Math Games: Sliding Block Puzzles 09/17/2007 12:22 AM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L-G-0003950258-0013322245.Pdf
The Tower of Hanoi – Myths and Maths Andreas M. Hinz • Sandi Klavzˇar Uroš Milutinovic´ • Ciril Petr The Tower of Hanoi – Myths and Maths Foreword by Ian Stewart Andreas M. Hinz Uroš Milutinovic´ Faculty of Mathematics, Faculty of Natural Sciences Computer Science and Statistics and Mathematics LMU München University of Maribor Munich Maribor Germany Slovenia Sandi Klavzˇar Ciril Petr Faculty of Mathematics and Physics Faculty of Natural Sciences University of Ljubljana and Mathematics Ljubljana University of Maribor Slovenia Maribor Slovenia and Faculty of Natural Sciences and Mathematics University of Maribor Maribor Slovenia ISBN 978-3-0348-0236-9 ISBN 978-3-0348-0237-6 (eBook) DOI 10.1007/978-3-0348-0237-6 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012952018 Mathematics Subject Classification: 00-02, 01A99, 05-03, 05A99, 05Cxx, 05E18, 11Bxx, 11K55, 11Y55, 20B25, 28A80, 54E35, 68Q25, 68R05, 68T20, 91A46, 91E10, 94B25, 97A20 Ó Springer Basel 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
O. Deventer 'From Computer Operations to Mechanical Puzzles'
Case Study 9 From Computer Operations to Mechanical Puzzles M. Oskar van Deventer, Freelance Mechanical Puzzle Designer Igor Kriz, Department of Mathematics, University of Michigan This article is about transforming a virtual puzzle implemented by computer operations into a physical puzzle. We describe why a puzzle motivated by a mathematical idea of the sporadic simple Mathieu group M12 is an interesting concept. We then describe how it was turned into two different physical puzzles called Topsy Turvy and Number Planet. Finally, we will show one version of a practical algorithmic solution to the puzzle, and describe challenges that remain. 1 Introduction ones are called sporadic simple groups [5]. The word ‘simple’ here refers to the fact that they are ver since E. Rubik invented his famous cube building blocks for finite groups, just as prime E in 1974, a boom of twisty puzzles began. The numbers are basic building blocks of natural num- puzzles which emerged are too numerous to list bers. However, it may be a misnomer to call those here (for some information, see [1, 2]).1 How- groups simple, since they are typically extremely ever, after an algorithm by David Singmaster complicated. for Rubik’s cube was published in 1981 [3], it Could one make a twisty puzzle based on a soon became clear that only small modifications sporadic simple group, which would then require of the strategy for finding the algorithm for Ru- a completely novel strategy, different in essential bik’s cube also produce algorithms for the other ways from Singmaster’s algorithm? The problem twisty puzzles. -
Including ACG8, ACG9, Games in AI Research, ACG10 T/M P. 18) Version: 20 June 2007
REFERENCE DATABASE 1 Updated till Vol. 29. No. 2 (including ACG8, ACG9, Games in AI Research, ACG10 t/m p. 18) Version: 20 June 2007 AAAI (1988). Proceedings of the AAAI Spring Symposium: Computer Game Playing. AAAI Press. Abramson, B. (1990). Expected-outcome: a general model of static evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No.2, pp. 182-193. ACF (1990), American Checkers Federation. http://www.acfcheckers.com/. Adelson-Velskiy, G.M., Arlazarov, V.L., Bitman, A.R., Zhivotovsky, A.A., and Uskov, A.V. (1970). Programming a Computer to Play Chess. Russian Mathematical Surveys, Vol. 25, pp. 221-262. Adelson-Velskiy, M., Arlazarov, V.L., and