Mathematics of the Rubik's Cube

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics of the Rubik's Cube Mathematics of the Rubik's cube Associate Professor W. D. Joyner Spring Semester, 1996{7 2 \By and large it is uniformly true that in mathematics that there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." John von Neumann COLLECTED WORKS, VI, p. 489 For more mathematical quotes, see the first page of each chapter below, [M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot. html 3 \There are some things which cannot be learned quickly, and time, which is all we have, must be paid heavily for their acquiring. They are the very simplest things, and because it takes a man's life to know them the little new that each man gets from life is very costly and the only heritage he has to leave." Ernest Hemingway (From A. E. Hotchner, PAPA HEMMINGWAY, Random House, NY, 1966) 4 Contents 0 Introduction 13 1 Logic and sets 15 1.1 Logic................................ 15 1.1.1 Expressing an everyday sentence symbolically..... 18 1.2 Sets................................ 19 2 Functions, matrices, relations and counting 23 2.1 Functions............................. 23 2.2 Functions on vectors....................... 28 2.2.1 History........................... 28 2.2.2 3 × 3 matrices....................... 29 2.2.3 Matrix multiplication, inverses.............. 30 2.2.4 Muliplication and inverses................ 31 2.3 Relations.............................. 31 2.4 Counting.............................. 34 3 Permutations 37 3.1 Inverses.............................. 40 3.2 Cycle notation........................... 44 3.3 An algorithm to list all the permutations............ 49 4 Permutation Puzzles 53 4.1 15 puzzle.............................. 54 4.2 Devil's circles (or Hungarian rings)............... 56 4.3 Equator puzzle.......................... 57 4.4 Rainbow Masterball........................ 61 4.5 Rubik's cubes........................... 65 5 6 CONTENTS 4.5.1 2 × 2 Rubik's cube.................... 65 4.5.2 3 × 3 Rubik's cube.................... 67 4.5.3 4 × 4 Rubik's cube.................... 70 4.5.4 n × n Rubik's cube.................... 73 4.6 Skewb............................... 73 4.7 Pyraminx............................. 76 4.8 Megaminx............................. 79 4.9 Other permutation puzzles.................... 83 5 Groups, I 85 5.1 The symmetric group....................... 86 5.2 General definitions........................ 87 5.2.1 The Gordon game..................... 92 5.3 Subgroups............................. 93 5.4 Examples of groups........................ 95 5.4.1 The dihedral group.................... 95 5.4.2 Example: The two squares group............ 97 5.5 Commutators........................... 99 5.6 Conjugation............................ 100 5.7 Orbits and actions........................ 103 5.8 Cosets............................... 107 5.9 Dimino's Algorithm........................ 109 5.10 Permutations and campanology................. 111 6 Graphs and "God's algorithm" 117 6.1 Cayley graphs........................... 118 6.2 God's algorithm.......................... 121 6.2.1 The Icosian game..................... 123 6.3 The graph of the 15 puzzle.................... 123 6.3.1 General definitions.................... 125 6.4 Remarks on applications, NP-completeness........... 128 7 Symmetry groups of the Platonic solids 129 7.1 Descriptions............................ 129 7.2 Background on symmetries in 3-space.............. 131 7.3 Symmetries of the tetrahedron.................. 134 7.4 Symmetries of the cube...................... 135 7.5 Symmetries of the dodecahedron................. 137 CONTENTS 7 7.6 Appendix: Symmetries of the icosahedron and S6 ....... 139 8 Groups, II 143 8.1 Homomorphisms......................... 143 8.2 Homomorphisms arising from group actions.......... 146 8.3 Examples of isomorphisms.................... 147 8.3.1 Conjugation in Sn ..................... 149 8.3.2 Aside: Automorphisms of Sn ............... 150 8.4 Kernels and normal subgroups.................. 151 8.5 Quotient subgroups........................ 153 8.6 Direct products.......................... 155 8.7 Examples............................. 