Jessica Fridrich
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Breaking an Old Code -And Beating It to Pieces
Breaking an Old Code -And beating it to pieces Daniel Vu - 1 - Table of Contents About the Author................................................ - 4 - Notation ............................................................... - 5 - Time for Some Cube Math........................................................................... Error! Bookmark not defined. Layer By Layer Method................................... - 10 - Step One- Cross .................................................................................................................................. - 10 - Step Two- Solving the White Corners ................................................................................................. - 11 - Step Three- Solving the Middle Layer................................................................................................. - 11 - Step Four- Orient the Yellow Edges.................................................................................................... - 12 - Step Five- Corner Orientation ............................................................................................................ - 12 - Step Six- Corner Permutation ............................................................................................................. - 13 - Step Seven- Edge Permutation............................................................................................................ - 14 - The Petrus Method........................................... - 17 - Step One- Creating the 2x2x2 Block .................................................................................................. -
How to Solve the Rubik's Cube 03/11/2007 05:07 PM
How to Solve the Rubik's Cube 03/11/2007 05:07 PM Rubik's Revolution Rubik's Cubes & Puzzles Rubik Cube Boston's Wig Store Everything you wanted to know Rubiks Cube 4x4, Keychain & Huge selection of Rubik Cube Great selection & service Serving about the all new electronic Twist In Stock Now-Free Shipping items. the Boston area Rubik’s cube Over $75 eBay.com www.mayswigs.com www.rubiksrevolution.com AwesomeAvenue.biz Ads by Goooooogle Advertise on this site How to Solve the Rubik's Cube This page is featured under Recreation:Games:Puzzles:Rubik's Cube:Solutions in Yahoo! My Home Page | My Blog | My NHL Shootout Stats 2006-2007 There are three translations of this page: Danish (Dansk) (Word Document), Japanese (日本語) (HTML) and Portuguese (Português) (HTML). If you want to translate this page, go ahead. Send me an email when you are done and I will add your translation to this list. So you have a Rubik's Cube, and you've played with it and stared at it and taken it apart...need I go on any further? The following are two complete, fool-proof solutions to solving the cube from absolutely any legal position. Credit goes not to me, but to David Singmaster, who wrote a book in 1980, Notes on Rubik's Magic Cube, which explains pretty much all of what you need to know, plus more. Singmaster wrote about all of these moves except the move for Step 2, which I discovered independently (along with many other people, no doubt). I've updated this page to include a second solution to the cube. -
A Rubik's Cube Chronology
http://cubeman.org/cchrono.txt 02/10/2007 11:35 AM A Rubik's Cube Chronology ------------------------- Researched and maintained by Mark Longridge (c) 1996-2004 Pre-Rubik --------- Feb 2, 1960 William Gustafson files patent for Manipulatable Toy Mar 12, 1963 Gustafson receives US patent 3,081,089 1970 Uwe Meffert invents a model for research of energy flow in different shape solids (pyraminx) Apr 9, 1970 Frank Fox applies for UK patent for spherical 3x3x3 Mar 4, 1970 Larry Nichols files patent for Twizzle (2x2x2 cube) Apr 11, 1972 Nichols receives US patent 3,655,201 Jan 16, 1974 Frank Fox receives UK patent 1,344,259 Post-Rubik ---------- Spring 1974 Erno Rubik gets idea to make the cube Summer 1974 Erno Rubik solves the cube (arguably the first solver) Jan 30, 1975 Rubik applies for patent on cube Oct 12, 1976 Terutoshi Ishige Japanese