Permutation Puzzles a Mathematical Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Permutation Puzzles a Mathematical Perspective Permutation Puzzles A Mathematical Perspective Jamie Mulholland Copyright c 2021 Jamie Mulholland SELF PUBLISHED http://www.sfu.ca/~jtmulhol/permutationpuzzles Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License (the “License”). You may not use this document except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc-sa/4.0/. Unless required by applicable law or agreed to in writing, software distributed under the License is dis- tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. First printing, May 2011 Contents I Part One: Foundations 1 Permutation Puzzles ........................................... 11 1.1 Introduction 11 1.2 A Collection of Puzzles 12 1.3 Which brings us to the Definition of a Permutation Puzzle 22 1.4 Exercises 22 2 A Bit of Set Theory ............................................ 25 2.1 Introduction 25 2.2 Sets and Subsets 25 2.3 Laws of Set Theory 26 2.4 Examples Using SageMath 28 2.5 Exercises 30 II Part Two: Permutations 3 Permutations ................................................. 33 3.1 Permutation: Preliminary Definition 33 3.2 Permutation: Mathematical Definition 35 3.3 Composing Permutations 38 3.4 Associativity of Permutation Composition 41 3.5 Inverses of Permutations 42 3.6 The Symmetric Group Sn 45 3.7 Rules for Exponents 46 3.8 Order of a Permutation 47 3.9 Exercises 48 4 Permutations: Cycle Notation ................................. 51 4.1 Permutations: Cycle Notation 51 4.2 Products of Permutations: Revisited 54 4.3 Properties of Cycle Form 55 4.4 Order of a Permutation: Revisited 55 4.5 Inverse of a Permutation: Revisited 57 4.6 Summary of Permutations 58 4.7 Working with Permutations in SageMath 59 4.8 Exercises 59 5 From Puzzles To Permutations .................................. 63 5.1 Introduction 63 5.2 Swap 64 5.3 15-Puzzle 66 5.4 Oval Track Puzzle 67 5.5 Hungarian Rings 70 5.6 Rubik’s Cube 71 5.7 Exercises 74 6 Permutations: Products of 2-Cycles ............................ 79 6.1 Introduction 79 6.2 Product of 2-Cycles 80 6.3 Solvability of Swap 81 6.4 Exercises 82 7 Permutations: The Parity Theorem .............................. 83 7.1 Introduction 83 7.2 Variation of Swap 85 7.3 Proof of the Parity Theorem 86 7.4 Exercises 91 8 Permutations: An and 3-Cycles ................................ 95 8.1 Swap Variation: A Challenge 95 8.2 The Alternating Group An 95 8.3 Products of 3-cycles 97 8.4 Variations of Swap: Revisited 99 8.5 Exercises 100 9 The 15-Puzzle ................................................ 103 9.1 Solvability Criteria 103 9.2 Proof of Solvability Criteria 105 9.3 Strategy for Solution 108 9.4 Exercises 109 III Part Three: Group Theory 10 Groups ...................................................... 117 10.1 Group: Definition 117 10.2 Some Everyday Examples of Groups 120 10.3 Further Examples of Groups 122 10.4 Exercises 134 11 Subgroups .................................................. 139 11.1 Subgroups 139 11.2 Examples of Subgroups 140 11.3 The Center of a Group 141 11.4 Lagrange’s Theorem 142 11.5 Cyclic Groups Revisited 143 11.6 Cayley’s Theorem 145 11.7 Exercises 146 12 Puzzle Groups ............................................... 149 12.1 Puzzle Groups 149 12.2 Rubik’s Cube 150 12.3 Hungarian Rings 157 12.4 15-Puzzle 158 12.5 Exercises 158 13 Commutators ............................................... 161 13.1 Commutators 161 13.2 Creating Puzzle moves with Commutators 162 13.3 Exercises 170 14 Conjugates ................................................. 175 14.1 Conjugates 175 14.2 Modifying Puzzle moves with Conjugates 177 14.3 Exercises 183 15 The Oval Track Puzzle ........................................ 187 15.1 Oval Track with T = (1 4)(2 3) 187 15.2 Variations of the Oval Track T move 198 15.3 Exercises 199 16 The Hungarian Rings Puzzle .................................. 203 16.1 Hungarian Rings - Numbered version 203 16.2 Building Small Cycles: Tools for Our End-Game Toolbox 205 16.3 Solving the end-game 210 16.4 Hungarian Rings - Coloured version 210 16.5 Exercises 210 17 Partitions & Equivalence Relations ............................ 211 17.1 Partitions of a Set 211 17.2 Relations 212 17.3 Equivalence Relation 213 17.4 Exercises 217 18 Cosets & Lagrange’s Theorem ................................ 221 18.1 Cosets 221 18.2 Lagrange’s Theorem 224 18.3 Exercises 226 IV Part Four: Rubiks’ Cube 19 Rubik’s Cube: Beginnings .................................... 231 19.1 Rubik’s Cube terminology and notation 231 19.2 Impossible Moves 235 19.3 A Catalog of Basic Move Sequences 236 19.4 Strategy for Solution 237 19.5 Exercises 241 20 Rubik’s Cube: The Fundamental Theorem ..................... 