156 8.7.1 The twists and flips of the Rubik's cube........ 156 8.7.2 The slice group of the Rubik's cube........... 157 8.8 Semi-direct products....................... 162 8.9 Wreath products......................... 165 8.9.1 Application to order of elements in Cm wr Sn ...... 167 9 The Rubik's cube and the word problem 169 9.1 Background on free groups.................... 169 9.1.1 Length........................... 170 9.1.2 Trees............................ 171 9.2 The word problem........................ 172 9.3 Generators, relations, and Plutonian robots.......... 173 9.4 Generators, relations for groups of order < 26......... 174 9.5 The presentation problem.................... 180 n 9.5.1 A presentation for Cm >C Sn+1 ............. 181 9.5.2 Proof............................ 183 10 The 3 × 3 Rubik's cube group 185 10.1 Mathematical description of the 3 × 3 cube moves....... 185 10.1.1 Notation.......................... 185 10.1.2 Corner orientations.................... 187 10.1.3 Edge orientations..................... 188 10.1.4 The semi-direct product................. 189 10.2 Second fundamental theorem of cube theory.......... 190 10.2.1 Some consequences.................... 194 10.3 The homology group of the square 1 puzzle........... 195 8 CONTENTS 10.3.1 The main result...................... 196 10.3.2 Proof of the theorem................... 198 11 Other Rubik-like puzzle groups 201 11.1 On the group structure of the skewb.............. 201 11.2 Mathematical description of the 2 × 2 cube moves....... 205 11.3 On the group structure of the pyraminx............ 208 11.3.1 Orientations........................ 209 11.3.2 Center pieces....................... 212 11.3.3 The group structure................... 212 11.4 A uniform approach........................ 213 11.4.1 General remarks..................... 214 11.4.2 Parity conditions..................... 214 12 Interesting subgroups of the cube group 217 12.1 The squares subgroup....................... 218 12.2 P GL(2; F5) and two faces of the cube.............. 220 12.2.1 Finite fields........................ 220 12.2.2 M¨obiustransformations................. 224 12.2.3 The main isomorphism.................. 226 12.2.4 The labeling........................ 227 12.2.5 Proof of the second theorem............... 228 12.3 The cross groups......................... 229 12.3.1 P SL(2; F7) and crossing the cube............ 230 12.3.2 Klein's 4-group and crossing the pyraminx....... 233 13 Crossing the Rubicon 235 13.1 Doing the Mongean shuffle.................... 236 13.2 Background on P SL2 ....................... 236 13.3 Galois' last dream......................... 238 13.4 The M12 generation........................ 239 13.5 Coding the Golay way...................... 240 13.6 M12 is crossing the rubicon.................... 242 13.7 An aside: A pair of cute facts.................. 243 13.7.1 Hadamard matrices.................... 243 13.7.2 5-transitivity....................... 245 CONTENTS 9 14 Appendix: Some solution strategies 247 14.1 The subgroup method...................... 247 14.1.1 Example: the corner-edge method............ 248 14.1.2 Example: Thistlethwaite's method........... 249 14.2 3 × 3 Rubik's cube........................ 250 14.2.1 Strategy for solving the cube............... 250 14.2.2 Catalog of 3 × 3 Rubik's "supercube" moves...... 251 14.3 4 × 4 Rubik's cube........................ 251 14.4 Rainbow masterball........................ 253 14.4.1 A catalog of rainbow moves............... 254 14.5 Equator puzzle.......................... 255 14.6 The skewb............................. 258 14.6.1 Strategy.......................... 258 14.6.2 A catalog of skewb moves................ 258 14.7 The pyraminx........................... 259 14.8 The megaminx.......................... 260 14.8.1 Catalog of moves..................... 