Resolución Del Cubo De Rubik

Total Page:16

File Type:pdf, Size:1020Kb

Resolución Del Cubo De Rubik Resolución del cubo de Rubik Ignacio Alonso Muñoz Maxi Arévalo Garbayo Víctor Collado Negro Ingeniero de Telecomunicación Ingeniero de Telecomunicación Ingeniero de Telecomunicación Universidad Carlos III de Madrid Universidad Carlos III de Madrid Universidad Carlos III de Madrid Avda. Universidad, 30. 28911, Madrid Avda. Universidad, 30. 28911, Madrid Avda. Universidad, 30. 28911, Madrid +34 646120451 +34 660972878 +34 625095620 [email protected] [email protected] 100038943alumnos.uc3m.es RESUMEN 2. HISTORIA Este artículo trata sobre el invento del escultor y arquitecto Ern 2.1 Invento Rubik, el mundialmente conocido Cubo de Rubik. En el comentaremos El famoso cubo de Rubik fue inventado en la larga historia de este famoso “juguete”, además de tratar de explicar el año 1974 por un profesor de los diferentes algoritmos de resolución. Arquitectura de la Universidad de Budapest, en Hungría, llamado Erno Categorías y Descriptores del Tema Rubik, quien lo bautizó originalmente F.2.m [Theory of Computation]: Analysis Of Algorithms And como el Cubo Mágico. Después de Problem Complexity – Miscellaneous. terminar sus estudios, se quedó en la academia para dar clases de Diseño de Interiores. Como maestro, Erno Rubik Términos Generales prefería comunicar sus ideas utilizando Algoritmos, Lenguajes, Programación. modelos reales, hechos de papel, cartón, Figura 1. madera o plástico, desafiando a sus Erno Rubik Palabras Clave estudiantes a experimentar mediante la Cubo de Rubik, Esquina, Arista, Centro, Ern Rubik, Jessica Fridrich, manipulación de formas claramente construidas y fáciles de interpretar. Lars Petrus. Esto le permitió darse cuenta que aún los elementos más simples, manipulados inteligentemente, daban una abundancia de múltiples 1. INTRODUCCIÓN formas. El objetivo de este trabajo es presentar los diferentes algoritmos de Cuando Rubik inventó su cubo, no pretendía crear el rompecabezas resolución de un Cubo de Rubik de 3x3. Fundamentalmente hay dos más vendido en la historia de los juguetes, sino que simplemente se métodos de resolución: “Método Fridrich” y “Método Petrus”. desafió a crear un cubo en el que los bloques pudieran moverse de forma independiente, sin caerse y deshacer el cubo. Así es que creó un El primero de ellos tiene dos algoritmos diferentes en función de la cubo de 26 cubitos individuales y un centro. Cada capa de nueve complejidad. Ambos parten del “Método de Cruz”, que consiste en cubitos debía girar y las capas superponerse, moviéndose de todas crear una cruz en una cara. Para esto basta llevar las cuatro aristas, de formas excepto diagonalmente. dicha cara, a su posición. Se debe de tener en cuenta que las aristas tienen dos colores, un color es el de la cara superior y el otro debe Después de concebir la idea, el arquitecto tuvo que enfrentarse al coincidir con el color de la cara en común. problema nada sencillo de unir los elementos para que cada uno pudiera rotarse y moverse de la manera en que lo harían. Trató de Como se ha dicho anteriormente, con este método se desarrollan dos mantener unidos los elementos mediante una construcción hecha con algoritmos. El primero y más simple es para principiantes. Con él, en 7 ligas, pero pronto se dio cuenta de que tal dispositivo no funcionaría. pasos básicos, se puede resolver el cubo. La simpleza radica en que se ven claramente los pasos a seguir del algoritmo. El segundo y de Las alternativas entonces disponibles, tales como imanes o sistemas de mayor complejidad, el original “Método Fridrich” [2] recibe su ranuras, no cubrían con la complejidad que requerían las uniones. Erno nombre por su creadora Jessica Fridrich. comprendió que sólo un concepto totalmente original podría proporcionar una solución satisfactoria. El segundo método se basa en las teorías de Lars Petrus [3]. Primero se trabaja