243 20.1 Rubik’s Cube - A Model 243 20.2 The Fundamental Theorem of Cubology 247 20.3 When are two assembled cubes equivalent? 249 20.4 Exercises 252 21 Rubik’s Cube: Subgroups of the Cube Group .................. 257 21.1 Building Big Groups from Smaller Ones 257 21.2 Some Subgroups of RC3 258 21.3 Structure of the Cube Group RC3 260 21.4 Exercises 262 V Part Five: Symmetry & Counting 22 The Orbit-Stabilizer Theorem .................................. 265 22.1 Orbits & Stabilizers 265 22.2 Permutations Acting on Sets: Application of the Orbit-Stabilizer Theorem 269 22.3 Exercises 276 23 Burnside’s Theorem .......................................... 279 23.1 A Motivating Example 279 23.2 Burnside’s Theorem 281 23.3 Applications of Burnside’s Theorem 282 23.4 Exercises 288 VI Part Six: Light’s Out 24 Lights Out ................................................... 293 24.1 Lights Out 293 24.2 Lights Out: A Matrix Model 294 24.3 Summary of 5 × 5 lights out puzzle 303 24.4 Eigenvalues and Eigenvectors 305 24.5 Other sized game boards 305 24.6 Light-Chasing Strategy 306 24.7 Exercises 307 VII Appendix A SageMath ................................................... 311 A.1 SageMath Basics 311 A.2 Variables and Statements 314 A.3 Lists 315 A.4 Sets 317 A.5 Commands/Functions 318 A.6 if, while, and for statements 319 A.7 Exercises 322 B Basic Properties of Integers ................................... 323 B.1 Divisibility and the Euclidean Algorithm 323 B.2 Prime Numbers 326 B.3 Euler’s f-function 327 B.4 Modular Arithmetic 328 B.5 Exercises 329 Bibliography ................................................ 333 Articles 333 Books 333 Web Sites 334 Index ....................................................... 335 I Part One: Foundations 1 Permutation Puzzles .................. 11 1.1 Introduction 1.2 A Collection of Puzzles 1.3 Which brings us to the Definition of a Permutation Puzzle 1.4 Exercises 2 A Bit of Set Theory ................... 25 2.1 Introduction 2.2 Sets and Subsets 2.3 Laws of Set Theory 2.4 Examples Using SageMath 2.5 Exercises 1. Permutation Puzzles 1.1 Introduction Imagine a mixed up Rubik’s cubeTM (for example see Figure 1.1a), or better yet, mix up your own cube. As you begin to try to solve the cube you should notice a few things. Solving a single face (i.e. getting all 9 pieces of the same colour onto the same face) isn’t that difficult. There seems to be enough room to move things around. Continuing in this manner, you then begin to solve the next layer. You’ll soon notice that certain moves will undo your previous work. If you twist a face that contains some pieces that you had previously put in their correct place, then these pieces now move out of place. And this is where the puzzle becomes challenging. It seems the more pieces that are in the correct place, the harder it is to move the remaining ones into place. This is known as the end-game of the Rubik’s cube, and solving it requires a thorough understanding of this part of the puzzle. (a) A mixed up Rubik’s cube (b) An end-game for Rubik’s cube. Only the bottom layer remains to be solved. Figure 1.1: A mixed up Rubik’s cube and end-game. Rubik’s cube is probably one of the most well known puzzles to date. Created by Erno¨ Rubik in1974, it is estimated that by 2009 over 350 million have been sold. What has made it so popular is not certain. Perhaps it looks seemingly innocent, then once a few sides have been twisted, and 12 Chapter 1. Permutation Puzzles the colours begin to mix, the path back home is not so easy to see. The more you twist it the further you seem to be taken away from the solution. Perhaps it is that the number of ways to mix up the cube seems endless. Or perhaps to others, it doesn’t seem endless at all. Despite the reasons for its appeal, it has become one of the most popular puzzles in history. It is rare to find a puzzle, or toy, that has captured the imagination of millions, is accessible to all age levels, is challenging, yet satisfying, and is so mathematically rich. The Rubik’s cube is one such puzzle. Others examples include the 15-puzzle, TopSpin (Oval Track), and Hungarian Rings. What do we mean by mathematically rich? Well it turns out that one area of mathematics that has had an impact on all areas of science, and has even popped up in art, is the field called group theory. Often referred to as the language of symmetry, group theory has led to many new discoveries in theoretical physics, chemistry, and mathematics itself. It underlies the techniques in cryptography (sending private information over public channels), and coding theory (digital communications, digital storage and retrieval of information). It is no surprise that a mathematical theory developed to understand symmetry so adequately describes the Rubik’s cube, however, for us, we are more interested in the opposite.
