Permutation Puzzles: a Mathematical Perspective Lecture Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
002-Contents.Pdf
CubeRoot Contents Contents Contents Purple denotes upcoming contents. 1 Preface 2 Signatures of Top Cubers in the World 3 Quotes 4 Photo Albums 5 Getting Started 5.1 Cube History 5.2 WCA Events 5.3 WCA Notation 5.4 WCA Competition Tutorial 5.5 Tips to Cubers 6 Rubik's Cube 6.1 Beginner 6.1.1 LBL Method (Layer-By-Layer) 6.1.2 Finger and Toe Tricks 6.1.3 Optimizing LBL Method 6.1.4 4LLL Algorithms 6.2 Intermediate 进阶 6.2.1 Triggers 6.2.2 How to Get Faster 6.2.3 Practice Tips 6.2.4 CN (Color Neutrality) 6.2.5 Lookahead 6.2.6 CFOP Algorithms 6.2.7 Solve Critiques 3x3 - 12.20 Ao5 6.2.8 Solve Critiques 3x3 - 13.99 Ao5 6.2.9 Cross Algorithms 6.2.10 Xcross Examples 6.2.11 F2L Algorithms 6.2.12 F2L Techniques 6.2.13 Multi-Angle F2L Algorithms 6.2.14 Non-Standard F2L Algorithms 6.2.15 OLL Algorithms, Finger Tricks and Recognition 6.2.16 PLL Algorithms and Finger Tricks 6.2.17 CP Look Ahead 6.2.18 Two-Sided PLL Recognition 6.2.19 Pre-AUF CubeRoot Contents Contents 7 Speedcubing Advice 7.1 How To Get Faster 7.2 Competition Performance 7.3 Cube Maintenance 8 Speedcubing Thoughts 8.1 Speedcubing Limit 8.2 2018 Plans, Goals and Predictions 8.3 2019 Plans, Goals and Predictions 8.4 Interviewing Feliks Zemdegs on 3.47 3x3 WR Single 9 Advanced - Last Slot and Last Layer 9.1 COLL Algorithms 9.2 CxLL Recognition 9.3 Useful OLLCP Algorithms 9.4 WV Algorithms 9.5 Easy VLS Algorithms 9.6 BLE Algorithms 9.7 Easy CLS Algorithms 9.8 Easy EOLS Algorithms 9.9 VHLS Algorithms 9.10 Easy OLS Algorithms 9.11 ZBLL Algorithms 9.12 ELL Algorithms 9.13 Useful 1LLL Algorithms -
Mathematics of the Rubik's Cube
Mathematics of the Rubik's cube Associate Professor W. D. Joyner Spring Semester, 1996{7 2 \By and large it is uniformly true that in mathematics that there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." John von Neumann COLLECTED WORKS, VI, p. 489 For more mathematical quotes, see the first page of each chapter below, [M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot. html 3 \There are some things which cannot be learned quickly, and time, which is all we have, must be paid heavily for their acquiring. They are the very simplest things, and because it takes a man's life to know them the little new that each man gets from life is very costly and the only heritage he has to leave." Ernest Hemingway (From A. E. Hotchner, PAPA HEMMINGWAY, Random House, NY, 1966) 4 Contents 0 Introduction 13 1 Logic and sets 15 1.1 Logic................................ 15 1.1.1 Expressing an everyday sentence symbolically..... 18 1.2 Sets................................ 19 2 Functions, matrices, relations and counting 23 2.1 Functions............................. 23 2.2 Functions on vectors....................... 28 2.2.1 History........................... 28 2.2.2 3 × 3 matrices....................... 29 2.2.3 Matrix multiplication, inverses.............. 30 2.2.4 Muliplication and inverses............... -
Color Blocks
Vol-3Issue-6 2017 IJARIIE-ISSN(O)-2395-4396 COLOR BLOCKS Varun Reddy1, Nikhil Gabbeta2, Sagar Naidu3, Arun Reddy4 1 Btech, Computer Science and Engineering, SRM University, Tamilnadu, India 2 Btech, Computer Science and Engineering, SRM University, Tamilnadu, India 3 Btech, Computer Science and Engineering, SRM University, Tamilnadu, India 4 Btech, Computer Science and Engineering, SRM University, Tamilnadu, India ABSTRACT Smart Puzzle app is a classic sliding puzzle game based on Fifteen Puzzle. It allows you to choose among three levels of complexity which are: 3x3 (8- puzzle), 4x4 (15-puzzle), and 5x5 (24-puzzle).In addition to standard square boards with numbers, user can choose a board with a picture painted on it. There are three stock pictures installed with the puzzle, and user can add his/her own pictures by pressing Menu button when the picture selection page is displayed. The picture user select will be split into equal tiles. Once you select the picture, the solved puzzle is displayed for 3 seconds. Then it is randomly shuffled, and user have to move the tiles to their initial locations. When user solve the puzzle, the app will display that picture again along with the number of moves you have made. To change the puzzle's settings during the game, press Menu button. Note that when user change any settings, the game starts over. When user switch apps or exit during the game, your puzzle is stored and resumed next time user run Smart puzzle. Keyword:-Smart Puzzle; Color Blocks; 1.intoduction 1.1 Overview The COLOR BLOCKS is a sliding puzzle that consists of a frame of numbered square tiles in random order with one tile missing. -
Variations of the 15 Puzzle