Donskoy, M.V. (1975). Some Methods of Controlling the Tree Search in Chess Programs. Artificial Ingelligence, Vol. 6, No. 4, pp. 361-371. ISSN 0004-3702. Adelson-Velskiy, G.M., Arlazarov, V. and Donskoy, M. (1977). On the Structure of an Important Class of Exhaustive Problems and Methods of Search Reduction for them. Advances in Computer Chess 1 (ed. M.R.B. Clarke), pp. 1-6. Edinburgh University Press, Edinburgh. ISBN 0-85224-292-1. Adelson-Velskiy, G.M., Arlazarov, V.L. and Donskoy, M.V. (1988). Algorithms for Games. Springer-Verlag, New York, NY. ISBN 3-540-96629-3. Adleman, L. (1994). Molecular Computation of Solutions to Combinatorial Problems. Science, Vol. 266. p. 1021. American Association for the Advancement of Science, Washington. ISSN 0036-8075. Ahlswede, R. and Wegener, I. (1979). Suchprobleme. Teubner-Verlag, Stuttgart. Aichholzer, O., Aurenhammer, F., and Werner, T. (2002). Algorithmic Fun: Abalone. Technical report, Institut for Theoretical Computer Science, Graz University of Technology. -
Permutation Puzzles a Mathematical Perspective
Permutation Puzzles A Mathematical Perspective Jamie Mulholland Copyright c 2021 Jamie Mulholland SELF PUBLISHED http://www.sfu.ca/~jtmulhol/permutationpuzzles Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License (the “License”). You may not use this document except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc-sa/4.0/. Unless required by applicable law or agreed to in writing, software distributed under the License is dis- tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. First printing, May 2011 Contents I Part One: Foundations 1 Permutation Puzzles ........................................... 11 1.1 Introduction 11 1.2 A Collection of Puzzles 12 1.3 Which brings us to the Definition of a Permutation Puzzle 22 1.4 Exercises 22 2 A Bit of Set Theory ............................................ 25 2.1 Introduction 25 2.2 Sets and Subsets 25 2.3 Laws of Set Theory 26 2.4 Examples Using SageMath 28 2.5 Exercises 30 II Part Two: Permutations 3 Permutations ................................................. 33 3.1 Permutation: Preliminary Definition 33 3.2 Permutation: Mathematical Definition 35 3.3 Composing Permutations 38 3.4 Associativity of Permutation Composition 41 3.5 Inverses of Permutations 42 3.6 The Symmetric Group Sn 45 3.7 Rules for Exponents 46 3.8 Order of a Permutation 47 3.9 Exercises 48 4 Permutations: Cycle Notation ................................. 51 4.1 Permutations: Cycle Notation 51 4.2 Products of Permutations: Revisited 54 4.3 Properties of Cycle Form 55 4.4 Order of a Permutation: Revisited 55 4.5 Inverse of a Permutation: Revisited 57 4.6 Summary of Permutations 58 4.7 Working with Permutations in SageMath 59 4.8 Exercises 59 5 From Puzzles To Permutations ................................. -
Rubik's Cube - Wikipedia, the Free Encyclopedia 5/11/11 6:47 PM Rubik's Cube from Wikipedia, the Free Encyclopedia
Rubik's Cube - Wikipedia, the free encyclopedia 5/11/11 6:47 PM Rubik's Cube From Wikipedia, the free encyclopedia The Rubik's Cube is a 3-D mechanical puzzle invented in Rubik's Cube 1974[1] by Hungarian sculptor and professor of architecture Ernő Rubik. Originally called the "Magic Cube",[2] the puzzle was licensed by Rubik to be sold by Ideal Toy Corp. in 1980[3] and won the German Game of the Year special award for Best Puzzle that year. As of January 2009, 350 million cubes have sold worldwide[4][5] making it the world's top-selling puzzle game.[6][7] It is widely considered to be the world's best-selling toy.