GROUP ACTIONS 1. Introduction the Groups Sn, An, and (For N ≥ 3)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 5111 (Algebra 1) Lecture #14 of 24 ∼ October 19Th, 2020
Math 5111 (Algebra 1) Lecture #14 of 24 ∼ October 19th, 2020 Group Isomorphism Theorems + Group Actions The Isomorphism Theorems for Groups Group Actions Polynomial Invariants and An This material represents x3.2.3-3.3.2 from the course notes. Quotients and Homomorphisms, I Like with rings, we also have various natural connections between normal subgroups and group homomorphisms. To begin, observe that if ' : G ! H is a group homomorphism, then ker ' is a normal subgroup of G. In fact, I proved this fact earlier when I introduced the kernel, but let me remark again: if g 2 ker ', then for any a 2 G, then '(aga−1) = '(a)'(g)'(a−1) = '(a)'(a−1) = e. Thus, aga−1 2 ker ' as well, and so by our equivalent properties of normality, this means ker ' is a normal subgroup. Thus, we can use homomorphisms to construct new normal subgroups. Quotients and Homomorphisms, II Equally importantly, we can also do the reverse: we can use normal subgroups to construct homomorphisms. The key observation in this direction is that the map ' : G ! G=N associating a group element to its residue class / left coset (i.e., with '(a) = a) is a ring homomorphism. Indeed, the homomorphism property is precisely what we arranged for the left cosets of N to satisfy: '(a · b) = a · b = a · b = '(a) · '(b). Furthermore, the kernel of this map ' is, by definition, the set of elements in G with '(g) = e, which is to say, the set of elements g 2 N. Thus, kernels of homomorphisms and normal subgroups are precisely the same things. -
The Fundamental Groupoid of the Quotient of a Hausdorff
The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action Ronald Brown,∗ Philip J. Higgins,† Mathematics Division, Department of Mathematical Sciences, School of Informatics, Science Laboratories, University of Wales, Bangor South Rd., Gwynedd LL57 1UT, U.K. Durham, DH1 3LE, U.K. October 23, 2018 University of Wales, Bangor, Maths Preprint 02.25 Abstract The main result is that the fundamental groupoidof the orbit space of a discontinuousaction of a discrete groupon a Hausdorffspace which admits a universal coveris the orbit groupoid of the fundamental groupoid of the space. We also describe work of Higgins and of Taylor which makes this result usable for calculations. As an example, we compute the fundamental group of the symmetric square of a space. The main result, which is related to work of Armstrong, is due to Brown and Higgins in 1985 and was published in sections 9 and 10 of Chapter 9 of the first author’s book on Topology [3]. This is a somewhat edited, and in one point (on normal closures) corrected, version of those sections. Since the book is out of print, and the result seems not well known, we now advertise it here. It is hoped that this account will also allow wider views of these results, for example in topos theory and descent theory. Because of its provenance, this should be read as a graduate text rather than an article. The Exercises should be regarded as further propositions for which we leave the proofs to the reader. -
Right Product Quasigroups and Loops
RIGHT PRODUCT QUASIGROUPS AND LOOPS MICHAEL K. KINYON, ALEKSANDAR KRAPEZˇ∗, AND J. D. PHILLIPS Abstract. Right groups are direct products of right zero semigroups and groups and they play a significant role in the semilattice decomposition theory of semigroups. Right groups can be characterized as associative right quasigroups (magmas in which left translations are bijective). If we do not assume associativity we get right quasigroups which are not necessarily representable as direct products of right zero semigroups and quasigroups. To obtain such a representation, we need stronger assumptions which lead us to the notion of right product quasigroup. If the quasigroup component is a (one-sided) loop, then we have a right product (left, right) loop. We find a system of identities which axiomatizes right product quasigroups, and use this to find axiom systems for right product (left, right) loops; in fact, we can obtain each of the latter by adjoining just one appropriate axiom to the right product quasigroup axiom system. We derive other properties of right product quasigroups and loops, and conclude by show- ing that the axioms for right product quasigroups are independent. 1. Introduction In the semigroup literature (e.g., [1]), the most commonly used definition of right group is a semigroup (S; ·) which is right simple (i.e., has no proper right ideals) and left cancellative (i.e., xy = xz =) y = z). The structure of right groups is clarified by the following well-known representation theorem (see [1]): Theorem 1.1. A semigroup (S; ·) is a right group if and only if it is isomorphic to a direct product of a group and a right zero semigroup. -