para solucionar un bloque 2x2x2 del cubo, que se extiende a un La inspiración vino un día de verano cuando miraba el flujo del río bloque solucionado 2x2x3. Los dos lados restantes del cubo entonces Danubio. Rubik notó unos guijarros, cuyos bordes agudos habían sido se solucionan usando solamente algunos algoritmos. pulidos y aplanados de manera natural a lo largo del tiempo, proporcionando las formas redondeadas de gran belleza, pero también El programa [1] con el cual se explicará este proyecto se basa en el de enorme simplicidad. El interior de los elementos del cubo debía Método de Fridrich y sus dos algoritmos de resolución. tener la misma arquitectura redondeada. A continuación se procede a explicar la historia del Cubo de Rubik, así Ern Rubik obtuvo la patente HU170062 para su cubo, aunque no como las principales definiciones básicas y necesarias para su solicitó ninguna a nivel internacional. El primer lote de prueba fue resolución. producido a finales de 1977 y distribuido en las jugueterías de Budapest. La popularidad del Cubo creció en Hungría gracias al boca a boca. Las ventas del Cubo de Rubik seguían siendo escasas. Fue entonces nombrado generalmente como CFOP (Cross, First 2 Layers, Orient cuando lo descubrió el Dr. Tibor Laczi, un hombre de negocios nacido Last Layer, Permute Last Layer). en Budapest, pero que había hecho su vida en Occidente. En uno de sus viajes a Hungría, mientras tomaba un café, observó a un mesero jugando con el cubo. Laczi, un matemático amateur, se sintió fascinado. Al día siguiente, fue a la compañía de comercio estatal y pidió permiso para vender el cubo en Occidente. De inmediato concertó una cita con el inventor y quedó impresionado con su aspecto. El primer impulso de Laczi fue darle algo de dinero a Rubik, quien parecía un mendigo con sus ropas viejas y un barato cigarro húngaro colgando de su boca. Sin Figura 2. Jessica Fridrich embargo, sabía que ese pobre hombre era un genio y le dijo que podían vender millones. Lars Petrus (nacido en 1960) se hizo un hueco como cuber Tibor Laczi procedió a demostrar el cubo en la Feria del Juguete de internacional cuando ganó el campeonato nacional de Suecia de 1981 y Nuremburgo, pero no como un expositor oficial. Caminó alrededor del terminó cuarto en el campeonato mundial de Budapest en 1982. Más recinto, jugando con el cubo, y se las arregló para conocer al británico adelante publicó un método único, conocido como el sistema de Tom Kremer, un experto en juguetes, quien pensó que el Cubo era una Petrus. Se ha convertido en un método extremadamente popular entre maravilla. Los dos hombres hicieron un pacto, allí mismo, para cubers intermedios y superiores. Su uso más reciente ha disminuido traducir el éxito húngaro del cubo hacia la fase mundial. considerablemente en el nivel profesional debido al predominio creciente de métodos algoritmo-basados en fuerza bruta. A los 46 años, En septiembre de 1979, después de cinco días de negociaciones entre Petrus continúa siendo una eminencia en un deporte dominado por los un capitalista escéptico y un sistema comunista obstinado e ignorante adolescentes. Petrus ganó la categoría “3x3x3 en pocos movimientos” del funcionamiento del mercado libre, Laczi y Kremer lograron un en el campeonato del mundo de 2005 y su mejor tiempo, obtenido en acuerdo con Ideal Toys para distribuir el Cubo de Rubik en todo el el campeonato del 2006, es de 16,60 segundos. mundo. Su presentación a nivel internacional tuvo lugar a comienzos de 1980 en las Ferias del Juguete de Londres, Nueva York, Nuremberg y Paris. Más adelante, Ideal Toys comercializó un cubo más ligero, y decidió rebautizarlo. Se barajaron nombres como Nudo Gordiano y Oro Inca, pero la compañía finalmente decidió llamarlo Cubo de Rubik, exportándolo por primera vez desde Hungría en mayo de 1980. Su éxito internacional fue casi instantáneo; sólo en los primeros dos años, se vendieron 100 millones. El juguete se volvió todo un icono cultural de los ochenta y convirtió a su inventor en el primer millonario del bloque comunista. Aprovechando que el producto se agotó inicialmente, surgieron muchas imitaciones baratas. Figura 3. Lars Petrus En 1984, Ideal Toys perdió un pleito contra Larry Nichols, que había registrado el producto con la patente US3655201. Terutoshi Ishigi lo registró en Japón con la patente JP55-8192. 