[8] In a classic Rubik's Cube, each of the six faces is covered by nine stickers, among six solid colours (traditionally white, red, blue, orange, green, and yellow).[9] A pivot mechanism enables each face to turn independently, thus mixing up the Other names Magic Cube colours. For the puzzle to be solved, each face must be a Type Puzzle solid colour. Similar puzzles have now been produced with various numbers of stickers, not all of them by Rubik. The Inventor Ernő Rubik original 3×3×3 version celebrated its thirtieth anniversary in Company Ideal Toy Corporation 2010.[10] Country Hungary Availability 1974–present Contents Official website (http://www.rubiks.com/) 1 Conception and development 1.1 Prior attempts 1.2 Rubik's invention 1.3 Patent disputes 2 Mechanics 3 Mathematics 3.1 Permutations 3.2 Centre faces 3.3 Algorithms 4 Solutions 4.1 Move notation 4.2 Optimal solutions 5 Competitions and records 5.1 Speedcubing competitions 5.2 Records 6 Variations 6.1 Custom-built puzzles 6.2 Rubik's Cube software 7 Popular culture 8 See also 9 Notes http://en.wikipedia.org/wiki/Rubik's_Cube Page 1 of 13 Rubik's Cube - Wikipedia, the free encyclopedia 5/11/11 6:47 PM 10 References 11 External links Conception and development Prior attempts In March 1970, Larry Nichols invented a 2×2×2 "Puzzle with Pieces Rotatable in Groups" and filed a Canadian patent application for it. -
Puzzles from Around the World 5¿ Richard I
Contents Foreword iÜ Elwyn Berlekamp and Tom Rodgers I Personal Magic ½ Martin Gardner: A “Documentary” ¿ Dana Richards Ambrose, Gardner, and Doyle ½¿ Raymond Smullyan A Truth Learned Early ½9 Carl Pomerance Martin Gardner = Mint! Grand! Rare! ¾½ Jeremiah Farrell Three Limericks: On Space, Time, and Speed ¾¿ Tim Rowett II Puzzlers ¾5 A Maze with Rules ¾7 Robert Abbott Biblical Ladders ¾9 Donald E. Knuth Card Game Trivia ¿5 Stewart Lamle Creative Puzzle Thinking ¿7 Nob Yoshigahara v vi Contents Number Play, Calculators, and Card Tricks: Mathemagical Black Holes 4½ Michael W. Ecker Puzzles from Around the World 5¿ Richard I. Hess OBeirnes Hexiamond 85 Richard K. Guy Japanese Tangram (The Sei Shonagon Pieces) 97 Shigeo Takagi How a Tangram Cat Happily Turns into the Pink Panther 99 Bernhard Wiezorke Pollys Flagstones ½¼¿ Stewart Coffin Those Peripatetic Pentominoes ½¼7 Kate Jones Self-Designing Tetraflexagons ½½7 Robert E. Neale The Odyssey of the Figure Eight Puzzle ½¾7 Stewart Coffin Metagrobolizers of Wire ½¿½ Rick Irby Beautiful but Wrong: The Floating Hourglass Puzzle ½¿5 Scot Morris Cube Puzzles ½45 Jeremiah Farrell The Nine Color Puzzle ½5½ Sivy Fahri Twice: A Sliding Block Puzzle ½6¿ Edward Hordern Planar Burrs ½65 M. Oskar van Deventer Contents vii Block-Packing Jambalaya ½69 Bill Cutler Classification of Mechanical Puzzles and Physical Objects Related to Puzzles ½75 James Dalgety and Edward Hordern III Mathemagics ½87 A Curious Paradox ½89 Raymond Smullyan A Powerful Procedure for Proving Practical Propositions ½9½ Solomon W. Golomb Misfiring Tasks ½9¿ Ken Knowlton Drawing de Bruijn Graphs ½97 Herbert Taylor Computer Analysis of Sprouts ½99 David Applegate, Guy Jacobson, and Daniel Sleator Strange New Life Forms: Update ¾¼¿ Bill Gosper Hollow Mazes ¾½¿ M. -
Read Ebook \\ Mechanical Toys / 4XGV1KFZXPM0