Mathematics of the Rubik's Cube
Mathematics of the Rubik's cube Associate Professor W. D. Joyner Spring Semester, 1996{7 2 \By and large it is uniformly true that in mathematics that there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." John von Neumann COLLECTED WORKS, VI, p. 489 For more mathematical quotes, see the first page of each chapter below, [M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot. html 3 \There are some things which cannot be learned quickly, and time, which is all we have, must be paid heavily for their acquiring. They are the very simplest things, and because it takes a man's life to know them the little new that each man gets from life is very costly and the only heritage he has to leave." Ernest Hemingway (From A. E. Hotchner, PAPA HEMMINGWAY, Random House, NY, 1966) 4 Contents 0 Introduction 13 1 Logic and sets 15 1.1 Logic................................ 15 1.1.1 Expressing an everyday sentence symbolically..... 18 1.2 Sets................................ 19 2 Functions, matrices, relations and counting 23 2.1 Functions............................. 23 2.2 Functions on vectors....................... 28 2.2.1 History........................... 28 2.2.2 3 × 3 matrices....................... 29 2.2.3 Matrix multiplication, inverses.............. 30 2.2.4 Muliplication and inverses............... -
Lie Group and Geometry on the Lie Group SL2(R)
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear -
Definition 1.1. a Group Is a Quadruple (G, E, ⋆, Ι)
GROUPS AND GROUP ACTIONS. 1. GROUPS We begin by giving a definition of a group: Definition 1.1. A group is a quadruple (G, e, ?, ι) consisting of a set G, an element e G, a binary operation ?: G G G and a map ι: G G such that ∈ × → → (1) The operation ? is associative: (g ? h) ? k = g ? (h ? k), (2) e ? g = g ? e = g, for all g G. ∈ (3) For every g G we have g ? ι(g) = ι(g) ? g = e. ∈ It is standard to suppress the operation ? and write gh or at most g.h for g ? h. The element e is known as the identity element. For clarity, we may also write eG instead of e to emphasize which group we are considering, but may also write 1 for e where this is more conventional (for the group such as C∗ for example). Finally, 1 ι(g) is usually written as g− . Remark 1.2. Let us note a couple of things about the above definition. Firstly clo- sure is not an axiom for a group whatever anyone has ever told you1. (The reason people get confused about this is related to the notion of subgroups – see Example 1.8 later in this section.) The axioms used here are not “minimal”: the exercises give a different set of axioms which assume only the existence of a map ι without specifying it. We leave it to those who like that kind of thing to check that associa- tivity of triple multiplications implies that for any k N, bracketing a k-tuple of ∈ group elements (g1, g2, . -
An Algebraic Approach to the Weyl Groupoid
An Algebraic Approach to the Weyl Groupoid Tristan Bice✩ Institute of Mathematics Czech Academy of Sciences Zitn´a25,ˇ 115 67 Prague, Czech Republic Abstract We unify the Kumjian-Renault Weyl groupoid construction with the Lawson- Lenz version of Exel’s tight groupoid construction. We do this by utilising only a weak algebraic fragment of the C*-algebra structure, namely its *-semigroup reduct. Fundamental properties like local compactness are also shown to remain valid in general classes of *-rings. Keywords: Weyl groupoid, tight groupoid, C*-algebra, inverse semigroup, *-semigroup, *-ring 2010 MSC: 06F05, 20M25, 20M30, 22A22, 46L05, 46L85, 47D03 1. Introduction 1.1. Background Renault’s groundbreaking thesis [Ren80] revealed the striking interplay be- tween ´etale groupoids and the C*-algebras they give rise to. Roughly speaking, the ´etale groupoid provides