3 BAB 2 DATA DAN ANALISA 2.1 Sumber Data Data Dan Informasi

Total Page:16

File Type:pdf, Size:1020Kb

3 BAB 2 DATA DAN ANALISA 2.1 Sumber Data Data Dan Informasi BAB 2 DATA DAN ANALISA 2.1 Sumber Data Data dan informasi yang dipergunakan dalam mendukung proyek Tugas Akhir ini diambil dari: 2.1.1 Data literatur yang elektronik dan non-elektronik. Data non-elekronik diambil dari buku-buku sedangkan data elektronik berasal dari beberapa situs di Internet untuk menunjang sebagai referensi pengetahuan dan visual 2.1.2 Wawancara dengan narasumber dari pihak yang berhubungan dengan Kajeng Handycraft yaitu Bapak Mandar Utomo. Serta observasi pada toko-toko maianan 2.2 Data Umum 2.2.1 Sejarah Berdirinya Kajeng Handicraft dan Puzzle Kayu Pada tahun 1994 Kajeng Handicraft didirikan oleh Bapak Mandar Utomo di Senggotan, Jogjakarta. Awalnya Kajeng Handicraft membuat barang-barang fungsional seperti: asbak, tempat pensil, tempat kartu nama, dan tempat telur. Pada 1995, ekonomi semakin tidak mendukung dan saat itu anak Bapak Mandar Utomo sudah mulai besar dan mengerti mainan, Ia ingin membelikan mainan untuk sang anak tapi karena tidak mampu membelikan maka Ia mambuatkannya saja, lalu anaknya terlihat senang setelah dibuatkan mainan puzzle kayu itu. Berangkat dari situ maka muncullah ide untuk memproduksinya secara massal karena kalau anaknya senang dengan mainan itu maka anak-anak lain akan merasa senang juga. Tanggal 5 Oktober 2000 pindah ke Bantul Jogjakarta. Dan saat ini Kajeng Handicraft memiliki art shop yang terletak di Jalan Bantul No.19 Kweni Jogjakarta, warehouse yang terletak di Jalan Bantul Km 5 Panggungharjo Sewon Bantul Jogjakarta, sedangkan workshop berada di Jalan Bantul Km 9 Cepit, Bantul. Alasan memilih Bantul sebagai pusat bisnisnya adalah karena Bantul adalah tempat sentra industri keramik (Kasongan, desa Bojong) yang letaknya tidak terlalu jauh dari lokasi Kajeng Handicraft sendiri. Dengan keberadaan Kasongan, para buyer asing akan sering berkunjung, hal ini akan ikut menguntungkan keberadaan Kajeng Handicraft di situ. Kajeng sendiri dalam bahasa Jawa artinya kayu. Dalam bahasa Jawa Krama Inggil artinya harapan/asa. Kajeng Handicraft mejadi harapan bagi keluarga Bapak Mandar Utomo yang saat itu ijazah Sarjana Hukumnya tidak laku sehingga Ia memutuskan untuk menjadi wiraswastawan. Dengan usaha kayu ini, harapannya adalah agar Ia dapat menghidupi keluarganya. Proses pembuatan puzzle kayu pertama-tama adalah dengan menentukan terlebih dahulu bentuk yang akan dihasilkan (misalnya bola) dengan instruksi langsung dari Bapak Mandar Utomo. Setelah itu tim kecil dari bagian produksi dan inovasi membuat dummy puzzle yang diinginkan, dummy biasana dibuat dengan menggunakan styrofoam . Setelah perancanaan bentuk sesuai dengan yang diinginkan maka proses produksi massal dilanjutkan. Proses proses produksi diawali dengan ngemal (dipola) kemudian disetel untuk kecocokan puzzle kemudian setelah bisa terpasang semua, maka dibentuk sesuai dengan bentuk awal yang diinginkan ( shaping ). Kemudian dilakukan finishing dengan digosok dan disikat semir kayu (MAA/ wax ) untuk mencegah timbulnya jamur dapat merusak. 3 Menurut Bapak Mandar Utomo, dalam menjalankan usaha akan merasa senang apabila mendapat order banyak. Namun akan berduka apabila order sedikit dan penantian akan adanya institut baik swasta maupun pemerintah yang mau menjembatani visi Kajeng. 2.2.2 Filosofi Kajeng Handicraft Bagaimana mempertahankan dan menjalankan kelangsungan hidup karena manusia butuh keidupan, berusaha untuk mempertahankan dan syukur dapat mengembangkannya (hidup). Filosofi jawa yang dianut, banyu milih , membangun usaha tidak berdasarkan latar belakang pendidikan, dilakukan seperti air mengalir, di mana dapat rezeki, di situlah dia berada, sukur bisa mengembangkannya. 