The Cubing Community Megasurvey 2021 Acknowledgements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
002-Contents.Pdf
CubeRoot Contents Contents Contents Purple denotes upcoming contents. 1 Preface 2 Signatures of Top Cubers in the World 3 Quotes 4 Photo Albums 5 Getting Started 5.1 Cube History 5.2 WCA Events 5.3 WCA Notation 5.4 WCA Competition Tutorial 5.5 Tips to Cubers 6 Rubik's Cube 6.1 Beginner 6.1.1 LBL Method (Layer-By-Layer) 6.1.2 Finger and Toe Tricks 6.1.3 Optimizing LBL Method 6.1.4 4LLL Algorithms 6.2 Intermediate 进阶 6.2.1 Triggers 6.2.2 How to Get Faster 6.2.3 Practice Tips 6.2.4 CN (Color Neutrality) 6.2.5 Lookahead 6.2.6 CFOP Algorithms 6.2.7 Solve Critiques 3x3 - 12.20 Ao5 6.2.8 Solve Critiques 3x3 - 13.99 Ao5 6.2.9 Cross Algorithms 6.2.10 Xcross Examples 6.2.11 F2L Algorithms 6.2.12 F2L Techniques 6.2.13 Multi-Angle F2L Algorithms 6.2.14 Non-Standard F2L Algorithms 6.2.15 OLL Algorithms, Finger Tricks and Recognition 6.2.16 PLL Algorithms and Finger Tricks 6.2.17 CP Look Ahead 6.2.18 Two-Sided PLL Recognition 6.2.19 Pre-AUF CubeRoot Contents Contents 7 Speedcubing Advice 7.1 How To Get Faster 7.2 Competition Performance 7.3 Cube Maintenance 8 Speedcubing Thoughts 8.1 Speedcubing Limit 8.2 2018 Plans, Goals and Predictions 8.3 2019 Plans, Goals and Predictions 8.4 Interviewing Feliks Zemdegs on 3.47 3x3 WR Single 9 Advanced - Last Slot and Last Layer 9.1 COLL Algorithms 9.2 CxLL Recognition 9.3 Useful OLLCP Algorithms 9.4 WV Algorithms 9.5 Easy VLS Algorithms 9.6 BLE Algorithms 9.7 Easy CLS Algorithms 9.8 Easy EOLS Algorithms 9.9 VHLS Algorithms 9.10 Easy OLS Algorithms 9.11 ZBLL Algorithms 9.12 ELL Algorithms 9.13 Useful 1LLL Algorithms -
Mathematics of the Rubik's Cube
Mathematics of the Rubik's cube Associate Professor W. D. Joyner Spring Semester, 1996{7 2 \By and large it is uniformly true that in mathematics that there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." John von Neumann COLLECTED WORKS, VI, p. 489 For more mathematical quotes, see the first page of each chapter below, [M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot. html 3 \There are some things which cannot be learned quickly, and time, which is all we have, must be paid heavily for their acquiring. They are the very simplest things, and because it takes a man's life to know them the little new that each man gets from life is very costly and the only heritage he has to leave." Ernest Hemingway (From A. E. Hotchner, PAPA HEMMINGWAY, Random House, NY, 1966) 4 Contents 0 Introduction 13 1 Logic and sets 15 1.1 Logic................................ 15 1.1.1 Expressing an everyday sentence symbolically..... 18 1.2 Sets................................ 19 2 Functions, matrices, relations and counting 23 2.1 Functions............................. 23 2.2 Functions on vectors....................... 28 2.2.1 History........................... 28 2.2.2 3 × 3 matrices....................... 29 2.2.3 Matrix multiplication, inverses.............. 30 2.2.4 Muliplication and inverses............... -
Breaking an Old Code -And Beating It to Pieces
Breaking an Old Code -And beating it to pieces Daniel Vu - 1 - Table of Contents About the Author................................................ - 4 - Notation ............................................................... - 5 - Time for Some Cube Math........................................................................... Error! Bookmark not defined. Layer By Layer Method................................... - 10 - Step One- Cross .................................................................................................................................. - 10 - Step Two- Solving the White Corners ................................................................................................. - 11 - Step Three- Solving the Middle Layer................................................................................................. - 11 - Step Four- Orient the