a more topological picture of the corresponding C*-algebra, with various key properties of the algebra, like nuclearity and sim- plicity (see [ADR00] and [CEP+19]), being determined in a straightforward way from the underlying ´etale groupoid. Naturally, this has led to the quest to find appropriate ´etale groupoid models for various C*-algebras. Two general methods have emerged for finding such models, namely arXiv:1911.08812v3 [math.OA] 20 Sep 2020 1. Exel’s tight groupoid construction from an inverse semigroup, and 2. Kumjian-Renault’s Weyl groupoid construction from a Cartan C*-subalgebra (see [Exe08], [Kum86] and [Ren08]). However, both of these have their limi- tations. For example, tight groupoids are always ample, which means the cor- responding C*-algebras always have lots of projections. On the other hand, the Weyl groupoid is always effective, which discounts many naturally arising groupoids. -
A Class of Totally Geodesic Foliations of Lie Groups
Proc. Indian Acad. Sci. (Math. Sci.), Vol. 100, No. 1, April 1990, pp. 57-64. ~2 Printed in India. A class of totally geodesic foliations of Lie groups G SANTHANAM School of Mathematics. Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India MS received 4 October 1988; revised 25 May 1989 A~traet. This paper is devoted to classifying the foliations of G with leaves of the form .qKh - t where G is a compact, connected and simply connected L,c group and K is a connected closed subgroup of G such that G/K is a rank-I Riemannian symmetric space. In the case when G/K =S", the homotopy type of space of such foliations is also given. Keywords. Foliations; rank-I Riemannian symmetric space; cutlocus. I. Introduction The study of fibrations of spheres by great spheres is a very interesting problem in geometry and it is very important in the theory of Blaschke manifolds. In [l], Gluck and Warner have studied the great circle fibrations of the three spheres. In that paper they have proved very interesting results. When we look at the problem group theoretically, we see that all the results of [1] go through, for foliations of G with leaves of the form gKh- 1 where G is a compact, connected and simply connected Lie group and K is a connected closed subgroup of G such that G/K is a rank- l Riemannian symmetric space (see [-2]), except perhaps the theorem 3 for the pair (G, K) such that G/K=CP n, HP ~ etc. -
Lecture 1.2: Group Actions
Lecture 1.2: Group actions Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 8510, Abstract Algebra I M. Macauley (Clemson) Lecture 1.2: Group actions Math 8510, Abstract Algebra I 1 / 29 The symmetric group Definition The group of all permutations of f1;:::; ng is the symmetric group, denoted Sn. We can concisely describe permutations in cycle notation, e.g., 1 2 3 4 as (1 2 3 4). Observation 1 Every permutation can be decomposed into a product of disjoint cycles, and disjoint cycles commute. We usually don't write 1-cycles (fixed points). For example, in S10, we can write 1 2 3 4 5 6 7 8 9 10 as (1 4 6 5) (2 3) (8 10 9). By convention, we'll read cycles from right-to-left, like function composition. [Note. Many sources read left-to-right.] M. Macauley (Clemson) Lecture 1.2: Group actions Math 8510, Abstract Algebra I 2 / 29 The symmetric group Remarks The inverse of the cycle (1 2 3 4) is (4 3 2 1) = (1 4 3 2). If σ is a k-cycle, then jσj = k. If σ = σ1 ··· σm, all disjoint, then jσj = lcm(jσ1j;:::; jσmj). A 2-cycle is called a transposition. Every cycle (and hence element of Sn) can be written as a product of transpositions: (1 2 3 ··· k) = (1 k) (1 k −1) ··· (1 3) (1 2): We say σ 2 Sn is even if it can be written as a product of an even number of transpositions, otherwise it is odd. -
Group Properties and Group Isomorphism
