A STUDY on the ALGEBRAIC STRUCTURE of SL 2(Zpz)

Total Page:16

File Type:pdf, Size:1020Kb

A STUDY on the ALGEBRAIC STRUCTURE of SL 2(Zpz) A STUDY ON THE ALGEBRAIC STRUCTURE OF SL2 Z pZ ( ~ ) A Thesis Presented to The Honors Tutorial College Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Mathematics by Evan North April 2015 Contents 1 Introduction 1 2 Background 5 2.1 Group Theory . 5 2.2 Linear Algebra . 14 2.3 Matrix Group SL2 R Over a Ring . 22 ( ) 3 Conjugacy Classes of Matrix Groups 26 3.1 Order of the Matrix Groups . 26 3.2 Conjugacy Classes of GL2 Fp ....................... 28 3.2.1 Linear Case . .( . .) . 29 3.2.2 First Quadratic Case . 29 3.2.3 Second Quadratic Case . 30 3.2.4 Third Quadratic Case . 31 3.2.5 Classes in SL2 Fp ......................... 33 3.3 Splitting of Classes of(SL)2 Fp ....................... 35 3.4 Results of SL2 Fp ..............................( ) 40 ( ) 2 4 Toward Lifting to SL2 Z p Z 41 4.1 Reduction mod p ...............................( ~ ) 42 4.2 Exploring the Kernel . 43 i 4.3 Generalizing to SL2 Z p Z ........................ 46 ( ~ ) 5 Closing Remarks 48 5.1 Future Work . 48 5.2 Conclusion . 48 1 Introduction Symmetries are one of the most widely-known examples of pure mathematics. Symmetry is when an object can be rotated, flipped, or otherwise transformed in such a way that its appearance remains the same. Basic geometric figures should create familiar examples, take for instance the triangle. Figure 1: The symmetries of a triangle: 3 reflections, 2 rotations. The red lines represent the reflection symmetries, where the trianlge is flipped over, while the arrows represent the rotational symmetry of the triangle. These notions can be expanded to any regular polygon, certain three-dimensional ob- jects, and even certain objects in nature such as crystal formations. Objects that possess a large number of symmetries are regarded as beautiful and intriguing, of- ten invoking further studies into the object's special properties. However, physical shapes are not the only objects that can possess symmetry, and the formalization of this concept has come to be known as group theory. 1 Group theory is a branch of abstract algebra that is largely concerned with the study of symmetries of mathematical objects. A group is a mathematical abstraction of symmetries, and using group theory, mathematicians find hidden patterns in the symmetries of a problem. A prime example of this is Galois's proof of the unsolvability of a quintic equation, which uses symmetries of the roots of a polynomial. Even though group theory often focuses on concepts more abstract than geo- metric objects, it can still be used to study familiar shapes. In this thesis, special focus is given to groups related to symmetries of the torus. The torus is a very rec- ognizable shape, even outside the mathematical world, with many people knowing it as a doughnut, a bagel, or even an inner-tube. Whatever your impression of the torus is, however, it should resemble figure 2. Figure 2: A torus. Accessed from [Mrabet, 2007] 2 The torus appears in many areas of mathematics. Mathematically, the easiest 2 way to view the torus is as the real plane modded by its integer points, R 2. Z This process can be viewed as taking a plane, rolling it into a tube (thus moddingÒ out one copy of Z), then connecting the ends of that tube to mod out the other copy of Z. This can be visualized in figure 3. Figure 3: How to make a torus from the unit square. From [Kostyuk, 2009] The rigid symmetries of the torus form what is called the modular group, or SL2 Z . Elements of the modular group are size and orientation preserving linear transformations,( ) otherwise known as 2 2 determinant one matrices, with integer coefficients. × 3 This paper looks to shed light on the structure of finite quotients of the modular group, SL2 Z NZ for N N. This is approached by breaking N down into its prime components,( ~ ) then considering∈ the corresponding decomposition of the finite quotient of the modular group. r mi N pi i=1 r = M mi SL2 Z NZ SL2 Z pi Z i=1 ( ~ ) ≃ ( ~ ) The simplest of these cases is obviously when the power of prime p is one, which is our base case as well as our main case of study. The main topic of this paper is conjugacy classes of the groups of interest. Conjugacy is an equivalence relation on groups, so looking at conjugacy classes is one way to see the hidden structure. Once the structure of the conjugacy classes of SL2 Z pZ is established, some preliminary results are discussed for extending findings( ~ to higher) powers. It should be stated now that the results on SL2 Z pZ have been known for some time, and are verifiable in [Humphreys, 1975], [Reeder,( ~ ) 2008], and [Dornhoff, 1971]. However, these sources are written much more compactly, often omitting highly relevant statements or their proofs. Most of the results in chapter 2 are proven, but great care has been taken in chapter 3 to give not only all of the relevant proofs, but to explain the material in such a way that the underlying structure of the conjugacy classes is more easily visualized. 