2.3 Records Mundiales Se han celebrado muchas competiciones para determinar quién puede Se ha dicho de él que es el juguete mejor vendido del mundo entero, solucionar el cubo del Rubik en el menor tiempo posible. El primer con alrededor de 300 millones de cubos de Rubik e imitaciones campeonato del mundo fue llevado a cabo en Budapest el 5 de Junio vendidos. de 1982 y ganado por Minh Thai, estudiante vietnamita de Los Ángeles, con una media de 22.95 segundos. La WCA (World Cube 2.2 Métodos “SpeedCubing” Association) es el cuerpo oficial que gobierna y regula los Como se ha comentado en la introducción de este artículo los autores acontecimientos. En 2004, el WCA estableció un nuevo sistema de de los métodos de resolución más rápidos son Jessica Fridrich y Lars estándares, con un dispositivo especial de sincronización llamado Petrus. contador de tiempo de Stackmat. Toby Mao fijó el menor tiempo mundial actual de 10.48 segundos en la competición de 2006 Jessica Fridrich, anteriormente Jiri Fridrich, es la inventora del método nacionales de los E.E.U.U. el 6 de agosto de 2006. En la Tabla 1 se más rápido y popular para solucionar el Cubo de Rubik. Fascinada por reflejan algunos de los records del mundo actuales de la WCA. rompecabezas y geometría compleja, Fridrich tiene la firma de Ern Rubik en su cuaderno, que él firmó en el campeonato del mundo del Cubo de Rubik en Budapest en 1982, donde ella acabó décima cuando Tabla 1. Records del mundo 2006 era un estudiante de diecisiete años. En el campeonato del mundo del Categoría Nombre Record Cubo de Rubik de Toronto en 2003, quedó segunda con 20,46 segundos, por detrás de Dan Knights, de 24 años, que fue el ganador Más rápido Toby Mao[USA] 10.48 con un tiempo de 20,00 segundos utilizando el método de Fridrich.
Recommended publications
  • Benchmarking Beginner Algorithms for Rubik's Cube
    DEGREE PROJECT, IN COMPUTER SCIENCE , FIRST LEVEL STOCKHOLM, SWEDEN 2015 Benchmarking Beginner Algorithms for Rubik's cube ANDREAS NILSSON, ANTON SPÅNG KTH ROYAL INSTITUTE OF TECHNOLOGY CSC SCHOOL Supervisor: Michael Schliephake Examiner: Örjan Ekeberg Abstract Over the years different algorithms have been developed to step-by-step solve parts of the Rubik’s cube until fi- nally reaching the unique solution. This thesis explores two commonly known beginner algorithms for solving Rubik’s cube to find how they differ in solving speed and amount of moves. The algorithms were implemented and run on a large amount of scrambled cubes to collect data. The re- sults showed that Layer-by-layer with daisy algorithm had a lower average amount of moves than the Dedmore al- gorithm. The main difference in amount of moves lies in the steps that solve the last layer of the cube. The Layer- by-layer with daisy algorithm uses only one-seventh of the time-consuming operations that Dedmore algorithm uses, which concludes that it is more suitable for speedcubing. Sammanfattning Över åren har ett antal olika algoritmer utvecklats för att steg-för-steg lösa delar av Rubik’s kub för att till sist kom- ma fram till den unika lösningen. Denna rapport utforskar två allmänt kända nybörjaralgoritmer för att lösa Rubik’s kub, för att finna hur dem skiljer sig åt i tid samt antal operationer för att nå lösningen. Algoritmerna implemen- terades och kördes på ett stort antal blandade kuber för att samla data. Resultatet visar att Lager-för-lager med daisy algoritmen hade ett lägre genomsnittligt antal förflyttning- ar jämfört med Dedmore algoritmen.