Patent 55-8192 for 3x3x3 1977 Rubik's Cube starts distribution in Hungary Mar 28, 1977 Erno Rubik receives Hungarian Patent HU00170062 Aug 1978 Bela Szalai first sees cube in Hungary, later manufactures cube in U.S. (Logical Games Inc) Sept 1979 Ideal Toy buys exclusive rights to the cube for one million dollars Jan 4, 1980 Victor Toth wins pioneering cube contest in 55 sec. July 1980 MIT cube lovers group starts up Sept 1980 Omni prints article on cube in Games column Jan 12, 1981 Steven Hanson and Jeffrey Breslow file US Patent for Missing Link March 1981 Scientific American's 1st article on cube March 1981 Uwe Meffert patents the pyraminx Mar 23, 1981 First mention of Rubik's Cube in Time Magazine May 1981 Reader's Digest prints cube story July 30, 1981 Walter Moll receives German patent for Dodecahedron July 31, 1981 Cube contest featuring James G. -
Rubik's Cube Solutions
Rubik’s Cube Solutions Rubik’s Cube Solution – Useful Links http://www.geocities.com/jaapsch/puzzles/theory.htm http://www.ryanheise.com/cube/ http://peter.stillhq.com/jasmine/rubikscubesolution.html http://en.wikibooks.org/wiki/How_to_solve_the_Rubik's_Cube http://www.rubiks.com/World/~/media/Files/Solution_book_LOW_RES.ashx http://helm.lu/cube/MarshallPhilipp/index.htm Rubik’s Cube in a Scrambled State Rubik’s Cube in a Solved State – CubeTwister Front: Red, Right: Yellow, Up: Blue Back: Orange, Down: Green, Left: White Cube Colors: Red opposed to Orange, Yellow opposed to White, Blue opposed to Green Rubik’s Cube Solutions 06.12.2008 http://www.mementoslangues.fr/ Rubik’s Cube Commutators and Conjugates Introduction A Commutator is an algorithm of the form X Y X' Y', and a conjugate is an algorithm of the form X Y X', where X and Y denote arbitrary algorithms on a puzzle, and X', Y' denote their respective inverses. They are formal versions of the simple, intuitive idea of "do something to set up another task which does something useful, and undo the setup." Commutators can be used to generate algorithms that only modify specific portions of a cube, and are intuitively derivable. Many puzzle solutions are heavily or fully based on commutators. Commutator and Conjugate Notation [X, Y] is a commonly used notation to represent the sequence X Y X' Y'. [X: Y] is a well-accepted representation of the conjugate X Y X'. Since commutators and conjugates are often nested together, Lucas Garron has proposed the following system for compact notation: Brackets denote an entire algorithm, and within these, the comma delimits a commutator, and a colon or a semicolon a conjugate. -
Puzzle Patents 07/08/2007 04:31 PM
Puzzle patents 07/08/2007 04:31 PM Puzzle Patents Many of the puzzles listed on this site are patented. On the page of any particular patented puzzle it usually mentions the inventor and the patent publication date and number, and has a link to a pdf file of the patent itself. On this page I have collected all those links together. All the patents listed here are of actual puzzles, or are patents of historic interest that are mentioned in the Cubic Circular or the Circle Puzzler's Manual. Many patents exist that have never been made into real puzzles, or that are minor variations of existing ones. For a nice collection of such patents, you should visit Joshua Bell's Puzzle Patents page. Polyhedral 30 December Pyraminx Uwe Meffert EP 42,695 1981 25 October Skewb Puzzle Ball Uwe Meffert US 5,358,247 1994 The pocket cube Ernö Rubik 29 March 1983 US 4,378,117 2x2x2 27 October Eastsheen 2x2x2 cube Chen Sen Li US 5,826,871 1998 Mickey Mouse puzzle Francisco Josa Patermann 22 May 1996 EP 712,649 Darth Maul puzzle Thomas Kremer 17 April 2001 US 6,217,023 K-ball Saleh Khoudary 11 May 2000 WO 00/25874 Figurenmatch / Manfred Fritsche 11 August 1982 DE 3,245,341 Pyramorphix The Rubik's Cube 30 January Ernö Rubik BE 887,875 3x3x3 1975 Cube precursor Larry D. Nichols 11 April 1972 US 3,655,201 16 January Cube precursor Frank Fox GB 1,344,259 1974 Cube precursor William G. Gustafson 12 March 1963 US 3,081,089 4x4x4 Rubik's 20 December Peter Sebesteny US 4,421,311 Revenge 1983 5x5x5 Professor's Udo Krell 15 July 1986 US 4,600,199 cube US Brain Twist Charles Hoberman, Matthew Davis 12 May 2005 2005/098947 http://www.geocities.com/jaapsch/puzzles/patents.htm Page 1 of 5 Puzzle patents 07/08/2007 04:31 PM 16 January WO Jackpot / Platypus Yusuf Seyhan 2003 03/004117 Alexander's Star Adam Alexander 26 March 1985 US 4,506,891 Dogic Zoltan and Robert Vecsei 28 July 1998 HU 214,709 Impossiball William O. -