KC5LEBOZV84C « eBook > Mechanical toys Mech anical toys Filesize: 2.96 MB Reviews Very beneficial to all category of folks. I really could comprehended every little thing out of this created e publication. I found out this book from my dad and i encouraged this ebook to discover. (Maia O'Hara) DISCLAIMER | DMCA M3XMACUOUKBF / Kindle ^ Mechanical toys MECHANICAL TOYS To get Mechanical toys eBook, make sure you follow the web link beneath and save the file or gain access to other information that are highly relevant to MECHANICAL TOYS ebook. Reference Series Books LLC Okt 2012, 2012. Taschenbuch. Book Condition: Neu. 247x190x10 mm. Neuware - Source: Wikipedia. Pages: 78. Chapters: Mechanical puzzles, Soma cube, Tower of Hanoi, Flexagon, Rubik's Cube, Jigsaw puzzle, Peg solitaire, Combination puzzle, Speedcubing, Toy train, Rubik's Revenge, Fieen puzzle, Professor's Cube, Klotski, Square One, V-Cube 6, V-Cube 7, Pyramorphix, Megaminx, Rubik's Magic, Dogic, Cymbal- banging monkey toy, Helicopter Cube, Pyraminx, Rubik's Snake, Impossible bottle, Pocket Cube, Snake cube, Pyraminx Crystal, Happy Cube, Rush Hour, Impossiball, Skewb Ultimate, BrainTwist, Rubik's Clock, Mechanical toy, Sliding puzzle, Disentanglement puzzle, Secret decoder ring, Equilibrium, Rubik's Magic: Master Edition, Sudoku Cube, Rubik's 360, Puzzle jug, Alexander's Star, Minus Cube, Puzzle ring, Wind-up toy, Skewb Diamond, Baguenaudier, Nintendo tumbler puzzle, Burr puzzle, Egg of Columbus, Magnet Space Wheel, Eastsheen, Hoppers, Snapper Puzzle, Puzzle globe, Think-a-Dot, Rubik's Triamid, Puzzle box, Missing Link, Pyramid puzzle, Diabolical cube, Lock puzzle, Moo box, Yoshimoto Cube, Human knot, Fuddling cup, Mechanical bank, Puzzle jewelry, Gridlock, Libelle. -
Knotted Doughnuts and Other Mathematical Entertainments
MARTIN GARDNER KNOTTED DOUGHNUTS KNOTTED DOUGHNUTS AND OTHER MATHEMATICAL ENTERTAINMENTS MARTIN GARDNER KNOTTED DOUGHNUTS AND OTHER MATHEMATICAL ENTERTAINMENTS W. H. Freeman and Company New York Library of Congress Cataloging-in-Publication Data Gardner. Martin, 1914 - Knotted doughnuts and other mathematical entertainments Includes bibliographies and index. 1. Mathematical recreations. I. Title. QA95.GZ7 1986 793.7'4 85-31134 ISBN 0-7 167-1794-8 ISBN 0-7 167-1799-9 (pbk.) Copyright O 1986 by W. H. Freeman and Company No part of this book may be reproduced by any mechanical, photographic, or electronic process, or in the form of a phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the publisher. Printed in the United States of America To Gerry Pie1 and Dennis Flanagan and all my other good friends at Scientific American during the 25 years that I had the great privilege of writing the magazine's Mathematical Games column contents Preface xi CHAPTER ONE Coincidence 1 CHAPTER TWO The Binary Gray Code 11 CHAPTER THREE Polycubes 2 8 CHAPTER FOUR Bacon's Cipher 45 CHAPTER FIVE Doughnuts: Linked and Knotted 5 5 CONTENTS x CHAPTER SIX The Tour of the Arrows and Other Problems 6 8 CHAPTER SEVEN Napier's Bones 85 Napier's Abacus CHAPTER NINE Sim, Chomp and Racetrack CHAPTER TEN Elevators 123 CHAPTER ELEVEN Crossing Numbers 133 CHAPTER TWELVE Point Sets on the Sphere 145 CONTENTS xi Newcomb's Paradox 155 CHAPTER FOURTEEN Reflections on Newcomb's Paradox CHAPTER FIFTEEN Reverse the Fish and Other Problems 176 Look-See Proofs 192 CHAPTER SEVENTEEN Worm Paths 205 Waring's Problems CHAPTER NINETEEN Cram, Bynum and Quadraphage 232 CONTENTS xii CHAPTER TWENTY The I Ching 244 CHAPTER TWENTY-ONE The La$er Curve 257 Index of Names 273 Because this is the eleventh collection of my Scientijc American columns, there is little to say in a preface that I have not said before. -
Video Game Design Composition Chapter 7 Glossary