261 10 CONTENTS Illustrations in this text (jpg files): chapter 2: VENN1.JPG box2.JPG chapter 3: plotf1b.jpg plotf2b.jpg chapter 4: 15a1.jpg 15b1.jpg 15c1.jpg circles1.JPG equator1.JPG ball3.jpg ball4.jpg ball5.jpg box4.jpg box3.jpg skewb4.jpg tetra2.jpg tetra4.jpg penta1.jpg penta2.jpg chapter 5: square2.jpg cube2.jpg hexa1.jpg bells3.jpg chapter 6: cayley1.jpg cayley2.jpg icosian.jpg 15puzz1.jpg CONTENTS 11 15puzz3.jpg 15puzz9.jpg and 15puzz6.jpg 15puzz2.jpg 15puzz10.jpg and 15puzz11.jpg 15puzz4.jpg and 15puzz5.jpg chapter 7: tetra3.jpg octah2.jpg dodec2.jpg icosah2.jpg icosah3.jpg icosah4.jpg chapter 8: none chapter 9: groups1.JPG coxeter2.JPG chapter 10: rubike1.jpg, rubike2.jpg, rubike3.JPG rubiko1.jpg, rubiko2.jpg sqr1c.JPG sqr1a.JPG and sqr1b.jpg chapter 11: none chapter 12: cube1.jpg crossgp.jpg chapter 13, 14: none 12 CONTENTS Chapter 0 Introduction "The advantage is that mathematics is a field in which one's blunders tend to show very clearly and can be corrected or erased with a stroke of the pencil. It is a field which has often been compared with chess, but differs from the latter in that it is only one's best moments that count and not one's worst." Norbert Wiener EX-PRODIGY: MY CHILDHOOD AND YOUTH Groups measure symmetry. No where is this more evident than in the study of symmetry in 2- and 3-dimensional
Recommended publications
  • 002-Contents.Pdf
    CubeRoot Contents Contents Contents Purple denotes upcoming contents. 1 Preface 2 Signatures of Top Cubers in the World 3 Quotes 4 Photo Albums 5 Getting Started 5.1 Cube History 5.2 WCA Events 5.3 WCA Notation 5.4 WCA Competition Tutorial 5.5 Tips to Cubers 6 Rubik's Cube 6.1 Beginner 6.1.1 LBL Method (Layer-By-Layer) 6.1.2 Finger and Toe Tricks 6.1.3 Optimizing LBL Method 6.1.4 4LLL Algorithms 6.2 Intermediate 进阶 6.2.1 Triggers 6.2.2 How to Get Faster 6.2.3 Practice Tips 6.2.4 CN (Color Neutrality) 6.2.5 Lookahead 6.2.6 CFOP Algorithms 6.2.7 Solve Critiques 3x3 - 12.20 Ao5 6.2.8 Solve Critiques 3x3 - 13.99 Ao5 6.2.9 Cross Algorithms 6.2.10 Xcross Examples 6.2.11 F2L Algorithms 6.2.12 F2L Techniques 6.2.13 Multi-Angle F2L Algorithms 6.2.14 Non-Standard F2L Algorithms 6.2.15 OLL Algorithms, Finger Tricks and Recognition 6.2.16 PLL Algorithms and Finger Tricks 6.2.17 CP Look Ahead 6.2.18 Two-Sided PLL Recognition 6.2.19 Pre-AUF CubeRoot Contents Contents 7 Speedcubing Advice 7.1 How To Get Faster 7.2 Competition Performance 7.3 Cube Maintenance 8 Speedcubing Thoughts 8.1 Speedcubing Limit 8.2 2018 Plans, Goals and Predictions 8.3 2019 Plans, Goals and Predictions 8.4 Interviewing Feliks Zemdegs on 3.47 3x3 WR Single 9 Advanced - Last Slot and Last Layer 9.1 COLL Algorithms 9.2 CxLL Recognition 9.3 Useful OLLCP Algorithms 9.4 WV Algorithms 9.5 Easy VLS Algorithms 9.6 BLE Algorithms 9.7 Easy CLS Algorithms 9.8 Easy EOLS Algorithms 9.9 VHLS Algorithms 9.10 Easy OLS Algorithms 9.11 ZBLL Algorithms 9.12 ELL Algorithms 9.13 Useful 1LLL Algorithms
    [Show full text]
  • GROUP ACTIONS 1. Introduction the Groups Sn, An, and (For N ≥ 3)
    GROUP ACTIONS KEITH CONRAD 1. Introduction The groups Sn, An, and (for n ≥ 3) Dn behave, by their definitions, as permutations on certain sets. The groups Sn and An both permute the set f1; 2; : : : ; ng and Dn can be considered as a group of permutations of a regular n-gon, or even just of its n vertices, since rigid motions of the vertices determine where the rest of the n-gon goes. If we label the vertices of the n-gon in a definite manner by the numbers from 1 to n then we can view Dn as a subgroup of Sn. For instance, the labeling of the square below lets us regard the 90 degree counterclockwise rotation r in D4 as (1234) and the reflection s across the horizontal line bisecting the square as (24). The rest of the elements of D4, as permutations of the vertices, are in the table below the square. 2 3 1 4 1 r r2 r3 s rs r2s r3s (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23) If we label the vertices in a different way (e.g., swap the labels 1 and 2), we turn the elements of D4 into a different subgroup of S4. More abstractly, if we are given a set X (not necessarily the set of vertices of a square), then the set Sym(X) of all permutations of X is a group under composition, and the subgroup Alt(X) of even permutations of X is a group under composition. If we list the elements of X in a definite order, say as X = fx1; : : : ; xng, then we can think about Sym(X) as Sn and Alt(X) as An, but a listing in a different order leads to different identifications 1 of Sym(X) with Sn and Alt(X) with An.