    [Show full text]
  • Breaking an Old Code -And Beating It to Pieces
    Breaking an Old Code -And beating it to pieces Daniel Vu - 1 - Table of Contents About the Author................................................ - 4 - Notation ............................................................... - 5 - Time for Some Cube Math........................................................................... Error! Bookmark not defined. Layer By Layer Method................................... - 10 - Step One- Cross .................................................................................................................................. - 10 - Step Two- Solving the White Corners ................................................................................................. - 11 - Step Three- Solving the Middle Layer................................................................................................. - 11 - Step Four- Orient the Yellow Edges.................................................................................................... - 12 - Step Five- Corner Orientation ............................................................................................................ - 12 - Step Six- Corner Permutation ............................................................................................................. - 13 - Step Seven- Edge Permutation............................................................................................................ - 14 - The Petrus Method........................................... - 17 - Step One- Creating the 2x2x2 Block ..................................................................................................
    [Show full text]
  • Cube Lovers: Index by Date 3/18/17, 209 PM
    Cube Lovers: Index by Date 3/18/17, 209 PM Cube Lovers: Index by Date Index by Author Index by Subject Index for Keyword Articles sorted by Date: Jul 80 Alan Bawden: [no subject] Jef Poskanzer: Complaints about :CUBE program. Alan Bawden: [no subject] [unknown name]: [no subject] Alan Bawden: [no subject] Bernard S. Greenberg: Cube minima Ed Schwalenberg: Re: Singmeister who? Bernard S. Greenberg: Singmaster Allan C. Wechsler: Re: Cubespeak Richard Pavelle: [no subject] Lauren Weinstein: confusion Alan Bawden: confusion Jon David Callas: [no subject] Bernard S. Greenberg: Re: confusion Richard Pavelle: confusion but simplicity Allan C. Wechsler: Short Introductory Speech Richard Pavelle: the cross design Bernard S. Greenberg: Re: the cross design Alan Bawden: the cross design Yekta Gursel: Re: Checker board pattern... Bernard S. Greenberg: Re: Checker board pattern... Michael Urban: Confusion Bernard S. Greenberg: Re: the cross design Bernard S. Greenberg: Re: Checker board pattern... Bernard S. Greenberg: Re: Confusion Bernard S. Greenberg: The Higher Crosses Alan Bawden: The Higher Crosses Bernard S. Greenberg: Postscript to above Bernard S. Greenberg: Bug in above Ed Schwalenberg: Re: Patterns, designs &c. Alan Bawden: Patterns, designs &c. Alan Bawden: 1260 Richard Pavelle: [no subject] Allan C. Wechsler: Re: Where to get them in the Boston Area, Cube Language. Alan Bawden: 1260 vs. 2520 Alan Bawden: OOPS Bill McKeeman: Re: Where to get them in the Boston Area, Cube Language. Bernard S. Greenberg: General remarks Bernard S. Greenberg: :cube feature http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/ Page 1 of 45 Cube Lovers: Index by Date 3/18/17, 209 PM Alan Bawden: [no subject] Bernard S.