Recommended publications
  • 002-Contents.Pdf
    CubeRoot Contents Contents Contents Purple denotes upcoming contents. 1 Preface 2 Signatures of Top Cubers in the World 3 Quotes 4 Photo Albums 5 Getting Started 5.1 Cube History 5.2 WCA Events 5.3 WCA Notation 5.4 WCA Competition Tutorial 5.5 Tips to Cubers 6 Rubik's Cube 6.1 Beginner 6.1.1 LBL Method (Layer-By-Layer) 6.1.2 Finger and Toe Tricks 6.1.3 Optimizing LBL Method 6.1.4 4LLL Algorithms 6.2 Intermediate 进阶 6.2.1 Triggers 6.2.2 How to Get Faster 6.2.3 Practice Tips 6.2.4 CN (Color Neutrality) 6.2.5 Lookahead 6.2.6 CFOP Algorithms 6.2.7 Solve Critiques 3x3 - 12.20 Ao5 6.2.8 Solve Critiques 3x3 - 13.99 Ao5 6.2.9 Cross Algorithms 6.2.10 Xcross Examples 6.2.11 F2L Algorithms 6.2.12 F2L Techniques 6.2.13 Multi-Angle F2L Algorithms 6.2.14 Non-Standard F2L Algorithms 6.2.15 OLL Algorithms, Finger Tricks and Recognition 6.2.16 PLL Algorithms and Finger Tricks 6.2.17 CP Look Ahead 6.2.18 Two-Sided PLL Recognition 6.2.19 Pre-AUF CubeRoot Contents Contents 7 Speedcubing Advice 7.1 How To Get Faster 7.2 Competition Performance 7.3 Cube Maintenance 8 Speedcubing Thoughts 8.1 Speedcubing Limit 8.2 2018 Plans, Goals and Predictions 8.3 2019 Plans, Goals and Predictions 8.4 Interviewing Feliks Zemdegs on 3.47 3x3 WR Single 9 Advanced - Last Slot and Last Layer 9.1 COLL Algorithms 9.2 CxLL Recognition 9.3 Useful OLLCP Algorithms 9.4 WV Algorithms 9.5 Easy VLS Algorithms 9.6 BLE Algorithms 9.7 Easy CLS Algorithms 9.8 Easy EOLS Algorithms 9.9 VHLS Algorithms 9.10 Easy OLS Algorithms 9.11 ZBLL Algorithms 9.12 ELL Algorithms 9.13 Useful 1LLL Algorithms
    [Show full text]
  • Math Games: Sliding Block Puzzles 09/17/2007 12:22 AM
    Math Games: Sliding Block Puzzles 09/17/2007 12:22 AM Search MAA Membership Publications Professional Development Meetings Organization Competitions Math Games sliding-block Puzzles Ed Pegg Jr., December 13, 2004 The December issue of The Economist contains an article with a prominent question. Has an inventor found the hardest possible simple sliding-block puzzle? It goes on to describe the Quzzle puzzle, by Jim Lewis. The article finishes with "Mr Lewis claims that Quzzle, as he dubs his invention, is 'the world's hardest simple sliding-block puzzle.' Within the terms of his particular definition of 'simple,' he would seem to have succeeded." The claim is wrong. Quzzle is not the world's hardest simple sliding-block puzzle, no matter how you define "hard." Sometimes, hard means lot and lots of moves. Junk Kato has succinctly described a record setting series for the most moves required with n pieces. The basic underlying principle is Edouard Lucas' Tower of Hanoi puzzle. Move the red piece to the bottom slot. Figure 1. Junk's Hanoi by Junk Kato. From Modern sliding-block Puzzles. Often, "hard" maximizes complexity with a sparse number of pieces. Usually, the fewer the pieces, the better the puzzle. Two people at the forefront of making really hard sliding-block puzzles with just a few pieces are Oskar van Deventer and James Stephens. James started with Sliding-Block Puzzles. The two of them collaborated to create the ConSlide Puzzle and the Bulbous Blob Puzzle. Oskar even went so far as to make a prototype of the excellent Simplicity puzzle.