    [Show full text]
  • Kurze Geschichte Des Würfels (Unknown Author)
    Kurze Geschichte des Würfels (unknown author) ........................................................................................ 1 Erno Rubik .......................................................................................................................................... 1 Die Herstellung des Original-Rubik-Würfels in Ungarn ................................................................ 3 Die Rubik-Würfel-Weltmeisterschaft ............................................................................................... 6 A Rubik's Cube Chronology (Mark Longridge) .............................................................................................. 8 From five thousand to fifteen millions ....................................................................................................... 11 Toy-BUSINESS KONSUMEX .......................................................................................................................... 14 HISTORY (Nagy Olivér) ................................................................................................................................ 15 Kurze Geschichte des Würfels (unknown author) Jede Erfindung hat ein offizielles Geburtsdatum. Das Geburtsdatum des Würfels ist 1974, das Jahr, in dem der erste funktionsfähige Prototyp entstand und die erste Patentanmeldung entworfen wurde. Der Geburtsort war Budapest, die Hauptstadt Ungarns. Der Name des Erfinders ist inzwischen überall bekannt. Damals war Erno Rubik ein Dozent an der Fakultät für Innenarchitektur an der Akademie
    [Show full text]
  • Breaking an Old Code -And Beating It to Pieces
    Breaking an Old Code -And beating it to pieces Daniel Vu - 1 - Table of Contents About the Author................................................ - 4 - Notation ............................................................... - 5 - Time for Some Cube Math........................................................................... Error! Bookmark not defined. Layer By Layer Method................................... - 10 - Step One- Cross .................................................................................................................................. - 10 - Step Two- Solving the White Corners ................................................................................................. - 11 - Step Three- Solving the Middle Layer................................................................................................. - 11 - Step Four- Orient the Yellow Edges.................................................................................................... - 12 - Step Five- Corner Orientation ............................................................................................................ - 12 - Step Six- Corner Permutation ............................................................................................................. - 13 - Step Seven- Edge Permutation............................................................................................................ - 14 - The Petrus Method........................................... - 17 - Step One- Creating the 2x2x2 Block ..................................................................................................
    [Show full text]
  • Cube Lovers: Index by Date 3/18/17, 209 PM
    Cube Lovers: Index by Date 3/18/17, 209 PM Cube Lovers: Index by Date Index by Author Index by Subject Index for Keyword Articles sorted by Date: Jul 80 Alan Bawden: [no subject] Jef Poskanzer: Complaints about :CUBE program. Alan Bawden: [no subject] [unknown name]: [no subject] Alan Bawden: [no subject] Bernard S. Greenberg: Cube minima Ed Schwalenberg: Re: Singmeister who? Bernard S. Greenberg: Singmaster Allan C. Wechsler: Re: Cubespeak Richard Pavelle: [no subject] Lauren Weinstein: confusion Alan Bawden: confusion Jon David Callas: [no subject] Bernard S. Greenberg: Re: confusion Richard Pavelle: confusion but simplicity Allan C. Wechsler: Short Introductory Speech Richard Pavelle: the cross design Bernard S. Greenberg: Re: the cross design Alan Bawden: the cross design Yekta Gursel: Re: Checker board pattern... Bernard S. Greenberg: Re: Checker board pattern... Michael Urban: Confusion Bernard S. Greenberg: Re: the cross design Bernard S. Greenberg: Re: Checker board pattern... Bernard S. Greenberg: Re: Confusion Bernard S. Greenberg: The Higher Crosses Alan Bawden: The Higher Crosses Bernard S. Greenberg: Postscript to above Bernard S. Greenberg: Bug in above Ed Schwalenberg: Re: Patterns, designs &c. Alan Bawden: Patterns, designs &c. Alan Bawden: 1260 Richard Pavelle: [no subject] Allan C. Wechsler: Re: Where to get them in the Boston Area, Cube Language. Alan Bawden: 1260 vs. 2520 Alan Bawden: OOPS Bill McKeeman: Re: Where to get them in the Boston Area, Cube Language. Bernard S. Greenberg: General remarks Bernard S. Greenberg: :cube feature http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/ Page 1 of 45 Cube Lovers: Index by Date 3/18/17, 209 PM Alan Bawden: [no subject] Bernard S.