Yellow Edges.................................................................................................... - 12 - Step Five- Corner Orientation ............................................................................................................ - 12 - Step Six- Corner Permutation ............................................................................................................. - 13 - Step Seven- Edge Permutation............................................................................................................ - 14 - The Petrus Method........................................... - 17 - Step One- Creating the 2x2x2 Block .................................................................................................. -
NEWSLETTER July 2021
NEWSLETTER July 2021 Welcome to our July Newsletter- In last summer's TURN TO PAGE 14 newsletter introduction, I referred to 2019-20 being a year 'unlike any other'. Sadly, it would seem that 2020-21 has also been a year 'unlike TO FIND OUT THE WINNER OF any other' and I don't think any of us could have imagined the pandemic continuing for as long as it has or having the very significant impact on the world of education in the way that it has. There are, however, brighter times ahead and we look forward to a return to school in September that feels more like our normality. We have been carefully reviewing our procedures in school and we recognise that some of the practices that we have brought in due to COVID-19 have actually enhanced what we do and helped us to raise standards. Certain other things, we will not be continuing with- we SAVE THE DATE! are very much looking forward to our teachers being able to base YEAR 6 OPEN EVENING themselves in their own rooms again, allowing the students to move more freely around school from subject area to subject area. Thursday 23rd September We can’t wait to welcome Year 6 students As ever, we have not compromised on all the fantastic extra activities and their parents/carers to our Open and opportunities on offer to our students and this July newsletter Evening. Students will have the contains so many amazing stories and articles about our students' opportunity to visit each of our subject achievements. -
Magiczny Sześcian- Kostka Rubika
Szkoła Podstawowa Zakonu Pijarów im. ks. St. Konarskiego ul. Dzielskiego 1 31 – 465 Kraków Magiczny sześcian- Kostka Rubika Karol Pezda Klasa 6a Kraków 2021 Spis treści Wstęp 3 1. Co to jest kostka Rubika? 4 2. Historia wynalazcy 6 3. Historia wynalazku 8 4. Najlepsze kostki 10 5. Budowa kostki 12 6. Konserwacja 14 7. Rożne rodzaje kostek 15 8. World Cube Association (WCA) 16 9. Polskie Stowarzyszenie Speedcubingu (PSS) 19 10. Rekordy, statystyki oraz znane postacie 20 11. Odpowiednie przygotowanie 22 12. Notacje/ ruchy 23 13. Fingershortcuts i ,,wzorki” 25 14. Metoda LBL- podstawowa 27 15. Metoda Fridrich 34 Bibliografia 37 2 Wstęp Moja praca poświęcona jest w całości kostce Rubika - od jej założenia do metody układania. Dowiesz się w niej wiele rzeczy na jej temat. Jednak znajomość teorii to nie wszystko. Chodzi przede wszystkim o praktykę. Nie mówię, że teoria to nic ważnego. Absolutnie nie! Od czegoś trzeba przecież zacząć, jednak co da Ci znajomość teorii, jeśli nie umiesz jej wykorzystać. Książka składa się więc z dwóch części: teoretycznej i praktycznej. W każdej możesz dowiedzieć się czegoś fascynującego, więc czytaj do końca, aby dowiedzieć się wszystko o kostce Rubika. Chcę w tym tekście pokazać również związek matematyki z tą łamigłówką. Szczególnie geometrią. Sam wynalazca, Ernő Rubik stworzył kostkę Rubika, aby rozwinąć u swoich studentów myślenie o geometrii trójwymiarowej, co doskonale mu się udało. 3 1. Co to jest kostka Rubika? Co to jest kostka Rubika? Domyślnie kostka Rubika to sześcian średniej wielkości, który składa się z 27 mniejszych sześcianów (zmniejszonych w skali 1:3- jeden mały sześcian jest trzykrotnie mniejszy od całej kostki) . -