Mini Cube, the 2X2x2 Rubik's Cube 07/04/2007 03:22 PM
Mini Cube, the 2x2x2 Rubik's Cube 07/04/2007 03:22 PM Mini Cube, the 2×2×2 Rubik's Cube http://www.geocities.com/jaapsch/puzzles/cube2.htm Page 1 of 7 Mini Cube, the 2x2x2 Rubik's Cube 07/04/2007 03:22 PM 1. Description 2. The number of positions http://www.geocities.com/jaapsch/puzzles/cube2.htm Page 2 of 7 Mini Cube, the 2x2x2 Rubik's Cube 07/04/2007 03:22 PM 3. JavaScript simulation 4. Notation 5. Solution 1 6. Solution 2 7. Nice patterns Links to other useful pages: Mefferts sells the Mickey Mouse puzzle head, Pyramorphix, 2x2x2 cubes by Eastsheen, and many other puzzles. Rubik sells the original 2x2x2 cubes, Darth Maul and Homer puzzle heads. Denny's Puzzle Pages A very nice graphical solution. Matthew Monroe's Page Although a solution for the 3x3x3 cube, it is corners first, and thus applies to the pocket cube as well. Philip Marshall's page A relatively short solution. A Nerd Paradise has solutions for the various cubes, Pyraminx, Skewb and Square-1. This puzzle is a simpler version of the Rubik's Cube. It goes under various names, such as Mini Cube and Pocket Cube. The puzzle is built from 8 smaller cubes, i.e. a 2×2×2 cube. Each face can rotate, which rearranges the 4 small cubes at that face. The six sides of the puzzle are coloured, so every small cube shows three colours. This puzzle is equivalent to just the corners of the normal Rubik's cube. -
Rubik's Cube Study
Rubik’s Cube Study Hwa Chong Institution (High School) Project Work 2020 - Category 8 (Mathematics) Written Report Group 8-21 1A1 - Alastair Chua Wei Jie (1) - Leader 1P2 - John Pan Zhenda (11) - Member 1P2 - Li Junle Tristen (16) - Member 1 Contents 1.0 Introduction 3 1.1 Rationale 3 1.2 Research Questions 3 2.0 Mechanics 3 2.0.1 Orientation of Colours 4 2.1 Notations 4 2.2 Intended Methodology 5 3.0 Literature Review 5 3.0.1 History of Rubik’s Cube 6 3.1 Background 7 4.0 Findings 8 4.1 Factors Affecting Speedcubing 8 4.2 Discovery of God’s Number 9 4.3 Formation of Algorithms 11 5.0 Conclusions 12 6.0 Possibility of Project Extension 13 7.0 References 13 2 1.0 Introduction The Rubik’s Cube has been a very well-known toy for several years, challenging for most, but a piece of cake for the intelligent few. As of January 2009, 350 million cubes had been sold worldwide, thus widely regarded as the world’s best selling toy. It is a 3D combination puzzle invented in 1974, by Ernö Rubik. 1.1 Rationale The Rubik’s Cube is not only a three-dimensional puzzle to toy with for fun, but also a source of mathematical concepts and calculations. Through this project, we intend to learn more about the mechanics of the Rubik’s Cube, and get more in-depth knowledge about how it works and the mathematics behind it. We also aim to discover more about the different types of cubes, including studying their mechanisms and algorithms. -
The Interpretation of Sustainability Criteria Using Game Theory Models (Sustainable Project Development with Rubik’S Cube Solution)
The Interpretation of Sustainability Criteria using Game Theory Models (Sustainable Project Development with Rubik’s Cube Solution) The Interpretation of Sustainability Criteria using Game Theory Models (Sustainable Project Development with Rubik’s Cube Solution) DR. CSABA FOGARASSY Budapest, 2014 Reviewers: Prof. István Szűcs DSc., Prof. Sándor Molnár PhD. L’Harmattan France 7 rue de l’Ecole Polytechnique 75005 Paris T.: 33.1.40.46.79.20 L’Harmattan Italia SRL Via Bava, 37 10124 Torino–Italia T./F.: 011.817.13.88 © Fogarassy Csaba, 2014 © L’Harmattan Kiadó, 2014 ISBN 978-963-236-789-7 Responsible publiser: Ádám Gyenes L’Harmattan Liberary Párbeszéd könyvesbolt 1053 Budapest, Kossuth L. u. 14–16. 