Video Game Design Composition © 2014 Chapter 7: Puzzle Composition—Glossary aha moment. Point where a player has a realization of what to do or the solution to a problem. circular logic. Solution keeps changing the statement, which, in turn, changes the solution. dissection puzzle. reassemble the shape. editor. Computer program that allows the designer to prototype the gameplay. \ In video games, state of immersion in the task or activity being undertaken. functional rules. Control how each part works. induction puzzle. Requires deductive reasoning from a limited amount of information about the opponents with no information about the player. inspiration. \ lateral thinking. [ linguistic puzzle. Uses words or sounds related to language. logic maze. [ logic puzzle. Player applies reasoning to determine the correct answer. logic-grid puzzle. Player is given certain clues to the solution, which the player then organizes into a grid to determine the solution. mechanical puzzle. Solved by physically linking, unlinking, or maneuvering pieces. metapuzzle. Single, large puzzle made up of smaller puzzles. Occurs in a game when all players know the strategies of the others and no single player can gain when only his or her strategy is changed; named after American mathematician John Nash. parts. Pieces of a puzzle that are manipulated in the game. playability attribute. Helps the player recognize each puzzle piece and maneuver it into place. puzzle. ![ [ Document that is a smaller version of the governing game design document (GGDD). recursion. When a method calls itself as part of the solution. recursive puzzle. Contains the solution as part of the puzzle; also called self-reference puzzle. -
Thinking Outside the Cube - IEEE - the Institute
Thinking Outside The Cube - IEEE - The Institute http://staging.theinstitute.ieee.org/people/profiles/thinking-outside-the... Home ( /) / People ( /people ) / Profiles ( /people/profiles ) Thinking Outside The Cube The record for world’s largest Rubik’s Cube-style puzzle goes to an IEEE member By SUSAN KARLIN 16 April 2012 When the Rubik’s Cube craze erupted in 1980, most people wanted to solve it. IEEE Member Oskar van Deventer wanted to know how it was put together. The 3-D mechanical puzzle consists of six large outer sides built of layers of 3x3 matrices of smaller cubes, each consisting of one of six colors. Each layer can be turned independently of the others. The puzzle is “solved” when each layer is manipulated so each large outer side is returned to a solid color. Photo: Jose Remmerswaal By the ripe old age of 12, and before the Rubik’s Cube hit the headlines, van Deventer was already trying to teach himself how to design 3-D mechanical puzzles, after stumbling upon a book, Creative Puzzles of the World . So when the Rubik’s Cubes were delivered in limited quantities across Europe, he cycled 20 kilometers to an Amsterdam toy store—twice—once to order one and then to pick it up. He never outgrew its allure. Today, at 46, he’s the Guinness world record holder for designing the world’s largest Rubik’s Cube-style puzzle, called Over the Top—17x17x17 surface squares (and 15.2 centimeters on an outer side), as opposed to the original’s 3x3x3 squares (with an outer dimension of 5.7 cm). -
Its Solution and Analogy to the Chinese Rings