    [Show full text]
  • How to Solve the Rubik's Cube 03/11/2007 05:07 PM
    How to Solve the Rubik's Cube 03/11/2007 05:07 PM Rubik's Revolution Rubik's Cubes & Puzzles Rubik Cube Boston's Wig Store Everything you wanted to know Rubiks Cube 4x4, Keychain & Huge selection of Rubik Cube Great selection & service Serving about the all new electronic Twist In Stock Now-Free Shipping items. the Boston area Rubik’s cube Over $75 eBay.com www.mayswigs.com www.rubiksrevolution.com AwesomeAvenue.biz Ads by Goooooogle Advertise on this site How to Solve the Rubik's Cube This page is featured under Recreation:Games:Puzzles:Rubik's Cube:Solutions in Yahoo! My Home Page | My Blog | My NHL Shootout Stats 2006-2007 There are three translations of this page: Danish (Dansk) (Word Document), Japanese (日本語) (HTML) and Portuguese (Português) (HTML). If you want to translate this page, go ahead. Send me an email when you are done and I will add your translation to this list. So you have a Rubik's Cube, and you've played with it and stared at it and taken it apart...need I go on any further? The following are two complete, fool-proof solutions to solving the cube from absolutely any legal position. Credit goes not to me, but to David Singmaster, who wrote a book in 1980, Notes on Rubik's Magic Cube, which explains pretty much all of what you need to know, plus more. Singmaster wrote about all of these moves except the move for Step 2, which I discovered independently (along with many other people, no doubt). I've updated this page to include a second solution to the cube.
    [Show full text]
  • Rubik's Cube Solutions
    Rubik’s Cube Solutions Rubik’s Cube Solution – Useful Links http://www.geocities.com/jaapsch/puzzles/theory.htm http://www.ryanheise.com/cube/ http://peter.stillhq.com/jasmine/rubikscubesolution.html http://en.wikibooks.org/wiki/How_to_solve_the_Rubik's_Cube http://www.rubiks.com/World/~/media/Files/Solution_book_LOW_RES.ashx http://helm.lu/cube/MarshallPhilipp/index.htm Rubik’s Cube in a Scrambled State Rubik’s Cube in a Solved State – CubeTwister Front: Red, Right: Yellow, Up: Blue Back: Orange, Down: Green, Left: White Cube Colors: Red opposed to Orange, Yellow opposed to White, Blue opposed to Green Rubik’s Cube Solutions 06.12.2008 http://www.mementoslangues.fr/ Rubik’s Cube Commutators and Conjugates Introduction A Commutator is an algorithm of the form X Y X' Y', and a conjugate is an algorithm of the form X Y X', where X and Y denote arbitrary algorithms on a puzzle, and X', Y' denote their respective inverses. They are formal versions of the simple, intuitive idea of "do something to set up another task which does something useful, and undo the setup." Commutators can be used to generate algorithms that only modify specific portions of a cube, and are intuitively derivable. Many puzzle solutions are heavily or fully based on commutators. Commutator and Conjugate Notation [X, Y] is a commonly used notation to represent the sequence X Y X' Y'. [X: Y] is a well-accepted representation of the conjugate X Y X'. Since commutators and conjugates are often nested together, Lucas Garron has proposed the following system for compact notation: Brackets denote an entire algorithm, and within these, the comma delimits a commutator, and a colon or a semicolon a conjugate.
    [Show full text]
  • Rubik's Cube Study
    Rubik’s Cube Study Hwa Chong Institution (High School) Project Work 2020 - Category 8 (Mathematics) Written Report Group 8-21 1A1 - Alastair Chua Wei Jie (1) - Leader 1P2 - John Pan Zhenda (11) - Member 1P2 - Li Junle Tristen (16) - Member 1 Contents 1.0 Introduction 3 1.1 Rationale 3 1.2 Research Questions 3 2.0 Mechanics 3 2.0.1 Orientation of Colours 4 2.1 Notations 4 2.2 Intended Methodology 5 3.0 Literature Review 5 3.0.1 History of Rubik’s Cube 6 3.1 Background 7 4.0 Findings 8 4.1 Factors Affecting Speedcubing 8 4.2 Discovery of God’s Number 9 4.3 Formation of Algorithms 11 5.0 Conclusions 12 6.0 Possibility of Project Extension 13 7.0 References 13 2 1.0 Introduction The Rubik’s Cube has been a very well-known toy for several years, challenging for most, but a piece of cake for the intelligent few. As of January 2009, 350 million cubes had been sold worldwide, thus widely regarded as the world’s best selling toy. It is a 3D combination puzzle invented in 1974, by Ernö Rubik. 1.1 Rationale The Rubik’s Cube is not only a three-dimensional puzzle to toy with for fun, but also a source of mathematical concepts and calculations. Through this project, we intend to learn more about the mechanics of the Rubik’s Cube, and get more in-depth knowledge about how it works and the mathematics behind it. We also aim to discover more about the different types of cubes, including studying their mechanisms and algorithms.