4 2 Background 2.1 Group Theory This thesis is ultimately a study in group theory, so there are some fundamentals that need to be reviewed in order to ensure the reader has any necessary definitions and background available. This section presents all of the definitions, theorems, and lemmas that are needed to approach the later content, given with proof when deemed appropriate. Throughout the section, groups will be assumed to be finite, so special cases for infinite groups will not be considered. Finally, any of the definitions and results in this section can be found in any introductory abstract algebra book. For this paper, they have been adapted from [Dummit and Foote, 2004] to suit the needs of this review. Definition 1. A group is a set G together with an operation G G G that satisfies the following properties: ⋅ ∶ × → (1) The operation is associative: f g h f g h g; f; h G (2) There exists a⋅ unique identity element⋅ ( ⋅ )e:= e( g⋅ )g⋅ ∀g e g ∈ G (3) For every g G, there exists a unique inverse⋅ element= = ⋅g−∀1 that∈ satisfies g g−1 e g−1 g ∈ ⋅ = = ⋅ Groups are sets with a special structure imposed by their associated operation, and this structure gives rise to a surprising number of properties. The next few definitions provide the language to discuss and derive many of these properties. Additionally, throughout this paper, the operation of a group will commonly be omitted. It is popular shorthand to set g h gh, as the operation is typically either implied or irrelevant (from abstraction).⋅ = One thing to note here is that the operation is not necessarily commutative, meaning that in general, gh hg for ≠ 5 two element g; h G. However, there are plenty of examples where this does hold, such as the integers∈ with addition. In fact, this is a common (and notable) enough property that these groups have their own name. Definition 2. An abelian group is a commutative group, i.e. for every g; h G, gh hg. ∈ =The most familiar example of an abelian group should be the integers, Z, paired with addition. From grade school we know addition is both associative and commutative, and zero plus anything is zero, so zero serves as the identity. Negative numbers are additive inverses, so Z satisfies the definition of an abelian group. Another interesting example to consider is the modular integers, Z nZ. Both Z and Z nZ are classic examples of what are called cyclic groups. ~ Definition 3.~ A cyclic group is a group that is generated by one element, i.e. there exists some g G such that for every h G, there exists an nh such that gnh h. In this case,∈g is called a generator of∈ G. In= a cyclic group, repeatedly composing a generator with itself will eventually return the entire group. One especially nice thing about cyclic groups is that they are always abelian, so if one can find a single generator of a group then it must be abelian. Definition 4. The order of a group G, denoted G , is the number of elements in G. The order of an element g G, denotedS S g is the smallest positive integer n such that gn e, where gn ∈denotes n repeatedO( ) compositions of g with itself. = Definition 5. H is a subgroup of G if H is a subset of G, and H satisfies the properties from definition 1 with respect to the operation in G. In symbols, this is written H G. ≤ 6 Definition 6. For a subgroup H G and g G, gH is the left coset of H with respect to g and Hg is the right coset≤ of H∈with respect to g, where gH gh h H Hg hg h H = { S ∈ } = { S ∈ } Subgroups are simply subsets that also have the group structure. Because of the properties of groups, being a subgroup has close ties to the divisibility of the order of groups and their subgroups. One can also consider what happens to all the elements of a subgroup when composed with other elements of the group, creating cosets. The only difference between a left and right coset is what side the elements are composed from, a subtle but necessary distinction because not all groups are commutative (i.e.
Recommended publications
  • Chapter 4. Homomorphisms and Isomorphisms of Groups
    Chapter 4. Homomorphisms and Isomorphisms of Groups 4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that f is a function or a map from X to Y , written f : X ! Y , we mean that for every x 2 X there exists a unique corresponding element y = f(x) 2 Y . The set X is called the domain of f and the range or image of f is the set Image(f) = f(X) = f(x) x 2 X . For a set A ⊆ X, the image of A under f is the set f(A) = f(a) a 2 A and for a set −1 B ⊆ Y , the inverse image of B under f is the set f (B) = x 2 X f(x) 2 B . For a function f : X ! Y , we say f is one-to-one (written 1 : 1) or injective when for every y 2 Y there exists at most one x 2 X such that y = f(x), we say f is onto or surjective when for every y 2 Y there exists at least one x 2 X such that y = f(x), and we say f is invertible or bijective when f is 1:1 and onto, that is for every y 2 Y there exists a unique x 2 X such that y = f(x). When f is invertible, the inverse of f is the function f −1 : Y ! X defined by f −1(y) = x () y = f(x). For f : X ! Y and g : Y ! Z, the composite g ◦ f : X ! Z is given by (g ◦ f)(x) = g(f(x)).