2.2.3 Logo Kajeng Handicraft Gambar 2.2.3 Logo Kajeng Handicraft Logo Kajeng Handicraft menyerupai huruf K (yang merupakan inisial nama Kajeng), cabang dari huruf K dibuat banyak menyerupai jari dengan harapan bisa menjadi besar/melebar seperti telapak tangan. Dengan jari-jari itu suatu saat akan menjadi besar dan tidak hanya menjadi satu saja. 2.2.4 Struktur Organisasi Struktur organisasi Kajeng Handicraft menggunakan system yang masih sangat tradisional (sederhana) dan bersifat kekeluargaan. Hanya ada owner , bagian pemasaran, bagian produksi dan inovasi, dan bagian keuangan. Bagian pemasaran bertugas untuk menangani para buyer asing. Bagian produksi dan inovasi menguru produksi dan pengembangan produk, yang terdiri atas tim kecil yang berasal dari ISI Sarjana Kriya Kayu. Bagian keuangan mengatur urusan keuangan. Bagian Produksi membawahi karyawan- karyawan dalam urusan produksi yang berjumlah 108 orang yang terdiri dari rentang usia 18-40 dengan tenga dan keahlian yang memadai untuk produksi. Jam kerja dari jam 08.00 – 16.00, Senin sampai Sabtu dengan produksi 40.000 buah yang terdiri atas 160 model yang ada. 2.2.5 Visi, Misi, dan Tujuan Kanjeng Handicraft a. Visi Dengan memproduksi mainan edukasi agar bisa membantu program-program pemerintah dalam rangka meningkatkan mutu pendidikan di Indonesia. Namun hal ini belum tersentuh sama sekali karena menurut Bapak Mandar Utomo belum memiliki baik swasta maupun pemerintah untuk memasuki dunia pendidikan Indonesia. Belum ada yang menjembatani untuk masuk ke dunia pendidikan, lagipula berasal dari usaha kecil. b. Misi Sebagai seorang wiraswasta, ingin agar usaha semakin berkembang, berskala nasional, langsung dan tidak langsung dapat mengatasi pengangguran terutama di daerah sekelilingnya. c. Tujuan 1. Untuk mencari profit. 2. Mempertahankan dan melangsungkan hidup. 3. Mengedukasi secara tidak langsung. 4. Mengurangi pengangguran. 4 2.2.6 Usaha Pemasaran Kajeng Handicraft Puzzle kayu Kajeng Handicraft dipasarkan melalui media on-line yaitu web dan iklan di Ali-Baba. Namun pada awal berdirinya, puzzle-puzzle kayu itu dijual door-to-door dan dikenal melalui word of mouth . Kajeng Handicraft pernah mengikuti INACRAFT, namun tidak mengalami kecocokan karena Kajeng mengkhususkan diri untuk penjualan grosis daripada retail. 2.2.7 Produk Kajeng Handicraft Produk Kajeng adalah puzzle kayu yang menyerupai bentuk-bentuk tertentu (3 dimensi) dan terbuat dari kayu Jati, yang merupakan kayu brongkal/kayu limbah dari industri meuble/furniture ekspor yang terletak di Semarang, Jepara, Ngawi, Purwodadi. Kayu yang berasal dari daerah tersebut berkualitas baik dengan warna coklat yang banyak dan warna coklat yang sedikit serta lebih kuat dibandingkan kualitas kayu yang berasal dari Jogjakarta. Inspirasi produk datang ketika sedang berikir tiba-tiba ada inspirasi begitu saja. Kadang-kadang ada buyer yang minta dibuatkan bentuk yang mereka inginkan yang pernah mereka temukan di luar negeri. Bentuk puzzle kayu 3 dimensi Kajeng Handicraft 80% adalah hasil kreasi orisinil dan 20% adalah permintaan dari buyer yang diizinkan untuk terus dipakai oleh Kajeng. Puzzle kayu ini telah berjumlah lebih dari 160 model sampai saat ini. Dapat dilihat di situs www.kajeng.com dengan menggunakan username “viar” dan password “kajeng”. Harganya berkisar antara Rp 5.000,- sampai Rp 200.000,-. 2.2.8 Positioning Kajeng Handicraft Kajeng Handicraft adalah produsen mainan edukasi yang adalah pioneer dalam membuat dan memproduksi mainan edukasi, puzzle kayu 3 dimensi satu-satunya di Indonesia. 2.2.9 Inovasi yang telah dilakukan Kajeng Handicraft Penambahan model dari yang hanya 1 hingga saat ini menjadi 160 model. Bola adalah puzzle 3 dimensi pertama yang dibuat dan menjadi top ranking penjualan, alasannya karena bentuk bola itu mendunia. 