Algorithmic Puzzles This Page Intentionally Left Blank ALGORITHMIC PUZZLES
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math Games: Sliding Block Puzzles 09/17/2007 12:22 AM
Math Games: Sliding Block Puzzles 09/17/2007 12:22 AM Search MAA Membership Publications Professional Development Meetings Organization Competitions Math Games sliding-block Puzzles Ed Pegg Jr., December 13, 2004 The December issue of The Economist contains an article with a prominent question. Has an inventor found the hardest possible simple sliding-block puzzle? It goes on to describe the Quzzle puzzle, by Jim Lewis. The article finishes with "Mr Lewis claims that Quzzle, as he dubs his invention, is 'the world's hardest simple sliding-block puzzle.' Within the terms of his particular definition of 'simple,' he would seem to have succeeded." The claim is wrong. Quzzle is not the world's hardest simple sliding-block puzzle, no matter how you define "hard." Sometimes, hard means lot and lots of moves. Junk Kato has succinctly described a record setting series for the most moves required with n pieces. The basic underlying principle is Edouard Lucas' Tower of Hanoi puzzle. Move the red piece to the bottom slot. Figure 1. Junk's Hanoi by Junk Kato. From Modern sliding-block Puzzles. Often, "hard" maximizes complexity with a sparse number of pieces. Usually, the fewer the pieces, the better the puzzle. Two people at the forefront of making really hard sliding-block puzzles with just a few pieces are Oskar van Deventer and James Stephens. James started with Sliding-Block Puzzles. The two of them collaborated to create the ConSlide Puzzle and the Bulbous Blob Puzzle. Oskar even went so far as to make a prototype of the excellent Simplicity puzzle. -
An Evolutionary Approach for Sorting Algorithms
ORIENTAL JOURNAL OF ISSN: 0974-6471 COMPUTER SCIENCE & TECHNOLOGY December 2014, An International Open Free Access, Peer Reviewed Research Journal Vol. 7, No. (3): Published By: Oriental Scientific Publishing Co., India. Pgs. 369-376 www.computerscijournal.org Root to Fruit (2): An Evolutionary Approach for Sorting Algorithms PRAMOD KADAM AND Sachin KADAM BVDU, IMED, Pune, India. (Received: November 10, 2014; Accepted: December 20, 2014) ABstract This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms (Root to Fruit (1): An Evolutionary Study of Sorting Problem) [1]and concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. Key words: Evolutionary study of sorting, History of sorting Early Sorting algorithms, list of inventors for sorting. IntroDUCTION name and their contribution may skipped from the study. Therefore readers have all the rights to In spite of plentiful literature and research extent this study with the valid proofs. Ultimately in sorting algorithmic domain there is mess our objective behind this research is very much found in documentation as far as credential clear, that to provide strength to the evolutionary concern2. Perhaps this problem found due to lack study of sorting algorithms and shift towards a good of coordination and unavailability of common knowledge base to preserve work of our forebear platform or knowledge base in the same domain. for upcoming generation. Otherwise coming Evolutionary study of sorting algorithm or sorting generation could receive hardly information about problem is foundation of futuristic knowledge sorting problems and syllabi may restrict with some base for sorting problem domain1. -
THE ART of Puzzle Game Design
THE ART OF Puzzle Design Scott Kim & Alexey Pajitnov with Bob Bates, Gary Rosenzweig, Michael Wyman March 8, 2000 Game Developers Conference These are presentation slides from an all-day tutorial given at the 2000 Game Developers Conference in San Jose, California (www.gdconf.com). After the conference, the slides will be available at www.scottkim.com. Puzzles Part of many games. Adventure, education, action, web But how do you create them? Puzzles are an important part of many computer games. Cartridge-based action puzzle gamse, CD-ROM puzzle anthologies, adventure game, and educational game all need good puzzles. Good News / Bad News Mental challenge Marketable? Nonviolent Dramatic? Easy to program Hard to invent? Growing market Small market? The good news is that puzzles appeal widely to both males and females of all ages. Although the market is small, it is rapidly expanding, as computers become a mass market commodity and the internet shifts computer games toward familiar, quick, easy-to-learn games. Outline MORNING AFTERNOON What is a puzzle? Guest Speakers Examples Exercise Case studies Question & Design process Answer We’ll start by discussing genres of puzzle games. We’ll study some classic puzzle games, and current projects. We’ll cover the eight steps of the puzzle design process. We’ll hear from guest speakers. Finally we’ll do hands-on projects, with time for question and answer. What is a Puzzle? Five ways of defining puzzle games First, let’s map out the basic genres of puzzle games. Scott Kim 1. Definition of “Puzzle” A puzzle is fun and has a right answer. -