    [Show full text]
  • Resolviendo El Cubo De Rubik Con El Robot Baxter
    RESOLVIENDO EL CUBO DE RUBIK CON EL ROBOT BAXTER POR CESAR´ ANDRES´ BOL´IVAR SEVERINO Departamento de Ingenier´ıa Informatica´ y Ciencias de la Computacion´ Universidad de Concepcion´ Tesis presentada a la Facultad de Ingenier´ıa de la Universidad de Concepcion´ para optar al t´ıtulo profesional de Ingeniero Civil Informatico´ Profesor Gu´ıa:Julio Godoy del Campo Comision:´ Roberto As´ınAcha,´ Eduardo Mendez´ Ortiz 3 de septiembre de 2019 Concepcion,´ Chile c Se autoriza la reproducci´ontotal o parcial, con fines acad´emicos,por cualquier medio o procedimiento, incluyendo la cita bibliogr´aficadel documento. II A mi madre, y a mi padre, que en paz descanse. III AGRADECIMIENTOS Mirando hacia atr´as,siento que toda mi vida he sido un malagradecido. Aunque me encantar´ıapoder decir que todo mis logros son productos de mi propio esfuerzo y de nadie m´as,la verdad es que muchos si es que no todos hubiesen sido imposibles de realizar sin el apoyo de mis seres queridos. Ha llegado la hora de dar las gracias, as´ıque leed bien los siguientes p´arrafosque no los escribir´edos veces. Gracias a mi familia por su amor incondicional, por creer en m´ı,por apoyar cada una de las decisiones que me llevaron a estudiar en esta prestigiosa universidad y por su apoyo financiero durante tantos a~nos,a pesar de las adversidades. Sin su esfuerzo jam´ashubiese llegado donde estoy ahora. Espero alg´und´ıapoder retribuirles todo. Gracias a mis amigos, que a pesar de la distancia que nos separa me han acompa~nadoa~notras a~no.Gracias por su lealtad y por sacarme sonrisas hasta en los momentos m´asdif´ıciles.Ya ans´ıopoder celebrar con ustedes.
    [Show full text]
  • The Interpretation of Sustainability Criteria Using Game Theory Models (Sustainable Project Development with Rubik’S Cube Solution)
    The Interpretation of Sustainability Criteria using Game Theory Models (Sustainable Project Development with Rubik’s Cube Solution) The Interpretation of Sustainability Criteria using Game Theory Models (Sustainable Project Development with Rubik’s Cube Solution) DR. CSABA FOGARASSY Budapest, 2014 Reviewers: Prof. István Szűcs DSc., Prof. Sándor Molnár PhD. L’Harmattan France 7 rue de l’Ecole Polytechnique 75005 Paris T.: 33.1.40.46.79.20 L’Harmattan Italia SRL Via Bava, 37 10124 Torino–Italia T./F.: 011.817.13.88 © Fogarassy Csaba, 2014 © L’Harmattan Kiadó, 2014 ISBN 978-963-236-789-7 Responsible publiser: Ádám Gyenes L’Harmattan Liberary Párbeszéd könyvesbolt 1053 Budapest, Kossuth L. u. 14–16. 1085 Budapest, Horánszky u. 20. Phone: +36-1-267-5979 www.konyveslap.hu [email protected] www.harmattan.hu Cover: RICHÁRD NAGY – CO&CO Ltd. Printing: Robinco Ltd. Executive director: Péter Kecskeméthy I dedicate this book to the memory of my cousin, IT specialist and physicist Tamás Fogarassy (1968-2013) Table of contents ABSTRACT. 11 1. INTERPRETATION OF SUSTAINABILITY WITH BASIC GAME THEORY MODELS AND RUBIK’S CUBE SYMBOLISM. 14 1.1. SUSTAINABILITY DILEMMAS, AND QUESTIONS OF TOLERANCE. 14 . 14 1.1.2. Ecologic economy versus enviro-economy �������������������������������������������������������������������������������������������17 1.1.1. Definition of strong and weak sustainability 1.1.3. Relations between total economic value and sustainable economic value . 17 1.2. THEORY OF NON-COOPERATIVE GAMES . 19 1.2.1. Search for points of equilibrium in non-cooperative games ����������������������������������������������������������20 . 23 ����26 1.2.2. Theoretical correspondences of finite games 1.2.3.1. Games with a single point of equilibrium .