2.2.10 Peluang Kajeng di Masa Depan Bisa untuk selamanya, selama manusia punya anak maka akan membutuhkan mainan asalkan mau berinovasi terus. 2.3 Target Market Kajeng merasa bebas untuk menjual kepada siapa saja yang berminat pada produk Kajeng. Namun untuk spesifikasi yang lebih jelas yaitu: Usia : 4 tahun – 18 tahun (masa sekolah, kelompok bermain hingga sekolah menegah) SES : menengah atas (A-B) Sifat : mengikuti perkembangan zaman dan mode di Negara maju Ekspor : Eropa Barat, Turki, Timur Tengah, Amerika, Australia, Kroasia, Rusia. 2.4 Kompetitor Kompetitor di Jogjakarta berasal dari produsen yang awalnya bekerja sebagai karyawan Kajeng, saat ini ada 2. Namun produksinya sangat kecil serta modelnya mengikuti milik Kajeng. Tidak diketahui apakah 2 kompetitor itu memiliki nama atau tidak. Ada juga TL Puzzle yang menjual salah satu produk yang sama dengan Kajeng namun tidak memiliki varian sebanyak Kajeng, TL Puzzle membuat berbagai macam bentuk puzzle, model- model yang dibuat Kajeng adalah salah satunya. 5 Kompetitor yang juga memproduksi mainan edukasi, namun bukan puzzle 3 dimensi, adalah Yakum dan Mandiri Craft Kompetitor lainnya berasal dari India dan Thailand. 2.5 Mainan Edukasi Mainan edukasi menurut Wikipedia.org, biasanya dibuat dan digunakan oleh anak-anak. Orang dapat berargumen bahwa mainan edukasi sebenarnya bisa saja mainan apapun. Kebanyakan anak terus-menerus berinteraksi dan belajar tentang dunia. Definisi ini akhirnya terlalu luas karena orang bisa membuat argumen yang sama tentang batu atau tongkat karena tidak jarang anak terlihat memainkan benda-benda itu. Perbedaannya terletak pada persepsi anak atau realitas nilai mainan. Sebuah mainan pendidikan harus mendidik. Mainan itu harus menginstruksikan dan mengedepankan intelektualitas, perkembangan emosional atau fisik. Sebuah mainan edukasi dapat mengajarkan anak tentang topik tertentu atau dapat membantu anak mengembangkan keterampilan tertentu. Perbedaan utamanya adalah pembelajaran dan perkembangan anak yang terkait dengan interaksi dengan mainan. Saat ini, lebih semakin banyak mainan yang dirancang sesuai dengan pendidikan dan perkembangan
Recommended publications
  • Math Games: Sliding Block Puzzles 09/17/2007 12:22 AM
    Math Games: Sliding Block Puzzles 09/17/2007 12:22 AM Search MAA Membership Publications Professional Development Meetings Organization Competitions Math Games sliding-block Puzzles Ed Pegg Jr., December 13, 2004 The December issue of The Economist contains an article with a prominent question. Has an inventor found the hardest possible simple sliding-block puzzle? It goes on to describe the Quzzle puzzle, by Jim Lewis. The article finishes with "Mr Lewis claims that Quzzle, as he dubs his invention, is 'the world's hardest simple sliding-block puzzle.' Within the terms of his particular definition of 'simple,' he would seem to have succeeded." The claim is wrong. Quzzle is not the world's hardest simple sliding-block puzzle, no matter how you define "hard." Sometimes, hard means lot and lots of moves. Junk Kato has succinctly described a record setting series for the most moves required with n pieces. The basic underlying principle is Edouard Lucas' Tower of Hanoi puzzle. Move the red piece to the bottom slot. Figure 1. Junk's Hanoi by Junk Kato. From Modern sliding-block Puzzles. Often, "hard" maximizes complexity with a sparse number of pieces. Usually, the fewer the pieces, the better the puzzle. Two people at the forefront of making really hard sliding-block puzzles with just a few pieces are Oskar van Deventer and James Stephens. James started with Sliding-Block Puzzles. The two of them collaborated to create the ConSlide Puzzle and the Bulbous Blob Puzzle. Oskar even went so far as to make a prototype of the excellent Simplicity puzzle.