    [Show full text]
  • An Exploration of the Relationship Between Mathematics and Music
    An Exploration of the Relationship between Mathematics and Music Shah, Saloni 2010 MIMS EPrint: 2010.103 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 An Exploration of ! Relation"ip Between Ma#ematics and Music MATH30000, 3rd Year Project Saloni Shah, ID 7177223 University of Manchester May 2010 Project Supervisor: Professor Roger Plymen ! 1 TABLE OF CONTENTS Preface! 3 1.0 Music and Mathematics: An Introduction to their Relationship! 6 2.0 Historical Connections Between Mathematics and Music! 9 2.1 Music Theorists and Mathematicians: Are they one in the same?! 9 2.2 Why are mathematicians so fascinated by music theory?! 15 3.0 The Mathematics of Music! 19 3.1 Pythagoras and the Theory of Music Intervals! 19 3.2 The Move Away From Pythagorean Scales! 29 3.3 Rameau Adds to the Discovery of Pythagoras! 32 3.4 Music and Fibonacci! 36 3.5 Circle of Fifths! 42 4.0 Messiaen: The Mathematics of his Musical Language! 45 4.1 Modes of Limited Transposition! 51 4.2 Non-retrogradable Rhythms! 58 5.0 Religious Symbolism and Mathematics in Music! 64 5.1 Numbers are God"s Tools! 65 5.2 Religious Symbolism and Numbers in Bach"s Music! 67 5.3 Messiaen"s Use of Mathematical Ideas to Convey Religious Ones! 73 6.0 Musical Mathematics: The Artistic Aspect of Mathematics! 76 6.1 Mathematics as Art! 78 6.2 Mathematical Periods! 81 6.3 Mathematics Periods vs.
    [Show full text]
  • 18.703 Modern Algebra, Permutation Groups
    5. Permutation groups Definition 5.1. Let S be a set. A permutation of S is simply a bijection f : S −! S. Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S. (2) Let f be a permutation of S. Then the inverse of f is a permu­ tation of S. Proof. Well-known. D Lemma 5.3. Let S be a set. The set of all permutations, under the operation of composition of permutations, forms a group A(S). Proof. (5.2) implies that the set of permutations is closed under com­ position of functions. We check the three axioms for a group. We already proved that composition of functions is associative. Let i: S −! S be the identity function from S to S. Let f be a permutation of S. Clearly f ◦ i = i ◦ f = f. Thus i acts as an identity. Let f be a permutation of S. Then the inverse g of f is a permutation of S by (5.2) and f ◦ g = g ◦ f = i, by definition. Thus inverses exist and G is a group. D Lemma 5.4. Let S be a finite set with n elements. Then A(S) has n! elements. Proof. Well-known. D Definition 5.5. The group Sn is the set of permutations of the first n natural numbers. We want a convenient way to represent an element of Sn. The first way, is to write an element σ of Sn as a matrix.
