Safety Reports Series No.78

Total Page:16

File Type:pdf, Size:1020Kb

Safety Reports Series No.78 Safety Reports Series This Safety Report is a compilation of detailed information on the processes and materials used in the phosphate industry and on the radiological Safety Reports Series considerations that need to be taken into account by the regulatory body when determining the nature and extent of radiation protection measures. It has No.78 been developed as part of the IAEA’s programme No. on the application of its safety standards in 78 the fields of radiation, transport and waste safety. The information provided will assist in the implementation of a graded approach to regulation. This Safety Report provides information on expected Radiation Protection and Management of NORM Residues in the Phosphate Industry radionuclide concentrations, exposure levels and the most appropriate regulatory approach for the phosphate industry, including mining and beneficiation of phosphate ore, phosphoric acid production, phosphogypsum, and the manufacture and use of phosphate fertilizers. Radiation Protection and Management of NORM Residues in the Phosphate Industry INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–135810–3 ISSN 1020–6450 RELATED PUBLICATIONS IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS ASSESSING THE NEED FOR RADIATION PROTECTION MEASURES IN WORK INVOLVING MINERALS AND RAW MATERIALS IAEA SAFETY STANDARDS Safety Reports Series No. 49 STI/PUB/1257 (56 pp.; 2007) Under the terms of Article III of its Statute, the IAEA is authorized to establish or adopt ISBN 92–0–107406–9 Price: €32.00 standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards. RADIATION PROTECTION AND THE MANAGEMENT OF RADIOACTIVE The publications by means of which the IAEA establishes standards are issued in the WASTE IN THE OIL AND GAS INDUSTRY IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, transport Safety Reports Series No. 34 safety and waste safety. The publication categories in the series are Safety Fundamentals, STI/PUB/1171 (130 pp.; 2004) Safety Requirements and Safety Guides. ISBN 92–0–114003–7 Price: €21.00 Information on the IAEA’s safety standards programme is available at the IAEA Internet site RADIATION PROTECTION AND NORM RESIDUE MANAGEMENT IN THE http://www-ns.iaea.org/standards/ ZIRCON AND ZIRCONIA INDUSTRIES The site provides the texts in English of published and draft safety standards. The texts Safety Reports Series No. 51 of safety standards issued in Arabic, Chinese, French, Russian and Spanish, the IAEA Safety STI/PUB/1289 (149 pp.; 2007) Glossary and a status report for safety standards under development are also available. For ISBN 92–0–100607–1 Price: €36.00 further information, please contact the IAEA at PO Box 100, 1400 Vienna, Austria. All users of IAEA safety standards are invited to inform the IAEA of experience in their RADIATION PROECTION AND NORM RESIDUE MANAGEMENT IN use (e.g. as a basis for national regulations, for safety reviews and for training courses) for the THE PRODUCTION OF RARE EARTHS FROM THORIUM CONTAINING purpose of ensuring that they continue to meet users’ needs. Information may be provided via MINERALS the IAEA Internet site or by post, as above, or by email to [email protected]. Safety Reports Series No. 68 STI/PUB/1512 (259 pp.; 2011) RELATED PUBLICATIONS ISBN 978–92–0–115710–2 Price: €45.00 The IAEA provides for the application of the standards and, under the terms of Articles III and VIII.C of its Statute, makes available and fosters the exchange of information relating RADIATION PROECTION AND NORM RESIDUE MANAGEMENT IN THE to peaceful nuclear activities and serves as an intermediary among its Member States for this TITANIUM DIOXIDE AND RELATED