    [Show full text]
  • A Functional Taxonomy of Logic Puzzles
    A Functional Taxonomy of Logic Puzzles Lianne V. Hufkens Cameron Browne Department of Data Science and Knowledge Engineering Maastricht University Maastricht, The Netherlands flianne.hufkens, [email protected] Abstract—There currently exists no taxonomy for the full range of puzzles including “pen & paper” Japanese logic puzzles. We present a functional taxonomy for these puzzles in prepa- ration for implementing them in digital form. This taxonomy reveals similarities and differences between these puzzles and locates them within the context of single player games. Index Terms—games, puzzles, logic, taxonomy, classification I. INTRODUCTION This work is part of a project on digitally implementing the full range of pen & paper puzzles for computer analysis. In order to model these puzzles, it is useful to devise a taxonomy to highlight differences and similarities between Fig. 1: A Sudoku challenge (left) and solution (right). them to facilitate their implementation. We define a puzzle as a problem with defined steps for books, with further examples and information on Nikoli-style achieving one or more defined solutions, such that the chal- logic puzzles obtained from online sources including [2], [3], lenge contains all information needed to achieve its own [4], [5] and [6]. solution. Puzzles are distinct from games as they lack the Some simple schemes for logically grouping logic puzzles adversarial element: ”Puzzles are solved. Games are won.”1 already exist. For example, our final taxonomy was inspired by We focus on the group of puzzles commonly known as the classification found at [2], and Nikoli [3] uses the following Japanese logic puzzles [1], of which Sudoku (Fig.
    [Show full text]
  • Tatamibari Is NP-Complete
    Tatamibari is NP-complete The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Adler, Aviv et al. “Tatamibari is NP-complete.” 10th International Conference on Fun with Algorithms, May-June 2021, Favignana Island, Italy, Schloss Dagstuhl and Leibniz Center for Informatics, 2021. © 2021 The Author(s) As Published 10.4230/LIPIcs.FUN.2021.1 Publisher Schloss Dagstuhl, Leibniz Center for Informatics Version Final published version Citable link https://hdl.handle.net/1721.1/129836 Terms of Use Creative Commons Attribution 3.0 unported license Detailed Terms https://creativecommons.org/licenses/by/3.0/ Tatamibari Is NP-Complete Aviv Adler Massachusetts Institute of Technology, Cambridge, MA, USA [email protected] Jeffrey Bosboom Massachusetts Institute of Technology, Cambridge, MA, USA [email protected] Erik D. Demaine Massachusetts Institute of Technology, Cambridge, MA, USA [email protected] Martin L. Demaine Massachusetts Institute of Technology, Cambridge, MA, USA [email protected] Quanquan C. Liu Massachusetts Institute of Technology, Cambridge, MA, USA [email protected] Jayson Lynch Massachusetts Institute of Technology, Cambridge, MA, USA [email protected] Abstract In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an m × n grid of cells, where each cell possibly contains a clue among , , . The goal is to partition the grid into disjoint rectangles, where every rectangle contains exactly one clue, rectangles containing are square, rectangles containing are strictly longer horizontally than vertically, rectangles containing are strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this puzzle NP-complete, establishing a Nikoli gap of 16 years.