    [Show full text]
  • Kurze Geschichte Des Würfels (Unknown Author)
    Kurze Geschichte des Würfels (unknown author) ........................................................................................ 1 Erno Rubik .......................................................................................................................................... 1 Die Herstellung des Original-Rubik-Würfels in Ungarn ................................................................ 3 Die Rubik-Würfel-Weltmeisterschaft ............................................................................................... 6 A Rubik's Cube Chronology (Mark Longridge) .............................................................................................. 8 From five thousand to fifteen millions ....................................................................................................... 11 Toy-BUSINESS KONSUMEX .......................................................................................................................... 14 HISTORY (Nagy Olivér) ................................................................................................................................ 15 Kurze Geschichte des Würfels (unknown author) Jede Erfindung hat ein offizielles Geburtsdatum. Das Geburtsdatum des Würfels ist 1974, das Jahr, in dem der erste funktionsfähige Prototyp entstand und die erste Patentanmeldung entworfen wurde. Der Geburtsort war Budapest, die Hauptstadt Ungarns. Der Name des Erfinders ist inzwischen überall bekannt. Damals war Erno Rubik ein Dozent an der Fakultät für Innenarchitektur an der Akademie
    [Show full text]
  • Mathematics of the Rubik's Cube
    Mathematics of the Rubik's cube Associate Professor W. D. Joyner Spring Semester, 1996{7 2 \By and large it is uniformly true that in mathematics that there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful." John von Neumann COLLECTED WORKS, VI, p. 489 For more mathematical quotes, see the first page of each chapter below, [M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot. html 3 \There are some things which cannot be learned quickly, and time, which is all we have, must be paid heavily for their acquiring. They are the very simplest things, and because it takes a man's life to know them the little new that each man gets from life is very costly and the only heritage he has to leave." Ernest Hemingway (From A. E. Hotchner, PAPA HEMMINGWAY, Random House, NY, 1966) 4 Contents 0 Introduction 13 1 Logic and sets 15 1.1 Logic................................ 15 1.1.1 Expressing an everyday sentence symbolically..... 18 1.2 Sets................................ 19 2 Functions, matrices, relations and counting 23 2.1 Functions............................. 23 2.2 Functions on vectors....................... 28 2.2.1 History........................... 28 2.2.2 3 × 3 matrices....................... 29 2.2.3 Matrix multiplication, inverses.............. 30 2.2.4 Muliplication and inverses...............
    [Show full text]
  • Permutation Group and Determinants (Dated: September 16, 2021)
    Permutation group and determinants (Dated: September 16, 2021) 1 I. SYMMETRIES OF MANY-PARTICLE FUNCTIONS Since electrons are fermions, the electronic wave functions have to be antisymmetric. This chapter will show how to achieve this goal. The notion of antisymmetry is related to permutations of electrons’ coordinates. Therefore we will start with the discussion of the permutation group and then introduce the permutation-group-based definition of determinant, the zeroth-order approximation to the wave function in theory of many fermions. This definition, in contrast to that based on the Laplace expansion, relates clearly to properties of fermionic wave functions. The determinant gives an N-particle wave function built from a set of N one-particle waves functions and is called Slater’s determinant. II. PERMUTATION (SYMMETRIC) GROUP Definition of permutation group: The permutation group, known also under the name of symmetric group, is the group of all operations on a set of N distinct objects that order the objects in all possible ways. The group is denoted as SN (we will show that this is a group below). We will call these operations permutations and denote them by symbols σi. For a set consisting of numbers 1, 2, :::, N, the permutation σi orders these numbers in such a way that k is at jth position. Often a better way of looking at permutations is to say that permutations are all mappings of the set 1, 2, :::, N onto itself: σi(k) = j, where j has to go over all elements. Number of permutations: The number of permutations is N! Indeed, we can first place each object at positions 1, so there are N possible placements.