    [Show full text]
  • Group Homomorphisms
    1-17-2018 Group Homomorphisms Here are the operation tables for two groups of order 4: · 1 a a2 + 0 1 2 1 1 a a2 0 0 1 2 a a a2 1 1 1 2 0 a2 a2 1 a 2 2 0 1 There is an obvious sense in which these two groups are “the same”: You can get the second table from the first by replacing 0 with 1, 1 with a, and 2 with a2. When are two groups the same? You might think of saying that two groups are the same if you can get one group’s table from the other by substitution, as above. However, there are problems with this. In the first place, it might be very difficult to check — imagine having to write down a multiplication table for a group of order 256! In the second place, it’s not clear what a “multiplication table” is if a group is infinite. One way to implement a substitution is to use a function. In a sense, a function is a thing which “substitutes” its output for its input. I’ll define what it means for two groups to be “the same” by using certain kinds of functions between groups. These functions are called group homomorphisms; a special kind of homomorphism, called an isomorphism, will be used to define “sameness” for groups. Definition. Let G and H be groups. A homomorphism from G to H is a function f : G → H such that f(x · y)= f(x) · f(y) forall x,y ∈ G.
    [Show full text]
  • The Universal Property of Inverse Semigroup Equivariant KK-Theory
    KYUNGPOOK Math. J. 61(2021), 111-137 https://doi.org/10.5666/KMJ.2021.61.1.111 pISSN 1225-6951 eISSN 0454-8124 c Kyungpook Mathematical Journal The Universal Property of Inverse Semigroup Equivariant KK-theory Bernhard Burgstaller Departamento de Matematica, Universidade Federal de Santa Catarina, CEP 88.040-900 Florian´opolis-SC, Brasil e-mail : [email protected] Abstract. Higson proved that every homotopy invariant, stable and split exact func- tor from the category of C∗-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting. 1. Introduction In [3], Cuntz noted that if F is a homotopy invariant, stable and split exact func- tor from the category of separable C∗-algebras to the category of abelian groups then Kasparov's KK-theory acts on F , that is, every element of KK(A; B) induces a natural map F (A) ! F (B). Higson [4], on the other hand, developed Cuntz' find- ings further and proved that every such functor F factorizes through the category K consisting of separable C∗-algebras as the object class and KK-theory together with the Kasparov product as the morphism class, that is, F is the composition F^ ◦ κ of a universal functor κ from the class of C∗-algebras to K and a functor F^ from K to abelian groups. In [12], Thomsen generalized Higson's findings to the group equivariant setting by replacing everywhere in the above statement algebras by equivariant algebras, ∗- homomorphisms by equivariant ∗-homomorphisms and KK-theory by equivariant KK-theory (the proof is however far from such a straightforward replacement).
    [Show full text]
  • Classification of Finite Abelian Groups
    Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k.
    [Show full text]
  • Categories of Sets with a Group Action
    Categories of sets with a group action Bachelor Thesis of Joris Weimar under supervision of Professor S.J. Edixhoven Mathematisch Instituut, Universiteit Leiden Leiden, 13 June 2008 Contents 1 Introduction 1 1.1 Abstract . .1 1.2 Working method . .1 1.2.1 Notation . .1 2 Categories 3 2.1 Basics . .3 2.1.1 Functors . .4 2.1.2 Natural transformations . .5 2.2 Categorical constructions . .6 2.2.1 Products and coproducts . .6 2.2.2 Fibered products and fibered coproducts . .9 3 An equivalence of categories 13 3.1 G-sets . 13 3.2 Covering spaces . 15 3.2.1 The fundamental group . 15 3.2.2 Covering spaces and the homotopy lifting property . 16 3.2.3 Induced homomorphisms . 18 3.2.4 Classifying covering spaces through the fundamental group . 19 3.3 The equivalence . 24 3.3.1 The functors . 25 4 Applications and examples 31 4.1 Automorphisms and recovering the fundamental group . 31 4.2 The Seifert-van Kampen theorem . 32 4.2.1 The categories C1, C2, and πP -Set ................... 33 4.2.2 The functors . 34 4.2.3 Example . 36 Bibliography 38 Index 40 iii 1 Introduction 1.1 Abstract In the 40s, Mac Lane and Eilenberg introduced categories. Although by some referred to as abstract nonsense, the idea of categories allows one to talk about mathematical objects and their relationions in a general setting. Its origins lie in the field of algebraic topology, one of the topics that will be explored in this thesis. First, a concise introduction to categories will be given.