INDUSTRIES purpose. Safety Reports Series No. 76 Reports on safety and protection in nuclear activities are issued as Safety Reports, STI/PUB/1568 (105 pp.; 2012) which provide practical examples and detailed methods that can be used in support of the ISBN 978–92–0–132110–7 Price: €32.00 safety standards. Other safety related IAEA publications are issued as Radiological Assessment Reports, the International Nuclear Safety Group’s INSAG Reports, Technical Reports and TECDOCs. The IAEA also issues reports on radiological accidents, training manuals and practical manuals, and other special safety related publications. Security related publications are issued in the IAEA Nuclear Security Series. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy. The series complements the IAEA’s safety standards, and provides detailed guidance, experience, good practices and examples in the areas of nuclear power, the nuclear fuel cycle, radioactive waste management and decommissioning. www.iaea.org/books RADIATION PROTECTION AND MANAGEMENT OF NORM RESIDUES IN THE PHOSPHATE INDUSTRY The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GREECE PAKISTAN ALBANIA GUATEMALA PALAU ALGERIA HAITI PANAMA ANGOLA HOLY SEE PAPUA NEW GUINEA ARGENTINA HONDURAS PARAGUAY ARMENIA HUNGARY PERU AUSTRALIA ICELAND PHILIPPINES AUSTRIA INDIA POLAND AZERBAIJAN INDONESIA PORTUGAL BAHRAIN IRAN, ISLAMIC REPUBLIC OF QATAR IRAQ BANGLADESH REPUBLIC OF MOLDOVA BELARUS IRELAND ROMANIA BELGIUM ISRAEL RUSSIAN FEDERATION BELIZE ITALY RWANDA BENIN JAMAICA SAUDI ARABIA BOLIVIA JAPAN BOSNIA AND HERZEGOVINA JORDAN SENEGAL BOTSWANA KAZAKHSTAN SERBIA BRAZIL KENYA SEYCHELLES BULGARIA KOREA, REPUBLIC OF SIERRA LEONE BURKINA FASO KUWAIT SINGAPORE BURUNDI KYRGYZSTAN SLOVAKIA CAMBODIA LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMEROON REPUBLIC SOUTH AFRICA CANADA LATVIA SPAIN CENTRAL AFRICAN LEBANON SRI LANKA REPUBLIC LESOTHO SUDAN CHAD LIBERIA SWEDEN CHILE LIBYA SWAZILAND CHINA LIECHTENSTEIN SWITZERLAND COLOMBIA LITHUANIA SYRIAN ARAB REPUBLIC CONGO LUXEMBOURG TAJIKISTAN COSTA RICA MADAGASCAR THAILAND CÔTE D’IVOIRE MALAWI THE FORMER YUGOSLAV CROATIA MALAYSIA REPUBLIC OF MACEDONIA CUBA MALI TOGO CYPRUS MALTA TRINIDAD AND TOBAGO CZECH REPUBLIC MARSHALL ISLANDS TUNISIA DEMOCRATIC REPUBLIC MAURITANIA TURKEY OF THE CONGO MAURITIUS UGANDA DENMARK MEXICO UKRAINE DOMINICA MONACO DOMINICAN REPUBLIC MONGOLIA UNITED ARAB EMIRATES ECUADOR MONTENEGRO UNITED KINGDOM OF EGYPT MOROCCO GREAT BRITAIN AND EL SALVADOR MOZAMBIQUE NORTHERN IRELAND ERITREA MYANMAR UNITED REPUBLIC ESTONIA NAMIBIA OF TANZANIA ETHIOPIA NEPAL UNITED STATES OF AMERICA FIJI NETHERLANDS URUGUAY FINLAND NEW ZEALAND UZBEKISTAN FRANCE NICARAGUA VENEZUELA GABON NIGER VIETNAM GEORGIA NIGERIA YEMEN GERMANY NORWAY ZAMBIA GHANA OMAN ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. SAFETY REPORTS SERIES No. 78 RADIATION PROTECTION AND MANAGEMENT OF NORM RESIDUES IN THE PHOSPHATE INDUSTRY INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2013 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2013 Printed by the IAEA in Austria March 2013 STI/PUB/1582 IAEA Library Cataloguing in Publication Data Radiation protection and management of norm residues in the phosphate industry. — Vienna : International Atomic Energy Agency, 2013. p. ; 24 cm. — (Safety reports series, ISSN 1020–6450 ; no. 78) STI/PUB/1582 ISBN 978–92–0–135810–3 Includes bibliographical references. 1. Phosphate industry — Waste disposal. 2. Radiation — Safety measures. I. International Atomic Energy Agency. II. Series. IAEAL 13–00798 FOREWORD The Fundamental Safety Principles (IAEA Safety Standards Series No. SF-1), together with Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (IAEA Safety Standards Series No. GSR Part 3 (Interim)), set out the principles and basic requirements for radiation protection and safety applicable to all activities involving radiation exposure, including exposure to natural sources of radiation. The Safety Guides on Occupational Radiation Protection in the Mining and Processing of Raw Materials (IAEA Safety Standards Series No. RS-G-1.6) and Management of Radioactive Waste from the Mining and Milling of Ores (IAEA Safety Standards Series No. WS-G-1.2) provide guidance on the control of exposure of workers and