GROUP PROPERTIES AND GROUP ISOMORPHISM Evelyn. M. Manalo Mathematics Honors Thesis University of California, San Diego May 25, 2001 Faculty Mentor: Professor John Wavrik Department of Mathematics GROUP PROPERTIES AND GROUP ISOMORPHISM I n t r o d u c t i o n T H E I M P O R T A N C E O F G R O U P T H E O R Y is relevant to every branch of Mathematics where symmetry is studied. Every symmetrical object is associated with a group. It is in this association why groups arise in many different areas like in Quantum Mechanics, in Crystallography, in Biology, and even in Computer Science. There is no such easy definition of symmetry among mathematical objects without leading its way to the theory of groups. In this paper we present the first stages of constructing a systematic method for classifying groups of small orders. Classifying groups usually arise when trying to distinguish the number of non-isomorphic groups of order n. This paper arose from an attempt to find a formula or an algorithm for classifying groups given invariants that can be readily determined without any other known assumptions about the group. This formula is very useful if we want to know if two groups are isomorphic. Mathematical objects are considered to be essentially the same, from the point of view of their algebraic properties, when they are isomorphic. When two groups Γ and Γ’ have exactly the same group-theoretic structure then we say that Γ is isomorphic to Γ’ or vice versa. -
Distortion of Dimension by Metric Space-Valued Sobolev Mappings Lecture II
Distortion of dimension by metric space-valued Sobolev mappings Lecture II Jeremy Tyson University of Illinois at Urbana-Champaign Metric Spaces: Analysis, Embeddings into Banach Spaces, Applications Texas A&M University College Station, TX 8 July 2016 Outline Lecture I. Sobolev and quasiconformal mappings in Euclidean space Lecture II. Sobolev mappings between metric spaces Lecture III. Dimension distortion theorems for Sobolev and quasiconformal mappings defined from the sub-Riemannian Heisenberg group f homeo in Rn, n ≥ 2 Gehring metric QC ) analytic QC ) geometric QC modulus) estimates (local) QS f : X ! Y homeo between proper Q-regular mms satisfying Q-PI, Q > 1 0 metric QC HK=)98 QS f : X ! Y homeo between proper Q-regular mms 0 . geometric QC T(98 QS Motivation: quasiconformal mappings in metric spaces The theory of analysis in metric measure spaces originates in two papers of Juha Heinonen and Pekka Koskela: ‘Definitions of quasiconformality', Invent. Math., 1995 `QC maps in metric spaces of controlled geometry', Acta Math., 1998 The latter paper introduced the concept of p-Poincar´einequality on a metric measure space, which has become the standard axiom for first-order analysis. f : X ! Y homeo between proper Q-regular mms satisfying Q-PI, Q > 1 0 metric QC HK=)98 QS f : X ! Y homeo between proper Q-regular mms 0 . geometric QC T(98 QS Motivation: quasiconformal mappings in metric spaces The theory of analysis in metric measure spaces originates in two papers of Juha Heinonen and Pekka Koskela: ‘Definitions of quasiconformality', Invent. Math., 1995 `QC maps in metric spaces of controlled geometry', Acta Math., 1998 The latter paper introduced the concept of p-Poincar´einequality on a metric measure space, which has become the standard axiom for first-order analysis. -
Mathematics for Humanists
Mathematics for Humanists Mathematics for Humanists Herbert Gintis xxxxxxxxx xxxxxxxxxx Press xxxxxxxxx and xxxxxx Copyright c 2021 by ... Published by ... All Rights Reserved Library of Congress Cataloging-in-Publication Data Gintis, Herbert Mathematics for Humanists/ Herbert Gintis p. cm. Includes bibliographical references and index. ISBN ...(hardcover: alk. paper) HB... xxxxxxxxxx British Library Cataloging-in-Publication Data is available The publisher would like to acknowledge the author of this volume for providing the camera-ready copy from which this book was printed This book has been composed in Times and Mathtime by the author Printed on acid-free paper. Printed in the United States of America 10987654321 This book is dedicated to my mathematics teachers: Pincus Shub, Walter Gottschalk, Abram Besikovitch, and Oskar Zariski Contents Preface xii 1 ReadingMath 1 1.1 Reading Math 1 2 The LanguageofLogic 2 2.1 TheLanguageofLogic 2 2.2 FormalPropositionalLogic 4 2.3 Truth Tables 5 2.4 ExercisesinPropositionalLogic 7 2.5 Predicate Logic 8 2.6 ProvingPropositionsinPredicateLogic 9 2.7 ThePerilsofLogic 10 3 Sets 11 3.1 Set Theory 11 3.2 PropertiesandPredicates 12 3.3 OperationsonSets 14 3.4 Russell’s Paradox 15 3.5 Ordered Pairs 17 3.6 MathematicalInduction 18 3.7 SetProducts 19 3.8 RelationsandFunctions 20 3.9 PropertiesofRelations 21 3.10 Injections,Surjections,andBijections 22 3.11 CountingandCardinality 23 3.12 The Cantor-Bernstein Theorem 24 3.13 InequalityinCardinalNumbers 25 3.14 Power Sets 26 3.15 TheFoundationsofMathematics