Amusements in Mathematics, by Henry Ernest Dudeney
Transcribers note: Many of the puzzles in this book assume a familiarity with the currency of Great Britain in the early 1900s. As this is likely not common knowledge for those outside Britain (and possibly many within,) I am including a chart of relative values. The most common units used were: the Penny, abbreviated: d. (from the Roman penny, denarius) the Shilling, abbreviated: s. the Pound, abbreviated: £ There was 12 Pennies to a Shilling and 20 Shillings to a Pound, so there was 240 Pennies in a Pound. To further complicate things, there were many coins which were various fractional values of Pennies, Shillings or Pounds. Farthing ¼d. Half-penny ½d. Penny 1d. Three-penny 3d. Sixpence (or tanner) 6d. Shilling (or bob) 1s. Florin or two shilling piece 2s. Half-crown (or half-dollar) 2s. 6d. Double-florin 4s. Crown (or dollar) 5s. Half-Sovereign 10s. Sovereign (or Pound) £1 or 20s. This is by no means a comprehensive list, but it should be adequate to solve the puzzles in this book. AMUSEMENTS IN MATHEMATICS by HENRY ERNEST DUDENEY In Mathematicks he was greater Than Tycho Brahe or Erra Pater: For he, by geometrick scale, Could take the size of pots of ale; Resolve, by sines and tangents, straight, If bread or butter wanted weight; And wisely tell what hour o' th' day The clock does strike by algebra. BUTLER'S Hudibras . 1917 PREFACE Pg v In issuing this volume of my Mathematical Puzzles, of which some have appeared in periodicals and others are given here for the first time, I must acknowledge the encouragement that I have received from many unknown correspondents, at home and abroad, who have expressed a desire to have the problems in a collected form, with some of the solutions given at greater length than is possible in magazines and newspapers. -
Evaluation of Sorting Algorithms, Mathematical and Empirical Analysis of Sorting Algorithms
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 86 ISSN 2229-5518 Evaluation of Sorting Algorithms, Mathematical and Empirical Analysis of sorting Algorithms Sapram Choudaiah P Chandu Chowdary M Kavitha ABSTRACT:Sorting is an important data structure in many real life applications. A number of sorting algorithms are in existence till date. This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. An extensive analysis has been done compared with the traditional mathematical methods of ―Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort. Observations have been obtained on comparing with the existing approaches of All Sorts. An “Empirical Analysis” consists of rigorous complexity analysis by various sorting algorithms, in which comparison and real swapping of all the variables are calculatedAll algorithms were tested on random data of various ranges from small to large. It is an attempt to compare the performance of various sorting algorithm, with the aim of comparing their speed when sorting an integer inputs.The empirical data obtained by using the program reveals that Quick sort algorithm is fastest and Bubble sort is slowest. Keywords: Bubble Sort, Insertion sort, Quick Sort, Merge Sort, Selection Sort, Heap Sort,CPU Time. Introduction In spite of plentiful literature and research in more dimension to student for thinking4. Whereas, sorting algorithmic domain there is mess found in this thinking become a mark of respect to all our documentation as far as credential concern2. -
L-G-0003950258-0013322245.Pdf
The Tower of Hanoi – Myths and Maths Andreas M. Hinz • Sandi Klavzˇar Uroš Milutinovic´ • Ciril Petr The Tower of Hanoi – Myths and Maths Foreword by Ian Stewart Andreas M. Hinz Uroš Milutinovic´ Faculty of Mathematics, Faculty of Natural Sciences Computer Science and Statistics and Mathematics LMU München University of Maribor Munich Maribor Germany Slovenia Sandi Klavzˇar Ciril Petr Faculty of Mathematics and Physics Faculty of Natural Sciences University of Ljubljana and Mathematics Ljubljana University of Maribor Slovenia Maribor Slovenia and Faculty of Natural Sciences and Mathematics University of Maribor Maribor Slovenia ISBN 978-3-0348-0236-9 ISBN 978-3-0348-0237-6 (eBook) DOI 10.1007/978-3-0348-0237-6 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012952018 Mathematics Subject Classification: 00-02, 01A99, 05-03, 05A99, 05Cxx, 05E18, 11Bxx, 11K55, 11Y55, 20B25, 28A80, 54E35, 68Q25, 68R05, 68T20, 91A46, 91E10, 94B25, 97A20 Ó Springer Basel 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Rob's Puzzle Page