    [Show full text]
  • Circuit of Computer Science Unplugged Activities Based on the Life of Ada Lovelace
    Circuit of Computer Science Unplugged activities based on the life of Ada Lovelace 1st Given Name Surname 2nd Given Name Surname 3rd Given Name Surname dept. name of organization (of Aff.) dept. name of organization (of Aff.) dept. name of organization (of Aff.) name of organization (of Aff.) name of organization (of Aff.) name of organization (of Aff.) City, Country City, Country City, Country email address email address email address Abstract—Ada Lovelace’s life is a source of inspiration for defining what are the highest priority tasks and iv) create women and men of all ages, for being a bright-minded and algorithms to solve them. visionary person. His greatest achievement was to have written Unplugged computing occurs through playful activities, the first computer program in history. This article presents a methodological proposal for didactic use of a children’s book group dynamics, and material elaboration. Bell et al. (2015) about Ada Lovelace by proposing a circuit of unplugged activities have been concerned with solving issues that can arise as soon in order to refine the computational thinking (CT) in children and as we are introduced to computing: how do computers work adolescents. This methodology was applied in a workshop during and what do computers solve? The book of such authors, titled the BLIND in the BLIND Conference. A quali-quantitative “CS unplugged: Computer Science without a Computer”, has analysis performed with participants indicates the suitability of the proposed methodology. many activities that can be reproduced with children in an easy Index Terms—computational thinking, cs unplugged, stem, and intuitive way.
    [Show full text]
  • By Prof. Mcgonagall Solution to STEPS TOLD: the Grid with The
    By Prof. McGonagall weeks belong to a set, such that their an- swers form this meta. Those answers are Solution to STEPS TOLD: reproduced below for your convenience. Thegridwiththewhiteandblackcircles Especially now, without a title or flavor- (ignoring the letters for now) is the Nikoli text to give outright hints, it is important logic puzzle ‘‘Masyu’’. Solving that puzzle to keep in mind Rule 9: Always be on the yieldsapaththroughthegrid. Takingeach lookout for themes and patterns. Para- letteralongthatpathspellstheinstruction graph breaks in a block of text, repeated ‘‘MAKE A CRYPTIC CLUE BY USING THE words or letters, apparent typos or non- REMAINING LETTERS IN ORDER’’. standard word selections -- these all can When read left to right, top to bottom, point to clues. Keep your eyes open, and the unused letters in the grid spell the investigate anything that looks unusual. phrase ‘‘SILLY SEATS RING RED PEERS’’. Enjoy your last day of class, and as This is read as a cryptic crossword clue: always, if you think you have the answer, the definition is ‘‘peers’’, and the wordplay submit it on our website below. tells you to mix up the letters of ‘‘seats’’ We’ll see some of you this Sunday at and place them around the letter ‘R’ (for the Berkeley Mystery Hunt! red). This results in the answer, STARES. The title is another wordplay clue to the METAPUZZLE same answer -- ‘‘told’’ indicates a homo- phone of ‘‘stairs’’, a synonym of ‘‘steps’’. DOTING Congratulations to Jevon Heath and REDUB Melinda Fricke, who first submitted the COLORED correct answer to this puzzle. ONES STARTING This now brings us to the metapuz- REDSTAR zle, a new puzzle consisting solely of the COSTARRED answers to all previous puzzles.
    [Show full text]
  • Baguenaudier - Wikipedia, the Free Encyclopedia
    Baguenaudier - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Baguenaudier You can support Wikipedia by making a tax-deductible donation. Baguenaudier From Wikipedia, the free encyclopedia Baguenaudier (also known as the Chinese Rings, Cardan's Suspension, or five pillars puzzle) is a mechanical puzzle featuring a double loop of string which must be disentangled from a sequence of rings on interlinked pillars. The puzzle is thought to have been invented originally in China. Stewart Culin provided that it was invented by the Chinese general Zhuge Liang in the 2nd century AD. The name "Baguenaudier", however, is French. In fact, the earliest description of the puzzle in Chinese history was written by Yang Shen, a scholar in 16th century in his Dan Qian Zong Lu (Preface to General Collections of Studies on Lead). Édouard Lucas, the inventor of the Tower of Hanoi puzzle, was known to have come up with an elegant solution which used binary and Gray codes, in the same way that his puzzle can be solved. Variations of the include The Devil's Staircase, Devil's Halo and the Impossible Staircase. Another similar puzzle is the Giant's Causeway which uses a separate pillar with an embedded ring. See also Disentanglement puzzle Towers of Hanoi External links A software solution in wiki source (http://en.wikisource.org/wiki/Baguenaudier) Eric W. Weisstein, Baguenaudier at MathWorld. The Devil's Halo listing at the Puzzle Museum (http://www.puzzlemuseum.com/month/picm05/200501d-halo.htm) David Darling - encyclopedia (http://www.daviddarling.info/encyclopedia/C/Chinese_rings.html) Retrieved from "http://en.wikipedia.org/wiki/Baguenaudier" Categories: Chinese ancient games | Mechanical puzzles | Toys | China stubs This page was last modified on 7 July 2008, at 11:50.