    [Show full text]
  • Cube Lovers: Index by Date 3/18/17, 209 PM
    Cube Lovers: Index by Date 3/18/17, 209 PM Cube Lovers: Index by Date Index by Author Index by Subject Index for Keyword Articles sorted by Date: Jul 80 Alan Bawden: [no subject] Jef Poskanzer: Complaints about :CUBE program. Alan Bawden: [no subject] [unknown name]: [no subject] Alan Bawden: [no subject] Bernard S. Greenberg: Cube minima Ed Schwalenberg: Re: Singmeister who? Bernard S. Greenberg: Singmaster Allan C. Wechsler: Re: Cubespeak Richard Pavelle: [no subject] Lauren Weinstein: confusion Alan Bawden: confusion Jon David Callas: [no subject] Bernard S. Greenberg: Re: confusion Richard Pavelle: confusion but simplicity Allan C. Wechsler: Short Introductory Speech Richard Pavelle: the cross design Bernard S. Greenberg: Re: the cross design Alan Bawden: the cross design Yekta Gursel: Re: Checker board pattern... Bernard S. Greenberg: Re: Checker board pattern... Michael Urban: Confusion Bernard S. Greenberg: Re: the cross design Bernard S. Greenberg: Re: Checker board pattern... Bernard S. Greenberg: Re: Confusion Bernard S. Greenberg: The Higher Crosses Alan Bawden: The Higher Crosses Bernard S. Greenberg: Postscript to above Bernard S. Greenberg: Bug in above Ed Schwalenberg: Re: Patterns, designs &c. Alan Bawden: Patterns, designs &c. Alan Bawden: 1260 Richard Pavelle: [no subject] Allan C. Wechsler: Re: Where to get them in the Boston Area, Cube Language. Alan Bawden: 1260 vs. 2520 Alan Bawden: OOPS Bill McKeeman: Re: Where to get them in the Boston Area, Cube Language. Bernard S. Greenberg: General remarks Bernard S. Greenberg: :cube feature http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/ Page 1 of 45 Cube Lovers: Index by Date 3/18/17, 209 PM Alan Bawden: [no subject] Bernard S.
    [Show full text]
  • Abstract Algebra
    Abstract Algebra Paul Melvin Bryn Mawr College Fall 2011 lecture notes loosely based on Dummit and Foote's text Abstract Algebra (3rd ed) Prerequisite: Linear Algebra (203) 1 Introduction Pure Mathematics Algebra Analysis Foundations (set theory/logic) G eometry & Topology What is Algebra? • Number systems N = f1; 2; 3;::: g \natural numbers" Z = f:::; −1; 0; 1; 2;::: g \integers" Q = ffractionsg \rational numbers" R = fdecimalsg = pts on the line \real numbers" p C = fa + bi j a; b 2 R; i = −1g = pts in the plane \complex nos" k polar form re iθ, where a = r cos θ; b = r sin θ a + bi b r θ a p Note N ⊂ Z ⊂ Q ⊂ R ⊂ C (all proper inclusions, e.g. 2 62 Q; exercise) There are many other important number systems inside C. 2 • Structure \binary operations" + and · associative, commutative, and distributive properties \identity elements" 0 and 1 for + and · resp. 2 solve equations, e.g. 1 ax + bx + c = 0 has two (complex) solutions i p −b ± b2 − 4ac x = 2a 2 2 2 2 x + y = z has infinitely many solutions, even in N (thei \Pythagorian triples": (3,4,5), (5,12,13), . ). n n n 3 x + y = z has no solutions x; y; z 2 N for any fixed n ≥ 3 (Fermat'si Last Theorem, proved in 1995 by Andrew Wiles; we'll give a proof for n = 3 at end of semester). • Abstract systems groups, rings, fields, vector spaces, modules, . A group is a set G with an associative binary operation ∗ which has an identity element e (x ∗ e = x = e ∗ x for all x 2 G) and inverses for each of its elements (8 x 2 G; 9 y 2 G such that x ∗ y = y ∗ x = e).
    [Show full text]
  • Rubiku Kuubiku Lahendamine Erinevaid Algoritme Kasutades
    TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Arvutitehnika instituut Eero Rahamägi 123837 RUBIKU KUUBIKU LAHENDAMINE ERINEVAID ALGORITME KASUTADES Bakalaureusetöö Juhendaja: Sergei Kostin PhD Teadur Tallinn 2017 Autorideklaratsioon Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud. Autor: Eero Rahamägi 21.05.2017 2 Annotatsioon Käesolevas bakalaureuse lõputöös kirjeldatakse erinevaid Rubiku kuubiku lahendamise algoritme. Analüüs ning võrdlus erinevate algoritmide vahel; kiirust ning optimaalsust arvesstades käikude arvu lühendamisel kuupi lahendades. Võrdlust aitab realiseerida ka prototüüpne programm mis lahendab kuubiku valitud algoritme kasutades. Töö eesmärk on anda lugejale selge, arusaadav ning detailne ülevaade Rubiku kuubiku algoritmidest analüüsides ning kirjeldades erinevaid algoritme ning nende seotust keerukuse ning optimaalsuse lähtepunktist. Samuti annan ülevaate kasutatavast prototüüpsest programmist mis on võimeline lahendama Rubiku kuubikut suvalisest algolekust. Lugejale esitatakse programne prototüüp visuaalsel kujul. Lõputöö on kirjutatud eesti keeles ning sisaldab teksti 31 leheküljel, 3 peatükki, 6 joonist, 1 tabel. 3 Abstract Solving Rubiks Cube using different algorithms This Bachelors thesis describes different Rubik’s cube solving algorithms. Analysis and comparison between various algorithms; considering speed and optimality in decreasing the amount of steps it takes to complete a cube. A prototype program will be presented as a tool to help put the thesis into practice using selected algorithms. However creating this kind of application can be quite complex taking into consideration the sheer size of algorithms and different patterns, searching methods and the complexity of the programming language itself. Developing this kind of program requires handling many different parts of code and algorithms simultaneously.