Tangrams and Anchor Stone Puzzles The iconic pattern/silhouette puzzle is Tangrams (Tan-Grams). The Tangram is a special type of dissection puzzle. It is hugely popular and there is a wealth of information available about it on the Web. It consists of a square divided into seven pieces. The first problem is to construct the square from the pieces. The difference between this type of puzzle and simple dissections, however, is that Tangram puzzles are accompanied by booklets or cards depicting various forms, often of geometric or stylized organic figures, that are to be modeled in two dimensions with the available pieces. The problem figures are shown in silhouette without revealing the internal borders of the individual pieces. The designs can be quite elegant and some can be challenging to properly model. If the puzzle doesn't come with problem silhouettes, it's a mere dissection. Jurgen Koeller's site has a nice section devoted to Tangrams, and shows some popular variants. You can see lots of patterns on Franco Cocchini's site. The Tangram Man site may have the largest collection of Tangrams that can be solved online, and is really worth a visit! Randy's site is nice, too, and has a super links page where you can find patterns and programs to download. Also check out the Tangraphy page at Ito Puzzle Land. Many sets have been produced, some dating back more than a century. Tangoes is a modern version. Tangrams probably originated in China in the late 1700's or early 1800's, not thousands of years ago as some have claimed. -
Sneak Preview
Games, Puzzles and Math Excursions_Interior.indd 1 12/10/20 10:25 AM Copyright © 2020, Chandru Arni All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher, except by a reviewer who wishes to quote brief passages in connection with a review written for inclusion in a magazine, newspaper or broadcast. Published in India by Prowess Publishing, YRK Towers, Thadikara Swamy Koil St, Alandur, Chennai, Tamil Nadu 600016 ISBN: 978-1-5457-5330-9 Library of Congress Cataloging in Publication Games, Puzzles and Math Excursions_Interior.indd 4 15/10/20 4:51 PM Contents Foreword .............................................................................................xiii Preface .................................................................................................. xv Introduction .......................................................................................xvii About The Author ...............................................................................xix History ................................................................................................xxi What’s in This Book? ........................................................................xxiii Games Unlisted .................................................................................. xxv Paper and Pencil game with Templates -
O. Deventer 'From Computer Operations to Mechanical Puzzles'
Case Study 9 From Computer Operations to Mechanical Puzzles M. Oskar van Deventer, Freelance Mechanical Puzzle Designer Igor Kriz, Department of Mathematics, University of Michigan This article is about transforming a virtual puzzle implemented by computer operations into a physical puzzle. We describe why a puzzle motivated by a mathematical idea of the sporadic simple Mathieu group M12 is an interesting concept. We then describe how it was turned into two different physical puzzles called Topsy Turvy and Number Planet. Finally, we will show one version of a practical algorithmic solution to the puzzle, and describe challenges that remain. 1 Introduction ones are called sporadic simple groups [5]. The word ‘simple’ here refers to the fact that they are ver since E. Rubik invented his famous cube building blocks for finite groups, just as prime E in 1974, a boom of twisty puzzles began. The numbers are basic building blocks of natural num- puzzles which emerged are too numerous to list bers. However, it may be a misnomer to call those here (for some information, see [1, 2]).1 How- groups simple, since they are typically extremely ever, after an algorithm by David Singmaster complicated. for Rubik’s cube was published in 1981 [3], it Could one make a twisty puzzle based on a soon became clear that only small modifications sporadic simple group, which would then require of the strategy for finding the algorithm for Ru- a completely novel strategy, different in essential bik’s cube also produce algorithms for the other ways from Singmaster’s algorithm? The problem twisty puzzles. -
Including ACG8, ACG9, Games in AI Research, ACG10 T/M P. 18) Version: 20 June 2007