    [Show full text]
  • Chris Hardwick's Rubik's Cube Page 07/16/2007 01:13 AM
    Chris Hardwick's Rubik's Cube Page 07/16/2007 01:13 AM This page is for people who are interested in the Rubik's Cube, and other Rubik's puzzles. I've been interested in the Cube and other puzzles since June of 1998 and I still love doing them. I enjoy speed solving for all my puzzles, especially the Rubik's Cube. If you enjoy the cube or other Rubik-like puzzles then I invite you to browse my site. I hope you enjoy it. Left to right: Ian Winokur, myself, Raul Garcia: cubing in central park Rubik's Cube World Competition 2003 25th Anniversary of the cube Click here to read about the 2003 Rubik's Games World Championships United States Rubik's Cube Championships 2004 Click here to read about the 2004 United States Rubik's Games Championships November 2005: Cubing with Dan Knights Read about it here My officially recognized national records in Speedcubing and Sport Stacking You can see all my competition results at WCA sanctioned tournaments here. See the speedcubing.com main site Videos: Sport stacking video Me performing the cycle in 10.23 seconds. http://www.speedcubing.com/chris/ Page 1 of 10 Chris Hardwick's Rubik's Cube Page 07/16/2007 01:13 AM 3x3x3 solved blindfolded in 18.50 seconds I took approximately 1 hour and 54 minutes to memorize the cube and plan through my entire solution. I was then able to solve it in 18.50 seconds while blindfolded. I did not do any moves on the cube during the planning phase.
    [Show full text]
  • Karisma Bayu Cipta Wijaya-150210101014.Pdf
    DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember PENGEMBANGAN ALGORITMA PENYELESAIAN RUBIK STANDAR DALAM BENTUK GRAF BERARAH SKRIPSI Oleh Karisma Bayu Cipta Wijaya NIM 150210101014 PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2019 DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember HALAMAN JUDUL PENGEMBANGAN ALGORITMA PENYELESAIAN RUBIK STANDAR DALAM BENTUK GRAF BERARAH SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan Matematika (S1) dan mencapai gelar Sarjana Pendidikan Oleh: Karisma Bayu Cipta Wijaya NIM 150210101014 PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2019 ii DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember HALAMAN PERSEMBAHAN Puji syukur kehadirat Allah SWT atas segala rahmat dan karunia-Nya, sehingga skripsi ini dapat terselesaikan. Skripsi ini saya persembahkan kepada: 1. Kedua orangtua saya yang tercinta, terima kasih untuk dukungan, motivasi, doa serta kasih sayang yang tidak pernah pudar; 2. Kakak dan adikku, serta keluarga besar bapak dan ibuku, terima kasih atas motivasi dan doa untuk saya selama ini; 3. Bapak dan Ibu Dosen Pendidikan Matematika yang telah membagikan ilmu dan pengalamannya; 4. Bapak dan Ibu Guru SDN Kepatihan 1 Jember, SMPN 2 Jember, dan SMAN 2 Jember yang telah mencurahkan ilmu, bimbingan, dan kasih sayangnya dengan tulus ikhlas; 5. Almamaterku tercinta Universitas Jember, khususnya Program Studi Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan (FKIP). 6. Sahabat-sahabatku (Ida Ulan Asih, Kevin Dwi Wicaksono, Inggil Ismiharto, M. Taufik Hidayat, Lendi Ike Hermawan, Dodi Pratama, Kukuh Sahrianto, Yuris Mimbadri, Dwita Sari Oktavia, Rosalia Indah, Moch Yusup Ade, Keluarga Besar Logaritma, Keluarga Besar Paranada dan teman-teman yang selalu mendukung saya).