VARIATIONS OF THE 15 PUZZLE A thesis submitted to the Kent State University Honors College in partial fulfillment of the requirements for University Honors by Lisa Rose Hendrixson May, 2011 Thesis written by Lisa Rose Hendrixson Approved by , Advisor , Chair, Department of Mathematics Accepted by , Dean, Honors College ii TABLE OF CONTENTS LIST OF FIGURES. .iv ACKNOWLEDGEMENTS . v CHAPTERS I INTRODUCTION . 1 II THE HISTORY OF THE 15 PUZZLE . 3 III MATHEMATICS AND THE 15 PUZZLE . 6 IV VARIATIONS OF THE 15 PUZZLE . 14 V CONCLUSION . 22 BIBLIOGRAPHY . 23 iii LIST OF FIGURES • Figure 1.The 15 Puzzle . 2 • Figure 2.Pictoral representation of the above permutation. 8 • Figure 3.The permutation multiplied by the transposition (7; 8) ..................9 • Figure 4.Two odd length cycles inside the 15 Puzzle . 10 • Figure 5.The two cycles, put together. 11 • Figure 6.Permutting 3 blocks cyclically. 12 • Figure 7.Bipartite graph of the 15 Puzzle. 13 • Figure 8.Starting position for the first variation. 15 • Figure 9.Creating a single transposition inside the variation. 16 • Figure 10.Showing the switch of the blank spaces. 16 • Figure 11.Puzzle with a fixed block. 17 • Figure 12.Bipartite graph of a puzzle wth a glued-down block. 21 iv ACKNOWLEDGEMENTS I would like to thank Dr. Donald White for all his help and support during the process of writing this thesis. Without his dedication, it would not have been possible. Also, I would like to thank Dr. Mark Lewis, Dr. Elizabeth Mann, and Dr. Sara Newman for their willingness to serve on my defense committee and for all of their helpful comments and support along the way. -
Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests
1 Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests and Planning Algorithms Jingjin Yu, Daniela Rus Abstract We study the problem of planning paths for p distinguishable pebbles (robots) residing on the vertices of an n-vertex connected graph with p ≤ n. A pebble may move from a vertex to an adjacent one in a time step provided that it does not collide with other pebbles. When p = n, the only collision free moves are synchronous rotations of pebbles on disjoint cycles of the graph. We show that the feasibility of such problems is intrinsically determined by the diameter of a (unique) permutation group induced by the underlying graph. Roughly speaking, the diameter of a group G is the minimum length of the generator product required to reach an arbitrary element of G from the identity element. Through bounding the diameter of this associated permutation group, which assumes a maximum value of O(n2), we establish a linear time algorithm for deciding the feasibility of such problems and an O(n3) algorithm for planning complete paths. I. INTRODUCTION In Sam Loyd’s 15-puzzle Loyd (1959), a player arranges square blocks labeled 1-15, scrambled arXiv:1205.5263v4 [cs.DS] 31 Jul 2014 on a 4 × 4 board, to achieve a shuffled row major ordering of the blocks using one empty swap cell (see, e.g., Fig. 1). Generalizing the grid-based board to an arbitrary connected graph over n vertices, the 15-puzzle becomes the problem of pebble motion on graphs (PMG). Here, up to n−1 uniquely labeled pebbles on the vertices of the graph must be moved to some desired goal config- uration, using unoccupied (empty) vertices as swap spaces.1 Since the initial work by Kornhauser Jingjin Yu and Daniela Rus are the Computer Science and Artificial Intelligence Lab at the Massachusetts Institute of Technology. -
The Cubing Community Megasurvey 2021 Acknowledgements
THE CUBING COMMUNITY MEGASURVEY 2021 ACKNOWLEDGEMENTS This work follows in the footsteps of the r/Cubers tradition of yearly Megasurveys, of which this is the fifth instalment. For the first time we've been able to integrate the responses and experience of our colleagues from China, whose communities do not always have access to the same online spaces. We're happy to present the results of this survey as a whole, reuniting these two big communities The following people contributed to this project: You guys were awesome, The r/Cubers mods: have been running the survey for the • welcoming and super supportive past 5 years, wrote and managed the bulk of it and proofread this during the whole analysis process! whole monster of a document. Thank you naliuj, gilzu, stewy, greencrossonleft, topppits, g253, pianocube93 and leinadium! It's been a blast discussing with you, Ruimin Yan / CubeRoot : provided great ideas for the • getting your ideas and seeing you recruit survey, helped coordinate between the east and the west, a thousand people in a matter of days! leveraged his online standing and following to gather all respondents across China and re-translated most this document • Justin Yang: translated the survey into mandarin and helped You have no excuse for speaking re-translate answers during the re-combination and cleanup flawless french (on top of all phase your other languages) at your ridiculously young age! About the author of this document: Basilio Noris is an older cuber, who has spent the past 15 years working on understanding and measuring human behaviour. He spends way too much time playing with data and looking for ways in which to present it. -