kronrod-Reeb graph of f, and O(f) be the orbit of f with respect to the right action of the group D(M) of diffeomorphisms of M. Assume that at each of its critical point the map f is equivalent to a homogeneous polynomial R2 ! R without multiple factors. In a series of papers the author proved that πnO(f) = πnM for n ≥ 3, π2O(f) = 0, and that π1O(f) contains a free abelian subgroup of finite index, however the information about π1O(f) remains incomplete. The present paper is devoted to study of the group G(f) of automorphisms of Γ(f) induced by the isotopic to the identity diffeomorphisms of M. It is shown that if M is orientable and distinct from sphere and torus, then G(f) can be obtained from some finite cyclic groups by operations of finite direct products and wreath products from the top. As an application we obtain that π1O(f) is solvable. 1. Introduction Study of groups of automorphisms of discrete structures has a long history. One of the first general results was obtained by A. Cayley (1854) and claims that every finite group G of order n is a subgroup of the permutation group of a set consisting of n elements, see also E. Nummela [35] for extension this fact to topological groups and discussions. -
Topics in Module Theory
Chapter 7 Topics in Module Theory This chapter will be concerned with collecting a number of results and construc- tions concerning modules over (primarily) noncommutative rings that will be needed to study group representation theory in Chapter 8. 7.1 Simple and Semisimple Rings and Modules In this section we investigate the question of decomposing modules into \simpler" modules. (1.1) De¯nition. If R is a ring (not necessarily commutative) and M 6= h0i is a nonzero R-module, then we say that M is a simple or irreducible R- module if h0i and M are the only submodules of M. (1.2) Proposition. If an R-module M is simple, then it is cyclic. Proof. Let x be a nonzero element of M and let N = hxi be the cyclic submodule generated by x. Since M is simple and N 6= h0i, it follows that M = N. ut (1.3) Proposition. If R is a ring, then a cyclic R-module M = hmi is simple if and only if Ann(m) is a maximal left ideal. Proof. By Proposition 3.2.15, M =» R= Ann(m), so the correspondence the- orem (Theorem 3.2.7) shows that M has no submodules other than M and h0i if and only if R has no submodules (i.e., left ideals) containing Ann(m) other than R and Ann(m). But this is precisely the condition for Ann(m) to be a maximal left ideal. ut (1.4) Examples. (1) An abelian group A is a simple Z-module if and only if A is a cyclic group of prime order. -
Mathematics of the Rubik's Cube
Mathematics of the Rubik's cube Associate Professor W. D. Joyner Spring Semester, 1996{7 2 \By and large it is uniformly true that in mathematics that there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." John von Neumann COLLECTED WORKS, VI, p. 489 For more mathematical quotes, see the first page of each chapter below, [M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot. html 3 \There are some things which cannot be learned quickly, and time, which is all we have, must be paid heavily for their acquiring. They are the very simplest things, and because it takes a man's life to know them the little new that each man gets from life is very costly and the only heritage he has to leave." Ernest Hemingway (From A. E. Hotchner, PAPA HEMMINGWAY, Random House, NY, 1966) 4 Contents 0 Introduction 13 1 Logic and sets 15 1.1 Logic................................ 15 1.1.1 Expressing an everyday sentence symbolically..... 18 1.2 Sets................................ 19 2 Functions, matrices, relations and counting 23 2.1 Functions............................. 23 2.2 Functions on vectors....................... 28 2.2.1 History........................... 28 2.2.2 3 × 3 matrices....................... 29 2.2.3 Matrix multiplication, inverses.............. 30 2.2.4 Muliplication and inverses............... -
Composition Series of Arbitrary Cardinality in Abelian Categories
COMPOSITION SERIES OF ARBITRARY CARDINALITY IN ABELIAN CATEGORIES ERIC J. HANSON AND JOB D. ROCK Abstract. We extend the notion of a composition series in an abelian category to allow the mul- tiset of composition factors to have arbitrary cardinality. We then provide sufficient axioms for the existence of such composition series and the validity of “Jordan–Hölder–Schreier-like” theorems. We give several examples of objects which satisfy these axioms, including pointwise finite-dimensional persistence modules, Prüfer modules, and presheaves. Finally, we show that if an abelian category with a simple object has both arbitrary coproducts and arbitrary products, then it contains an ob- ject which both fails to satisfy our axioms and admits at least two composition series with distinct cardinalities. Contents 1. Introduction 1 2. Background 4 3. Subobject Chains 6 4. (Weakly) Jordan–Hölder–Schreier objects 12 5. Examples and Discussion 21 References 28 1. Introduction The Jordan–Hölder Theorem (sometimes called the Jordan–Hölder–Schreier Theorem) remains one of the foundational results in the theory of modules. More generally, abelian length categories (in which the Jordan–Hölder Theorem holds for every object) date back to Gabriel [G73] and remain an important object of study to this day. See e.g. [K14, KV18, LL21]. The importance of the Jordan–Hölder Theorem in the study of groups, modules, and abelian categories has also motivated a large volume work devoted to establishing when a “Jordan–Hölder- like theorem” will hold in different contexts. Some recent examples include exact categories [BHT21, E19+] and semimodular lattices [Ro19, P19+]. In both of these examples, the “composition series” arXiv:2106.01868v1 [math.CT] 3 Jun 2021 in question are assumed to be of finite length, as is the case for the classical Jordan-Hölder Theorem. -