    [Show full text]
  • Rubik's Cube - Wikipedia, the Free Encyclopedia 5/11/11 6:47 PM Rubik's Cube from Wikipedia, the Free Encyclopedia
    Rubik's Cube - Wikipedia, the free encyclopedia 5/11/11 6:47 PM Rubik's Cube From Wikipedia, the free encyclopedia The Rubik's Cube is a 3-D mechanical puzzle invented in Rubik's Cube 1974[1] by Hungarian sculptor and professor of architecture Ernő Rubik. Originally called the "Magic Cube",[2] the puzzle was licensed by Rubik to be sold by Ideal Toy Corp. in 1980[3] and won the German Game of the Year special award for Best Puzzle that year. As of January 2009, 350 million cubes have sold worldwide[4][5] making it the world's top-selling puzzle game.[6][7] It is widely considered to be the world's best-selling toy.[8] In a classic Rubik's Cube, each of the six faces is covered by nine stickers, among six solid colours (traditionally white, red, blue, orange, green, and yellow).[9] A pivot mechanism enables each face to turn independently, thus mixing up the Other names Magic Cube colours. For the puzzle to be solved, each face must be a Type Puzzle solid colour. Similar puzzles have now been produced with various numbers of stickers, not all of them by Rubik. The Inventor Ernő Rubik original 3×3×3 version celebrated its thirtieth anniversary in Company Ideal Toy Corporation 2010.[10] Country Hungary Availability 1974–present Contents Official website (http://www.rubiks.com/) 1 Conception and development 1.1 Prior attempts 1.2 Rubik's invention 1.3 Patent disputes 2 Mechanics 3 Mathematics 3.1 Permutations 3.2 Centre faces 3.3 Algorithms 4 Solutions 4.1 Move notation 4.2 Optimal solutions 5 Competitions and records 5.1 Speedcubing competitions 5.2 Records 6 Variations 6.1 Custom-built puzzles 6.2 Rubik's Cube software 7 Popular culture 8 See also 9 Notes http://en.wikipedia.org/wiki/Rubik's_Cube Page 1 of 13 Rubik's Cube - Wikipedia, the free encyclopedia 5/11/11 6:47 PM 10 References 11 External links Conception and development Prior attempts In March 1970, Larry Nichols invented a 2×2×2 "Puzzle with Pieces Rotatable in Groups" and filed a Canadian patent application for it.
    [Show full text]
  • Preface Preface Preface
    CubeRoot Preface Preface Preface The Rubiks cube is a Combination puzzle in the shape of a cube that is cut two times along each of three axes. It is invented in 1974 by Ernő Rubik, which is the best-selling toy in history. Since 2003, WCA (World Cube Association), the official ruling and organizing entity for speedsolving Rubiks Cube and other puzzles, has organized competitions worldwide and recognize world records. From around 2007 the cubing community has seen the development of speedcubes made in China like Qiyi, GAN, Moyu, Yuxin. This puzzle consists of 6 faces, each with 9 colored facets. From another aspect, it has 6 fixed centers, 12 edges, 8 corners, and a total of 43,252,003,274,489,856,000 positions. A solved cube has all facets on each face with the same color. The cube move F,, BU , DLR ,, rotates the front, back, upper, down, left, right face 90 degree turn clockwise, respectively. A letter followed by a prime () symbol denotes a 90 degree turn counterclockwise. A letter followed by a 2 denotes a double turn of that face. CFOP method (Cross – F2L – OLL – PLL), the most commonly used speedsolving method for 3x3, heavily relies on algorithms, pattern recognition and muscle memory compared to more intuitive methods such as Roux, ZZ or Petrus method. It was first developed in the early 1980s combining innovations by a number of cubers. Jessica Fridrich popularized it by publishing it online in 1997. Its average number of moves is 56. Gods Number is either used to refer to the diameter of the group of the puzzle (the furthest distance two states can be from each other) or to the furthest distance any position can be from solved.
    [Show full text]