    [Show full text]
  • An Algebraic Approach to the Weyl Groupoid
    An Algebraic Approach to the Weyl Groupoid Tristan Bice✩ Institute of Mathematics Czech Academy of Sciences Zitn´a25,ˇ 115 67 Prague, Czech Republic Abstract We unify the Kumjian-Renault Weyl groupoid construction with the Lawson- Lenz version of Exel’s tight groupoid construction. We do this by utilising only a weak algebraic fragment of the C*-algebra structure, namely its *-semigroup reduct. Fundamental properties like local compactness are also shown to remain valid in general classes of *-rings. Keywords: Weyl groupoid, tight groupoid, C*-algebra, inverse semigroup, *-semigroup, *-ring 2010 MSC: 06F05, 20M25, 20M30, 22A22, 46L05, 46L85, 47D03 1. Introduction 1.1. Background Renault’s groundbreaking thesis [Ren80] revealed the striking interplay be- tween ´etale groupoids and the C*-algebras they give rise to. Roughly speaking, the ´etale groupoid provides a more topological picture of the corresponding C*-algebra, with various key properties of the algebra, like nuclearity and sim- plicity (see [ADR00] and [CEP+19]), being determined in a straightforward way from the underlying ´etale groupoid. Naturally, this has led to the quest to find appropriate ´etale groupoid models for various C*-algebras. Two general methods have emerged for finding such models, namely arXiv:1911.08812v3 [math.OA] 20 Sep 2020 1. Exel’s tight groupoid construction from an inverse semigroup, and 2. Kumjian-Renault’s Weyl groupoid construction from a Cartan C*-subalgebra (see [Exe08], [Kum86] and [Ren08]). However, both of these have their limi- tations. For example, tight groupoids are always ample, which means the cor- responding C*-algebras always have lots of projections. On the other hand, the Weyl groupoid is always effective, which discounts many naturally arising groupoids.
    [Show full text]
  • Chapter 3: Transformations Groups, Orbits, and Spaces of Orbits
    Preprint typeset in JHEP style - HYPER VERSION Chapter 3: Transformations Groups, Orbits, And Spaces Of Orbits Gregory W. Moore Abstract: This chapter focuses on of group actions on spaces, group orbits, and spaces of orbits. Then we discuss mathematical symmetric objects of various kinds. May 3, 2019 -TOC- Contents 1. Introduction 2 2. Definitions and the stabilizer-orbit theorem 2 2.0.1 The stabilizer-orbit theorem 6 2.1 First examples 7 2.1.1 The Case Of 1 + 1 Dimensions 11 3. Action of a topological group on a topological space 14 3.1 Left and right group actions of G on itself 19 4. Spaces of orbits 20 4.1 Simple examples 21 4.2 Fundamental domains 22 4.3 Algebras and double cosets 28 4.4 Orbifolds 28 4.5 Examples of quotients which are not manifolds 29 4.6 When is the quotient of a manifold by an equivalence relation another man- ifold? 33 5. Isometry groups 34 6. Symmetries of regular objects 36 6.1 Symmetries of polygons in the plane 39 3 6.2 Symmetry groups of some regular solids in R 42 6.3 The symmetry group of a baseball 43 7. The symmetries of the platonic solids 44 7.1 The cube (\hexahedron") and octahedron 45 7.2 Tetrahedron 47 7.3 The icosahedron 48 7.4 No more regular polyhedra 50 7.5 Remarks on the platonic solids 50 7.5.1 Mathematics 51 7.5.2 History of Physics 51 7.5.3 Molecular physics 51 7.5.4 Condensed Matter Physics 52 7.5.5 Mathematical Physics 52 7.5.6 Biology 52 7.5.7 Human culture: Architecture, art, music and sports 53 7.6 Regular polytopes in higher dimensions 53 { 1 { 8.