    [Show full text]
  • Mathematics 310 Examination 1 Answers 1. (10 Points) Let G Be A
    Mathematics 310 Examination 1 Answers 1. (10 points) Let G be a group, and let x be an element of G. Finish the following definition: The order of x is ... Answer: . the smallest positive integer n so that xn = e. 2. (10 points) State Lagrange’s Theorem. Answer: If G is a finite group, and H is a subgroup of G, then o(H)|o(G). 3. (10 points) Let ( a 0! ) H = : a, b ∈ Z, ab 6= 0 . 0 b Is H a group with the binary operation of matrix multiplication? Be sure to explain your answer fully. 2 0! 1/2 0 ! Answer: This is not a group. The inverse of the matrix is , which is not 0 2 0 1/2 in H. 4. (20 points) Suppose that G1 and G2 are groups, and φ : G1 → G2 is a homomorphism. (a) Recall that we defined φ(G1) = {φ(g1): g1 ∈ G1}. Show that φ(G1) is a subgroup of G2. −1 (b) Suppose that H2 is a subgroup of G2. Recall that we defined φ (H2) = {g1 ∈ G1 : −1 φ(g1) ∈ H2}. Prove that φ (H2) is a subgroup of G1. Answer:(a) Pick x, y ∈ φ(G1). Then we can write x = φ(a) and y = φ(b), with a, b ∈ G1. Because G1 is closed under the group operation, we know that ab ∈ G1. Because φ is a homomorphism, we know that xy = φ(a)φ(b) = φ(ab), and therefore xy ∈ φ(G1). That shows that φ(G1) is closed under the group operation.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • On Some Generation Methods of Finite Simple Groups
    Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group.
    [Show full text]
  • An Introduction to Inverse Semigroups and Their Connections to C*-Algebras
    CARLETON UNIVERSITY SCHOOL OF MATHEMATICS AND STATISTICS HONOURS PROJECT TITLE: An Introduction to Inverse Semigroups and Their Connections To C*-Algebras AUTHOR: Kyle Cheaney SUPERVISOR: Dr. Charles Starling DATE: August 24, 2020 AN INTRODUCTION TO INVERSE SEMIGROUPS AND THEIR CONNECTIONS TO C∗-ALGEBRAS KYLE CHEANEY: 101012022 Abstract. This paper sets out to provide the reader with a basic introduction to inverse semigroups, as well as a proof of the Wagner-Preston Representation Theorem. It then focuses on finite directed graphs, specifically the graph inverse semigroup and how properties of the semigroup correspond to properties of C∗ algebras associated to such graphs. 1. Introduction The study of inverse semigroups was founded in the 1950's by three mathematicians: Ehresmann, Preston, and Wagner, as a way to algebraically describe pseudogroups of trans- formations. The purpose of this paper is to introduce the topic of inverse semigroups and some of the basic properties and theorems. We use these basics to relate the inverse semi- group formed by a directed graph to the corresponding graph C∗ algebra. The study of such C∗ algebras is still an active topic of research in analysis, thus providing a connection between abstract algebraic objects and complex analysis. In section 2, we outline some preliminary definitions and results which will be our basic tools for working with inverse semigroups. Section 3 provides a more detailed introduction to inverse semigroups and contains a proof of the Wagner-Preston representation theorem, a cornerstone in the study of inverse semigroups. In section 4, we present some detailed examples of inverse semigroups, including proving said sets are in fact inverse semigroups and discussing what their idempotents look like.
    [Show full text]
  • Matrix Lie Groups
    Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).
    [Show full text]
  • Mathematics of the Rubik's Cube
    Mathematics of the Rubik's cube Associate Professor W. D. Joyner Spring Semester, 1996{7 2 \By and large it is uniformly true that in mathematics that there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." John von Neumann COLLECTED WORKS, VI, p. 489 For more mathematical quotes, see the first page of each chapter below, [M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot. html 3 \There are some things which cannot be learned quickly, and time, which is all we have, must be paid heavily for their acquiring. They are the very simplest things, and because it takes a man's life to know them the little new that each man gets from life is very costly and the only heritage he has to leave." Ernest Hemingway (From A. E. Hotchner, PAPA HEMMINGWAY, Random House, NY, 1966) 4 Contents 0 Introduction 13 1 Logic and sets 15 1.1 Logic................................ 15 1.1.1 Expressing an everyday sentence symbolically..... 18 1.2 Sets................................ 19 2 Functions, matrices, relations and counting 23 2.1 Functions............................. 23 2.2 Functions on vectors....................... 28 2.2.1 History........................... 28 2.2.2 3 × 3 matrices....................... 29 2.2.3 Matrix multiplication, inverses.............. 30 2.2.4 Muliplication and inverses...............
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]