Recommended publications
  • T1-Kovler-Purification-Of-Phosphogypsum-Israel.Pdf
    Prof. Konstantin Kovler is Head of the Department “Building Materials, Performance and Technology”, National Building Research Institute (NBRI), Faculty of Civil & Environmental Engineering, Technion - Israel Institute of Technology. His research focuses on recycling industrial by-products in construction, PURIFICATION OF PHOSPHOGYPSUM FROM high-performance cementitious materials, radioactivity of building materials, and radon mitigation. Fellow of RILEM, Editor of Materials & Structures, Cement & Concrete Composites. Chairs committees “Ecological Aspects of Construction”, “Radioactivity of Building Products,” Israeli Standards Institution. 226Ra AND HEAVY METALS FOR ITS FURTHER Director of Technion Recycling Initiative. UTILIZATION IN CONSTRUCTION: Eng. Boris Dashevsky is Research Fellow, the Department “Building Materials, Performance and TECHNOLOGICAL UTOPIA OR REALITY? Technology”, NBRI. His research interests are in technologies of manufacturing building materials using mechano-chemical activation, recycling industrial by-products (phosphogypsum, coal ash, copper slag, carbonate rock waste of dimension stone factories and quarries, construction and demolition waste – including asbestos-cement, acid tar, sulfur- and sulfonate-containing wastes) in construction. Konstantin Kovler1 , Boris Dashevsky1, David S. Kosson2 1National Building Research Institute – Prof. David S. Kosson is Cornelius Vanderbilt Professor of Engineering at Vanderbilt University, Nashville, Tennessee, US, where he has appointments as Professor of Civil and Environmental
    [Show full text]
  • Safety Data Sheet TSP - TRISODIUM PHOSPHATE
    Safety Data Sheet TSP - TRISODIUM PHOSPHATE Date of Revision: 2/11/2015 Section 1 – Chemical Product and Company Identification Product/Chemical Name: Trisodium Phosphate dodecahydrate Chemical Formula: Na3PO4*12H2O CAS Number: 10101-89-0 Other Designations: TSP; trisodium orthophosphate; tribasic; tertiary sodium phosphate; trisodium phosphate Derivation: Prepared by combining proper proportions of phosphoric acid and soda to form disodium phosphate, then adding a caustic soda Supplied by: PRO Chemical & Dye 126 Shove Street Fall River, MA 02724 Emergency Telephone Numbers: 800-255-3924 ChemTel. (United States) + 1 01 813-248-0585 (Outside the United States) 1. Section 2 - Hazards Identification HMIS ***** Emergency Overview ***** H 3 MAY CAUSE EYE INJURY. CAUSES SKIN IRRITATlON. MAYBE HARMFUL IF SWALLOWED. F 0 Potential Health Effects R 0 PPE Primary Entry Routes: Inhalation, ingestion or skin contact. Sec. 8 Target Organs: Skin, digestive tract. HAZARDS IDENTIFICATION Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA DCS) Skin corrosion (Category I B). H314 Serious eye damage (Category I). H318 GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H314 Causes severe skin burns and eye damage. Precautionary Statement(s) P260 Do not breathe dust or mist. P264 Wash skin thoroughly after handling. P280 Wear protective gloves protective clothing/ eye protection/ face protection. P301 + P330 + P331 IF SWALLOWED: rinse mouth. DO NOT induce vomiting. P303 + P36l + P353 IF ON SKIN (or hair): Remove. Take off immediately all contaminated clothing. Rinse skin with water / shower. P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