The Chinese String Its solution and analogy to the Chinese Rings Andreas Christopher Höck Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig–Maximilians–Universität München vorgelegt von Andreas Christopher Höck München, den 04.05.2017 Erstgutachter: Prof. Dr. Andreas M. Hinz, LMU München Zweitgutachter: Prof. Dr. Jaka Smrekar, Univerza v Ljubljani Tag der mündlichen Prüfung: 07.09.2017 Zusammenfassung In der Kognitivpsychologie werden isomorphe mechanische Geschicklichkeitsspiele betrach- tet, um herauszufinden, wodurch Probleme ihre Schwierigkeit erhalten. Ein Beispiel für diese Art von Geschicklichkeitsspielen sind die zueinander isomorphen Spiele Turm von Hanoi und Monsters and Globes. Ihre Isomorphie ist durch das Vertauschen der Rollen der beweglichen und der festen Bestandteile gegeben. Ein weiteres Beispiel von zwei Geschicklichkeitsspielen, bei denen die Rollen der festen und beweglichen Bestandteile vertauscht sind, sind Chinesische Ringe und Chinese String. In dieser Dissertation wird der Zusammenhang zwischen Chinesi- sche Ringe und Chinese String genauer untersucht, um herauszufinden, inwiefern eine Isomor- phie zwischen diesen beiden gegeben ist. Zunächst wird eine Einleitung in Chinesische Ringe gegeben. Dabei werden Eigenschaften des zugehörigen Zustandsgraphen und der Zusammenhang zwischen Gros- und Gray-Code angege- ben. Darüber hinaus wird die Zugfolge der optimalen Lösung (mit abzählbar unendlich vielen Ringen), auch Gros-Folge genannt, betrachtet und festgestellt, dass diese gleich der "greedy square-free sequence" ist. Anschließend wird eine mechanische Lösung von Chinese String aufgezeigt. Mithilfe einer imaginären Linie werden Bewegungen definiert und diese Bewegungen werden verwendet, um einen rekursiven Lösungsalgorithmus für eine beliebige Anzahl an Ringen anzugeben. Anhand des Algorithmus werden weitere Eigenschaften der Lösung untersucht und es wird festgestellt, dass diese Lösung zum Lösen von Chinesische Ringe verwendet werden kann, da deren Zug- folgen identisch sind. -
3 BAB 2 DATA DAN ANALISA 2.1 Sumber Data Data Dan Informasi
BAB 2 DATA DAN ANALISA 2.1 Sumber Data Data dan informasi yang dipergunakan dalam mendukung proyek Tugas Akhir ini diambil dari: 2.1.1 Data literatur yang elektronik dan non-elektronik. Data non-elekronik diambil dari buku-buku sedangkan data elektronik berasal dari beberapa situs di Internet untuk menunjang sebagai referensi pengetahuan dan visual 2.1.2 Wawancara dengan narasumber dari pihak yang berhubungan dengan Kajeng Handycraft yaitu Bapak Mandar Utomo. Serta observasi pada toko-toko maianan 2.2 Data Umum 2.2.1 Sejarah Berdirinya Kajeng Handicraft dan Puzzle Kayu Pada tahun 1994 Kajeng Handicraft didirikan oleh Bapak Mandar Utomo di Senggotan, Jogjakarta. Awalnya Kajeng Handicraft membuat barang-barang fungsional seperti: asbak, tempat pensil, tempat kartu nama, dan tempat telur. Pada 1995, ekonomi semakin tidak mendukung dan saat itu anak Bapak Mandar Utomo sudah mulai besar dan mengerti mainan, Ia ingin membelikan mainan untuk sang anak tapi karena tidak mampu membelikan maka Ia mambuatkannya saja, lalu anaknya terlihat senang setelah dibuatkan mainan puzzle kayu itu. Berangkat dari situ maka muncullah ide untuk memproduksinya secara massal karena kalau anaknya senang dengan mainan itu maka anak-anak lain akan merasa senang juga. Tanggal 5 Oktober 2000 pindah ke Bantul Jogjakarta. Dan saat ini Kajeng Handicraft memiliki art shop yang terletak di Jalan Bantul No.19 Kweni Jogjakarta, warehouse yang terletak di Jalan Bantul Km 5 Panggungharjo Sewon Bantul Jogjakarta, sedangkan workshop berada di Jalan Bantul Km 9 Cepit, Bantul. Alasan memilih Bantul sebagai pusat bisnisnya adalah karena Bantul adalah tempat sentra industri keramik (Kasongan, desa Bojong) yang letaknya tidak terlalu jauh dari lokasi Kajeng Handicraft sendiri.