    [Show full text]
  • Group Theory for Puzzles 07/08/2007 04:27 PM
    Group Theory for puzzles 07/08/2007 04:27 PM Group Theory for puzzles On this page I will give much more detail on what groups are, filling in many details that are skimmed over on the Useful Mathematics page. However, since there is a lot to deal with, I will go through it fairly quickly and not elaborate much, which makes the text rather dense. I will at the same time try to relate these concepts to permutation puzzles, and the Rubik's Cube in particular. 1. Sets and functions 2. Groups and homomorphisms 3. Actions and orbits 4. Cosets and coset spaces 5. Permutations and parity 6. Symmetry and Platonic solids 7. Conjugation and commutation 8. Normal groups and quotient groups 9. Bibliography and Further reading Algebra and Group Theory Application to puzzles 1. Sets and functions A set is a collection of things called elements, and each of these elements occurs at most once in a set. A (finite) set can be given explicitly as a list inside a pair of curly brackets, for example {2,4,6,8} is the set of even positive integers below 10. It has four elements. There are infinite sets - sets that have an infinite number of elements - such as the set of integers, but I On puzzles, we will often consider the set of puzzle will generally discuss only finite sets (and groups) here. positions. A function f:A B from set A to set B is a pairing that assigns to each element in A some element of B.
    [Show full text]
  • Finiteness of $ Z $-Classes in Reductive Groups
    FINITENESS OF z-CLASSES IN REDUCTIVE GROUPS SHRIPAD M. GARGE. AND ANUPAM SINGH. Abstract. Let k be a perfect field such that for every n there are only finitely many field extensions, up to isomorphism, of k of degree n. If G is a reductive algebraic group defined over k, whose characteristic is very good for G, then we prove that G(k) has only finitely many z-classes. For each perfect field k which does not have the above finiteness property we show that there exist groups G over k such that G(k) has infinitely many z-classes. 1. Introduction Let G be a group. A G-set is a non-empty set X admitting an action of the group G. Two G-sets X and Y are called G-isomorphic if there is a bijection φ : X → Y which commutes with the G-actions on X and Y . If the G-sets X and Y are transitive, say X = Gx and Y = Gy for some x ∈ X and y ∈ Y , then X and Y are G-isomorphic if and only if the stabilizers Gx and Gy of x and y, respectively, in G are conjugate as subgroups of G. One of the most important group actions is the conjugation action of a group G on itself. It partitions the group G into its conjugacy classes which are orbits under this action. However, from the point of view of G-action, it is more natural to partition the group G into sets consisting of conjugacy classes which are G- arXiv:2001.06359v1 [math.GR] 17 Jan 2020 isomorphic to each other.
    [Show full text]
  • A Class of Totally Geodesic Foliations of Lie Groups
    Proc. Indian Acad. Sci. (Math. Sci.), Vol. 100, No. 1, April 1990, pp. 57-64. ~2 Printed in India. A class of totally geodesic foliations of Lie groups G SANTHANAM School of Mathematics. Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India MS received 4 October 1988; revised 25 May 1989 A~traet. This paper is devoted to classifying the foliations of G with leaves of the form .qKh - t where G is a compact, connected and simply connected L,c group and K is a connected closed subgroup of G such that G/K is a rank-I Riemannian symmetric space. In the case when G/K =S", the homotopy type of space of such foliations is also given. Keywords. Foliations; rank-I Riemannian symmetric space; cutlocus. I. Introduction The study of fibrations of spheres by great spheres is a very interesting problem in geometry and it is very important in the theory of Blaschke manifolds. In [l], Gluck and Warner have studied the great circle fibrations of the three spheres. In that paper they have proved very interesting results. When we look at the problem group theoretically, we see that all the results of [1] go through, for foliations of G with leaves of the form gKh- 1 where G is a compact, connected and simply connected Lie group and K is a connected closed subgroup of G such that G/K is a rank- l Riemannian symmetric space (see [-2]), except perhaps the theorem 3 for the pair (G, K) such that G/K=CP n, HP ~ etc.