    [Show full text]
  • PHOSBRITE® 156 Page: 1 / 8
    SAFETY DATA SHEET PHOSBRITE® 156 Page: 1 / 8 Date: 24/08/2004 Version: 1 Cancels and replaces version: 1 Product and company identification. PRODUCT NAME : PHOSBRITE® 156 Use : Treating the surfaces of metals. (For further information, refer to the product technical data sheet). SUPPLIER : Manufacturer : Name : Thermphos International B.V. Address : Haven 9890 4389 PD Vlissingen P.O.Box 406 4380 AK Vlissingen The Netherlands Telephone number : ++31(0)113 689 500 Telefax number : ++31(0)113 689 501. 2 Composition / information on ingredients >> PREPARATION Components contributing to the : Phosphoric acid (CAS : 7664-38-2) : 50 - 90% - EC Classification hazard : C - R34 Sulphuric acid (CAS : 7664-93-9) : 10 - 50 %. - EC Classification : C - R 35 3 Hazards identification MOST IMPORTANT HAZARDS Adverse human health effects : Corrosive. Causes severe burns. Severely irritating to respiratory system and eyes. Risk of serious damage to eyes. Extremely irritating to the digestive tract. Risk of burns. Environmental effects : If the product is not neutralised, it may have harmful effects on the aquatic environment. Physical and chemical hazards - Fire or explosion : Certain reactions may cause a fire or an explosion. SAFETY DATA SHEET PHOSBRITE® 156 Page: 2/8 Date: 24/08/2004 Version: 1 Cancels and replaces version: - Further hazards : Violent reactions may occur on contact with certain chemicals. (Refer to the list of incompatible materials section 10: "Stability-Reactivity"). Very corrosive to metals. Releases hydrogen which forms explosive mixtures in air. On heating : corrosive vapours are released. Specific hazards : According to EC criteria, this product is classified as : - CORROSIVE. 4 First-aid measures Inhalation : Move the affected person away from the contaminated area and into the fresh air.
    [Show full text]
  • Phosphate Recycling in the Phosphorus Industry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wageningen University & Research Publications Phosphorus Research Bulletin Vol. 15 (2004) p. 47-51 Phosphate Recycling in the Phosphorus Industry W.J. SCHIPPER*1, A. KLAPWIJK2, B. POTJER3, W.H. RULKENS2, B.G. TEMMINK2, F.D.G. KIESTRA4 and A.C.M. LIJMBACH1 *corresponding author 1 Thermphos International B.V., PO Box 406, 4380 AK Vlissingen, The Netherlands; [email protected] 2 Wageningen University, Subdepartment Environmental Technology, P.O. Box 8129, 6700 EV Wageningen, the Netherlands 3 CE (solutions for environment, economy and technology), Oude Delft 180, 2611 HH Delft, The Netherlands 4 Haskoning Consultants, Barbarossastraat 35, Postbus 151, NL 6500 AD Nijmegen, The Netherlands INTRODUCTION Interest in phosphate recycling is increasing in the industrialized world. There are large amounts of phosphate available in waste streams from e.g. agriculture, sewage treatment and from industrial side streams which pose an increasing problem. To avoid wasting these in e.g. landfills, and to counteract the depletion of natural phosphate sources, routes for re-use are explored. One possibility is to replace phosphate rock by recycled materials in the production of white phosphorus. Worldwide, P production is limited to China, Kazakhstan, the USA and The Netherlands. The -1 latter producer, Thermphos International, has decided to replace 40 kt a of their P2O5 intake (17.5 kt P) by recovered materials. LIMITATIONS FOR PHOSPHATE RECYCLING IN THE PHOSPHORUS PROCESS The phosphorus process The phosphorus process consists of two parts. The first part is a wet granulation and sintering of phosphate rock, producing hard pellets of 1-2 cm.