1085 Budapest, Horánszky u. 20. Phone: +36-1-267-5979 www.konyveslap.hu [email protected] www.harmattan.hu Cover: RICHÁRD NAGY – CO&CO Ltd. Printing: Robinco Ltd. Executive director: Péter Kecskeméthy I dedicate this book to the memory of my cousin, IT specialist and physicist Tamás Fogarassy (1968-2013) Table of contents ABSTRACT. 11 1. INTERPRETATION OF SUSTAINABILITY WITH BASIC GAME THEORY MODELS AND RUBIK’S CUBE SYMBOLISM. 14 1.1. SUSTAINABILITY DILEMMAS, AND QUESTIONS OF TOLERANCE. 14 . 14 1.1.2. Ecologic economy versus enviro-economy �������������������������������������������������������������������������������������������17 1.1.1. Definition of strong and weak sustainability 1.1.3. Relations between total economic value and sustainable economic value . 17 1.2. THEORY OF NON-COOPERATIVE GAMES . 19 1.2.1. Search for points of equilibrium in non-cooperative games ����������������������������������������������������������20 . 23 ����26 1.2.2. Theoretical correspondences of finite games 1.2.3.1. Games with a single point of equilibrium . -
Karisma Bayu Cipta Wijaya-150210101014.Pdf
DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember PENGEMBANGAN ALGORITMA PENYELESAIAN RUBIK STANDAR DALAM BENTUK GRAF BERARAH SKRIPSI Oleh Karisma Bayu Cipta Wijaya NIM 150210101014 PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2019 DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember HALAMAN JUDUL PENGEMBANGAN ALGORITMA PENYELESAIAN RUBIK STANDAR DALAM BENTUK GRAF BERARAH SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan Matematika (S1) dan mencapai gelar Sarjana Pendidikan Oleh: Karisma Bayu Cipta Wijaya NIM 150210101014 PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2019 ii DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember HALAMAN PERSEMBAHAN Puji syukur kehadirat Allah SWT atas segala rahmat dan karunia-Nya, sehingga skripsi ini dapat terselesaikan. Skripsi ini saya persembahkan kepada: 1. Kedua orangtua saya yang tercinta, terima kasih untuk dukungan, motivasi, doa serta kasih sayang yang tidak pernah pudar; 2. Kakak dan adikku, serta keluarga besar bapak dan ibuku, terima kasih atas motivasi dan doa untuk saya selama ini; 3. Bapak dan Ibu Dosen Pendidikan Matematika yang telah membagikan ilmu dan pengalamannya; 4. Bapak dan Ibu Guru SDN Kepatihan 1 Jember, SMPN 2 Jember, dan SMAN 2 Jember yang telah mencurahkan ilmu, bimbingan, dan kasih sayangnya dengan tulus ikhlas; 5. Almamaterku tercinta Universitas Jember, khususnya Program Studi Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan (FKIP). 6. Sahabat-sahabatku (Ida Ulan Asih, Kevin Dwi Wicaksono, Inggil Ismiharto, M. Taufik Hidayat, Lendi Ike Hermawan, Dodi Pratama, Kukuh Sahrianto, Yuris Mimbadri, Dwita Sari Oktavia, Rosalia Indah, Moch Yusup Ade, Keluarga Besar Logaritma, Keluarga Besar Paranada dan teman-teman yang selalu mendukung saya). -
Rubik's Cube - Wikipedia, the Free Encyclopedia 5/11/11 6:47 PM Rubik's Cube from Wikipedia, the Free Encyclopedia
Rubik's Cube - Wikipedia, the free encyclopedia 5/11/11 6:47 PM Rubik's Cube From Wikipedia, the free encyclopedia The Rubik's Cube is a 3-D mechanical puzzle invented in Rubik's Cube 1974[1] by Hungarian sculptor and professor of architecture Ernő Rubik. Originally called the "Magic Cube",[2] the puzzle was licensed by Rubik to be sold by Ideal Toy Corp. in 1980[3] and won the German Game of the Year special award for Best Puzzle that year. As of January 2009, 350 million cubes have sold worldwide[4][5] making it the world's top-selling puzzle game.[6][7] It is widely considered to be the world's best-selling toy.[8] In a classic Rubik's Cube, each of the six faces is covered by nine stickers, among six solid colours (traditionally white, red, blue, orange, green, and yellow).[9] A pivot mechanism enables each face to turn independently, thus mixing up the Other names Magic Cube colours. For the puzzle to be solved, each face must be a Type Puzzle solid colour. Similar puzzles have now been produced with various numbers of stickers, not all of them by Rubik. The Inventor Ernő Rubik original 3×3×3 version celebrated its thirtieth anniversary in Company Ideal Toy Corporation 2010.