    [Show full text]
  • Metrics for Better Puzzles 1 Introduction
    Metrics for Better Puzzles Cameron Browne Computational Creativity Group Imperial College London [email protected] Abstract. While most chapters of this book deal with run-time telemetry observed from user data, we turn now to a different type of metric, namely design-time metrics for level generation. We describe Hour Maze, a new type of pure deduction puzzle, and outline methods for the automated generation and solution of lev- els. Solution involves a deductive search that estimates a level’s iterative and strategic depth. This information, together with sym- metry analysis of wall and hint distributions, provides useful met- rics with which levels may be classified and described. Results from a user survey indicate that players’ enjoyment of computer- designed levels may be affected by their perception of whether those levels are indeed computer-designed or handcrafted by hu- mans. We suggest ways in which puzzle metrics may be used to increase the perception of intelligence and personality behind level designs, to make them more interesting for players. Keywords. Logic puzzle; Hour Maze; Nikoli; deductive search; quality metrics; procedural content generation. 1 Introduction The current crop of smart phones and handheld game devices are the ideal plat- form for logic puzzles, which are enjoying a surge in popularity due to the main- stream success of titles such as Sudoku and Kakuro. Such puzzles can be played easily on small screens without losing any of their appeal, and can provide a deep, engaging playing experience while being conveniently short and self-contained. Fig. 1 shows a new logic puzzle called Hour Maze currently under develop- ment for iOS devices.
    [Show full text]
  • L-G-0003950258-0013322245.Pdf
    The Tower of Hanoi – Myths and Maths Andreas M. Hinz • Sandi Klavzˇar Uroš Milutinovic´ • Ciril Petr The Tower of Hanoi – Myths and Maths Foreword by Ian Stewart Andreas M. Hinz Uroš Milutinovic´ Faculty of Mathematics, Faculty of Natural Sciences Computer Science and Statistics and Mathematics LMU München University of Maribor Munich Maribor Germany Slovenia Sandi Klavzˇar Ciril Petr Faculty of Mathematics and Physics Faculty of Natural Sciences University of Ljubljana and Mathematics Ljubljana University of Maribor Slovenia Maribor Slovenia and Faculty of Natural Sciences and Mathematics University of Maribor Maribor Slovenia ISBN 978-3-0348-0236-9 ISBN 978-3-0348-0237-6 (eBook) DOI 10.1007/978-3-0348-0237-6 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012952018 Mathematics Subject Classification: 00-02, 01A99, 05-03, 05A99, 05Cxx, 05E18, 11Bxx, 11K55, 11Y55, 20B25, 28A80, 54E35, 68Q25, 68R05, 68T20, 91A46, 91E10, 94B25, 97A20 Ó Springer Basel 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • O. Deventer 'From Computer Operations to Mechanical Puzzles'
    Case Study 9 From Computer Operations to Mechanical Puzzles M. Oskar van Deventer, Freelance Mechanical Puzzle Designer Igor Kriz, Department of Mathematics, University of Michigan This article is about transforming a virtual puzzle implemented by computer operations into a physical puzzle. We describe why a puzzle motivated by a mathematical idea of the sporadic simple Mathieu group M12 is an interesting concept. We then describe how it was turned into two different physical puzzles called Topsy Turvy and Number Planet. Finally, we will show one version of a practical algorithmic solution to the puzzle, and describe challenges that remain. 1 Introduction ones are called sporadic simple groups [5]. The word ‘simple’ here refers to the fact that they are ver since E. Rubik invented his famous cube building blocks for finite groups, just as prime E in 1974, a boom of twisty puzzles began. The numbers are basic building blocks of natural num- puzzles which emerged are too numerous to list bers. However, it may be a misnomer to call those here (for some information, see [1, 2]).1 How- groups simple, since they are typically extremely ever, after an algorithm by David Singmaster complicated. for Rubik’s cube was published in 1981 [3], it Could one make a twisty puzzle based on a soon became clear that only small modifications sporadic simple group, which would then require of the strategy for finding the algorithm for Ru- a completely novel strategy, different in essential bik’s cube also produce algorithms for the other ways from Singmaster’s algorithm? The problem twisty puzzles.