REFERENCE DATABASE 1 Updated till Vol. 29. No. 2 (including ACG8, ACG9, Games in AI Research, ACG10 t/m p. 18) Version: 20 June 2007 AAAI (1988). Proceedings of the AAAI Spring Symposium: Computer Game Playing. AAAI Press. Abramson, B. (1990). Expected-outcome: a general model of static evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No.2, pp. 182-193. ACF (1990), American Checkers Federation. http://www.acfcheckers.com/. Adelson-Velskiy, G.M., Arlazarov, V.L., Bitman, A.R., Zhivotovsky, A.A., and Uskov, A.V. (1970). Programming a Computer to Play Chess. Russian Mathematical Surveys, Vol. 25, pp. 221-262. Adelson-Velskiy, M., Arlazarov, V.L., and Donskoy, M.V. (1975). Some Methods of Controlling the Tree Search in Chess Programs. Artificial Ingelligence, Vol. 6, No. 4, pp. 361-371. ISSN 0004-3702. Adelson-Velskiy, G.M., Arlazarov, V. and Donskoy, M. (1977). On the Structure of an Important Class of Exhaustive Problems and Methods of Search Reduction for them. Advances in Computer Chess 1 (ed. M.R.B. Clarke), pp. 1-6. Edinburgh University Press, Edinburgh. ISBN 0-85224-292-1. Adelson-Velskiy, G.M., Arlazarov, V.L. and Donskoy, M.V. (1988). Algorithms for Games. Springer-Verlag, New York, NY. ISBN 3-540-96629-3. Adleman, L. (1994). Molecular Computation of Solutions to Combinatorial Problems. Science, Vol. 266. p. 1021. American Association for the Advancement of Science, Washington. ISSN 0036-8075. Ahlswede, R. and Wegener, I. (1979). Suchprobleme. Teubner-Verlag, Stuttgart. Aichholzer, O., Aurenhammer, F., and Werner, T. (2002). Algorithmic Fun: Abalone. Technical report, Institut for Theoretical Computer Science, Graz University of Technology. -
Professor Stewart's Casebook of Mathematical Mysteries
Professor Stewart’s Casebook of Mathematical Mysteries Professor Ian Stewart is known throughout the world for making mathematics popular. He received the Royal Society’s Faraday Medal for furthering the public understanding of science in1995, the IMA Gold Medal in 2000, the AAAS Public Understanding of Science and Technology Award in 2001 and the LMS/IMA Zeeman Medal in 2008. He was elected a Fellow of the Royal Society in 2001. He is Emeritus Professor of Mathematics at the University of Warwick, where he divides his time between research into nonlinear dynamics and furthering public awareness of mathematics. His many popular science books include (with Terry Pratchett and Jack Cohen) The Science of Discworld I to IV, The Mathematics of Life, 17 Equations that Changed the World and The Great Mathematical Problems. His app, Professor Stewart’s Incredible Numbers, was published jointly by Profile and Touch Press in March 2014. By the Same Author Concepts Of Modern Mathematics Game, Set, And Math Does God Play Dice? Another Fine Math You’ve Got Me Into Fearful Symmetry Nature’s Numbers From Here To Infinity The Magical Maze Life’s Other Secret Flatterland What Shape Is A Snowflake? The Annotated Flatland Math Hysteria The Mayor Of Uglyville’s Dilemma How To Cut A Cake Letters To A Young Mathematician Taming The Infinite (Alternative Title: The Story Of Mathematics) Why Beauty Is Truth Cows In The Maze Mathematics Of Life Professor Stewart’s Cabinet Of Mathematical Curiosities Professor Stewart’s Hoard Of Mathematical Treasures Seventeen -
Geometric Puzzle Design
Coffin Geometric Advance Praise for Geometric Puzzle Design Stewart Coffin’s new release, with new materials and beautiful illustrations, is by far the best book in its category. It is a must for serious puzzlers and amateurs as well. Puzzle —Ivan Moscovich, author of the best-selling 1000 PlayThinks Geometric This is a comprehensive reference work by the greatest designer of interlocking puzzles that ever lived. Puzzle designers and craftsmen all over the world have been waiting for just such a book. It encompasses all aspects of Stewart’s Design extraordinary skills, from his use of psychology to design a simple-looking puzzle that is unexpectedly challenging to his use of coordinate motion in the assembly and disassembly of spectacular polyhedral puzzles. We are indeed fortunate that Stewart is willing to share not only his very best designs, but also his woodworking techniques for making strangely shaped small puzzle pieces extremely accurately and safely. Puzzle —Jerry Slocum, Slocum Puzzle Foundation Stewart Coffin is a brilliant puzzle designer, a master woodworker, and a gifted writer. Stewart has inspired generations of puzzle makers and designers, including myself. His many innovative mechanical puzzles are coveted by collectors for their beauty of design and their perfect finish. In Geometric Puzzle Design, Stewart explains in detail how some of his puzzles were Design designed, how they work, and how you can make them for yourself. It is an inspiration for generations to come. —Oskar van Deventer, designer of Oskar’s Cube and many other mechanical puzzles Stewart Coffin has been designing intriguing geometric puzzles and making them in his workshop for the past 35 years, creating more than 200 original designs.