[10] Country Hungary Availability 1974–present Contents Official website (http://www.rubiks.com/) 1 Conception and development 1.1 Prior attempts 1.2 Rubik's invention 1.3 Patent disputes 2 Mechanics 3 Mathematics 3.1 Permutations 3.2 Centre faces 3.3 Algorithms 4 Solutions 4.1 Move notation 4.2 Optimal solutions 5 Competitions and records 5.1 Speedcubing competitions 5.2 Records 6 Variations 6.1 Custom-built puzzles 6.2 Rubik's Cube software 7 Popular culture 8 See also 9 Notes http://en.wikipedia.org/wiki/Rubik's_Cube Page 1 of 13 Rubik's Cube - Wikipedia, the free encyclopedia 5/11/11 6:47 PM 10 References 11 External links Conception and development Prior attempts In March 1970, Larry Nichols invented a 2×2×2 "Puzzle with Pieces Rotatable in Groups" and filed a Canadian patent application for it. -
Platonic Solids and Rubik's Cubes*
Platonic Solids and Rubik's Cubes* Jordan Vosman Melanie Stewart What is a Platonic Solid? A polyhedron that: 1. Is Convex 2. All of its faces are identical regular polygons 3. The same number of faces at each vertex Also, there are only five Platonic Solids Euler’s Formula for Platonic Solids • # Vertices - # Edges + # Faces = 2 • Example: Dodecahdron • 20 Vertices • 30 Edges • 12 Faces 20 – 30 + 12 = 2 Why are there only five Platonic Solids? If each face is a regular triangle then: • There cannot be more than five faces to a vertex, because if there are six or more, the sum of the angles at the vertex would be 360° or higher, resulting in a flat surface or hills and valleys. • This gives us the Tetrahedron (3), Octahedron (4), and Icosahedron (5) If each face is a square: • Four squares meeting at a vertex results in a flat surface, so only three squares meeting at a vertex will work • This gives us the Cube If each face is a regular pentagon: • Similar to the cube, as the maximum number of pentagons meeting at a vertex is three. • This gives us the Dodecahedron For Hexagons: • Only three hexagons can meet at a vertex, but this results in a flat surface. • Thus, there are no Platonic solids with regular n-gonal faces for n ≥ 6. Duality of Platonic Solids Cube: 6 faces and 8 vertices === Octahedron: 8 faces and 6 vertices Dodecahedron: 12 faces and 20 vertices === Icosahedron: 20 faces and 12 vertices Tetrahedron is a dual of itself The Cycle of Platonic Solids Tetrahedron Cube Octahedron Dodecahedron Icosahedron History • Pythagoras knew of the Tetrahedron, Cube, and Dodecahedron (~500 BC). -
Resolución Del Cubo De Rubik
Resolución del cubo de Rubik Ignacio Alonso Muñoz Maxi Arévalo Garbayo Víctor Collado Negro Ingeniero de Telecomunicación Ingeniero de Telecomunicación Ingeniero de Telecomunicación Universidad Carlos III de Madrid Universidad Carlos III de Madrid Universidad Carlos III de Madrid Avda. Universidad, 30. 28911, Madrid Avda. Universidad, 30. 28911, Madrid Avda. Universidad, 30. 28911, Madrid +34 646120451 +34 660972878 +34 625095620 [email protected] [email protected] 100038943alumnos.uc3m.es RESUMEN 2. HISTORIA Este artículo trata sobre el invento del escultor y arquitecto Ern 2.1 Invento Rubik, el mundialmente conocido Cubo de Rubik. En el comentaremos El famoso cubo de Rubik fue inventado en la larga historia de este famoso “juguete”, además de tratar de explicar el año 1974 por un profesor de los diferentes algoritmos de resolución. Arquitectura de la Universidad de Budapest, en Hungría, llamado Erno Categorías y Descriptores del Tema Rubik, quien lo bautizó originalmente F.2.m [Theory of Computation]: Analysis Of Algorithms And como el Cubo Mágico. Después de Problem Complexity – Miscellaneous. terminar sus estudios, se quedó en la academia para dar clases de Diseño de Interiores. Como maestro, Erno Rubik Términos Generales prefería comunicar sus ideas utilizando Algoritmos, Lenguajes, Programación. modelos reales, hechos de papel, cartón, Figura 1. madera o plástico, desafiando a sus Erno Rubik Palabras Clave estudiantes a experimentar mediante la Cubo de Rubik, Esquina, Arista, Centro, Ern Rubik, Jessica Fridrich, manipulación de formas claramente construidas y fáciles de interpretar. Lars Petrus. Esto le permitió darse cuenta que aún los elementos más simples, manipulados inteligentemente, daban una abundancia de múltiples 1.