    [Show full text]
  • C-Space Tunnel Discovery for Puzzle Path Planning
    C-Space Tunnel Discovery for Puzzle Path Planning XINYA ZHANG, The University of Texas at Austin ROBERT BELFER, McGill University PAUL G. KRY, McGill University ETIENNE VOUGA, The University of Texas at Austin Fig. 1. Puzzles we solve using our approach, roughly ordered by difficulty from left to right. Top row: alpha, alpha-z, alpha-j, alpha-g, double-alpha, claw, and enigma. Bottom row: duet (with 4 different grid sizes), Mobius, ABC, and Key. All but the alpha variants are Hanayama puzzles. Rigid body disentanglement puzzles are challenging for both humans and 1 INTRODUCTION motion planning algorithms because their solutions involve tricky twisting The Piano Mover’s Problem asks whether one can move a piano and sliding moves that correspond to navigating through narrow tunnels in between rooms through a sequence of rigid-body motions. This the puzzle’s configuration space (C-space). We propose a tunnel-discovery problem has inspired a great deal of work in computational geometry and planning strategy for solving these puzzles. First, we locate important features on the pieces using geometric heuristics and machine learning, and and robotics because it has a vast number of practical applications, then match pairs of these features to discover collision free states in the from collision-free navigation in automated warehouses, to path puzzle’s C-space that lie within the narrow tunnels. Second, we propose planning in pharmaceutical drug design. Rigid disentanglement a Rapidly-exploring Dense Tree (RDT) motion planner variant that builds puzzles are an interesting variant of the problem because they are tunnel escape roadmaps and then connects these roadmaps into a solution specifically designed to be difficult to take apart: they are notoriously path connecting start and goal states.
    [Show full text]
  • Amusements in Mathematics by Henry Ernest Dudeney
    Amusements in Mathematics by Henry Ernest Dudeney Web-Books.Com Amusements in Mathematics Amusements in Mathematics.............................................................................................. 2 Units Abbreviation and Conversion.................................................................................... 4 Preface................................................................................................................................. 5 Arithmetical And Algebraical Problems............................................................................. 6 MONEY PUZZLES........................................................................................................ 6 AGE AND KINSHIP PUZZLES.................................................................................. 17 CLOCK PUZZLES....................................................................................................... 25 LOCOMOTION AND SPEED PUZZLES................................................................... 28 DIGITAL PUZZLES. ....................................................................................................... 30 VARIOUS ARITHMETICAL AND ALGEBRAICAL PROBLEMS......................... 37 Geometrical Problems....................................................................................................... 54 DISSECTION PUZZLES. ............................................................................................ 54 GREEK CROSS PUZZLES. .......................................................................................
    [Show full text]
  • PDF Download Shape and Space: Includes 12 Interactive Card Pages
    SHAPE AND SPACE: INCLUDES 12 INTERACTIVE CARD PAGES OF FUN PRESS-OUT GAME AND PUZZLE PIECES PDF, EPUB, EBOOK Adrian Pinel,Jeni Pinel | 44 pages | 30 Aug 2008 | Haldane Mason Ltd | 9781905339204 | English | London, United Kingdom Shape and Space: Includes 12 Interactive Card Pages of Fun Press-Out Game and Puzzle Pieces PDF Book Like a 2-D puzzle, a globe puzzle is often made of plastic and the assembled pieces form a single layer. In , the German company Ravensburger released their biggest puzzle. Players have to use spatial reasoning to visualize the path and draw where they need to go on the board. Some fully interlocking puzzles have pieces all of a similar shape, with rounded tabs out on opposite ends, with corresponding blanks cut into the intervening sides to receive the tabs of adjacent pieces. A jigsaw puzzle is a tiling puzzle that requires the assembly of often oddly shaped interlocking and mosaiced pieces. Why would the following stand no chance of being approved as official names for British racehorses? It costs a fraction of a penny per day over its lifetime, and if you lose it, its inherent unbreakable security will leave no trace of confidential files or personal history. A slashed 'equals' sign is the mathematical symbol for 'does not equal'. Deep Grey. The Wishing Well. Tower of Hanoi Solver. Amazingly the first puzzle can still fool people when all the Fs are coloured red. Please note that the answer to this question was corrected 17 Oct A new street is built with one hundred new houses, numbered 1 to Next draw an equilateral triangle three sides same length and divide into three equal parts.
    [Show full text]