    [Show full text]
  • Parity Alternating Permutations Starting with an Odd Integer
    Parity alternating permutations starting with an odd integer Frether Getachew Kebede1a, Fanja Rakotondrajaob aDepartment of Mathematics, College of Natural and Computational Sciences, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia; e-mail: [email protected] bD´epartement de Math´ematiques et Informatique, BP 907 Universit´ed’Antananarivo, 101 Antananarivo, Madagascar; e-mail: [email protected] Abstract A Parity Alternating Permutation of the set [n] = 1, 2,...,n is a permutation with { } even and odd entries alternatively. We deal with parity alternating permutations having an odd entry in the first position, PAPs. We study the numbers that count the PAPs with even as well as odd parity. We also study a subclass of PAPs being derangements as well, Parity Alternating Derangements (PADs). Moreover, by considering the parity of these PADs we look into their statistical property of excedance. Keywords: parity, parity alternating permutation, parity alternating derangement, excedance 2020 MSC: 05A05, 05A15, 05A19 arXiv:2101.09125v1 [math.CO] 22 Jan 2021 1. Introduction and preliminaries A permutation π is a bijection from the set [n]= 1, 2,...,n to itself and we will write it { } in standard representation as π = π(1) π(2) π(n), or as the product of disjoint cycles. ··· The parity of a permutation π is defined as the parity of the number of transpositions (cycles of length two) in any representation of π as a product of transpositions. One 1Corresponding author. n c way of determining the parity of π is by obtaining the sign of ( 1) − , where c is the − number of cycles in the cycle representation of π.
    [Show full text]
  • Chapter 3: Transformations Groups, Orbits, and Spaces of Orbits
    Preprint typeset in JHEP style - HYPER VERSION Chapter 3: Transformations Groups, Orbits, And Spaces Of Orbits Gregory W. Moore Abstract: This chapter focuses on of group actions on spaces, group orbits, and spaces of orbits. Then we discuss mathematical symmetric objects of various kinds. May 3, 2019 -TOC- Contents 1. Introduction 2 2. Definitions and the stabilizer-orbit theorem 2 2.0.1 The stabilizer-orbit theorem 6 2.1 First examples 7 2.1.1 The Case Of 1 + 1 Dimensions 11 3. Action of a topological group on a topological space 14 3.1 Left and right group actions of G on itself 19 4. Spaces of orbits 20 4.1 Simple examples 21 4.2 Fundamental domains 22 4.3 Algebras and double cosets 28 4.4 Orbifolds 28 4.5 Examples of quotients which are not manifolds 29 4.6 When is the quotient of a manifold by an equivalence relation another man- ifold? 33 5. Isometry groups 34 6. Symmetries of regular objects 36 6.1 Symmetries of polygons in the plane 39 3 6.2 Symmetry groups of some regular solids in R 42 6.3 The symmetry group of a baseball 43 7. The symmetries of the platonic solids 44 7.1 The cube (\hexahedron") and octahedron 45 7.2 Tetrahedron 47 7.3 The icosahedron 48 7.4 No more regular polyhedra 50 7.5 Remarks on the platonic solids 50 7.5.1 Mathematics 51 7.5.2 History of Physics 51 7.5.3 Molecular physics 51 7.5.4 Condensed Matter Physics 52 7.5.5 Mathematical Physics 52 7.5.6 Biology 52 7.5.7 Human culture: Architecture, art, music and sports 53 7.6 Regular polytopes in higher dimensions 53 { 1 { 8.
    [Show full text]