    [Show full text]
  • Math 3230 Abstract Algebra I Sec 3.7: Conjugacy Classes
    Math 3230 Abstract Algebra I Sec 3.7: Conjugacy classes Slides created by M. Macauley, Clemson (Modified by E. Gunawan, UConn) http://egunawan.github.io/algebra Abstract Algebra I Sec 3.7 Conjugacy classes Abstract Algebra I 1 / 13 Conjugation Recall that for H ≤ G, the conjugate subgroup of H by a fixed g 2 G is gHg −1 = fghg −1 j h 2 Hg : Additionally, H is normal iff gHg −1 = H for all g 2 G. We can also fix the element we are conjugating. Given x 2 G, we may ask: \which elements can be written as gxg −1 for some g 2 G?" The set of all such elements in G is called the conjugacy class of x, denoted clG (x). Formally, this is the set −1 clG (x) = fgxg j g 2 Gg : Remarks −1 In any group, clG (e) = feg, because geg = e for any g 2 G. −1 If x and g commute, then gxg = x. Thus, when computing clG (x), we only need to check gxg −1 for those g 2 G that do not commute with x. Moreover, clG (x) = fxg iff x commutes with everything in G. (Why?) Sec 3.7 Conjugacy classes Abstract Algebra I 2 / 13 Conjugacy classes Proposition 1 Conjugacy is an equivalence relation. Proof Reflexive: x = exe−1. Symmetric: x = gyg −1 ) y = g −1xg. −1 −1 −1 Transitive: x = gyg and y = hzh ) x = (gh)z(gh) . Since conjugacy is an equivalence relation, it partitions the group G into equivalence classes (conjugacy classes). Let's compute the conjugacy classes in D4.
    [Show full text]
  • A STUDY on the ALGEBRAIC STRUCTURE of SL 2(Zpz)
    A STUDY ON THE ALGEBRAIC STRUCTURE OF SL2 Z pZ ( ~ ) A Thesis Presented to The Honors Tutorial College Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Mathematics by Evan North April 2015 Contents 1 Introduction 1 2 Background 5 2.1 Group Theory . 5 2.2 Linear Algebra . 14 2.3 Matrix Group SL2 R Over a Ring . 22 ( ) 3 Conjugacy Classes of Matrix Groups 26 3.1 Order of the Matrix Groups . 26 3.2 Conjugacy Classes of GL2 Fp ....................... 28 3.2.1 Linear Case . .( . .) . 29 3.2.2 First Quadratic Case . 29 3.2.3 Second Quadratic Case . 30 3.2.4 Third Quadratic Case . 31 3.2.5 Classes in SL2 Fp ......................... 33 3.3 Splitting of Classes of(SL)2 Fp ....................... 35 3.4 Results of SL2 Fp ..............................( ) 40 ( ) 2 4 Toward Lifting to SL2 Z p Z 41 4.1 Reduction mod p ...............................( ~ ) 42 4.2 Exploring the Kernel . 43 i 4.3 Generalizing to SL2 Z p Z ........................ 46 ( ~ ) 5 Closing Remarks 48 5.1 Future Work . 48 5.2 Conclusion . 48 1 Introduction Symmetries are one of the most widely-known examples of pure mathematics. Symmetry is when an object can be rotated, flipped, or otherwise transformed in such a way that its appearance remains the same. Basic geometric figures should create familiar examples, take for instance the triangle. Figure 1: The symmetries of a triangle: 3 reflections, 2 rotations. The red lines represent the reflection symmetries, where the trianlge is flipped over, while the arrows represent the rotational symmetry of the triangle.
    [Show full text]