    [Show full text]
  • US Schedule for Internet V2
    Draft as of March 23, 2007 Subject to legal review for accuracy, clarity and consistency. Annex 3.3 - - Industrial/Textile Schedule for the United States Tariff Elimination US 8 digit Description MFN RATE Schedule 03011000 Live ornamental fish Free I 03019100 Live trout Free I 03019200 Live eels Free I 03019300 Live carp Free I 03019900 Live fish, other than trout, eel, carp or ornamental fish Free I 03021100 Trout, fresh or chilled, excluding fillets, other meat portions, livers and roes Free I Pacific, Atlantic and Danube salmon, fresh or chilled, excluding fillets, other 03021200 meat portions, livers and roes Free I Salmonidae other than trout or Pacific, Atlantic & Danube salmon, fresh or 03021900 chilled, excluding fillets, other meat portions, livers & roes Free I Halibut and Greenland turbot, fresh or chilled, excluding fillets, other meat 03022100 portions, livers and roes Free I 03022200 Plaice, fresh or chilled, excluding fillets, other meat portions, livers and roes Free I 03022300 Sole, fresh or chilled, excluding fillets, other meat portions, livers and roes 1.1 cents/kg A Flat fish, nesi, fresh or chilled, excluding fillets, other meat portions, livers 03022900 and roes Free I Albacore or longfinned tunas, fresh or chilled, excluding fillets, other meat 03023100 portions, livers and roes Free I Yellowfin tunas, fresh or chilled, excluding fillets, other meat portions, livers 03023200 and roes Free I Skipjack or stripe-bellied bonito, fresh or chilled, excluding fillets, other meat 03023300 portions, livers and roes Free
    [Show full text]
  • Brochure-Product-Range.Pdf
    PRODUCT RANGE 2015 edition ANSI Standard 60 NSF® CERTIFIED HALAL M ISLAMIC FOOD AND NUTRITION ® COUNCIL OF AMERICA Rue Joseph Wauters, 144 ISO 9001:2008 (Quality) / OHSAS 18001:2007 (Health/ B-4480 Engis Safety) / ISO 14001:2004 (Environment) / ISO 22000:2005 www.globulebleu.com (Food Safety) / FSSC 22000:2013 (Food Safety). Tel. +32 (0) 4 273 93 58 Our food grade phosphates are allergen free, GMO free, Fax. +32 (0) 4 275 68 36 BSE/TSE free. www.prayon.com mail. [email protected] Design by www.prayon.com PRODUCT RANGE | 11 TABLE OF CONTENTS HORTICULTURE APPLICATIONS HORTIPRAY® RANGE FOR HORTICULTURE* FOOD AND INDUSTRIAL APPLICATIONS PRODUCT NAME Bulk density P O pH N-NH Made 2 5 4 MONOAMMONIUM PHOSPHATE - NH4H2PO4 in 3 3 % 1% % Sodium orthophosphates ................................................................................... 03 g/cm lbs/ft indicative indicative indicative Water-soluble fertilisers. Sodium pyrophosphates .................................................................................... 04 HORTIPRAY® MAP Horticultural Grade 0.9 56 61 4.5 12 Sodium tripolyphosphates ................................................................................. 05 HORTIPRAY® MAP 12.60 Horticultural Grade 0.9 56 60 5 12.1 Water-soluble fertilisers; Sodium polyphosphates ..................................................................................... 06 HORTIPRAY® MAP anticalc Horticultural Grade 0.9 56 61 4.5 12 preventive action against clogging. Potassium orthophosphates .............................................................................
    [Show full text]
  • Ionic Liquid + Biomolecule
    Sónia Isabel Pereira Branco Licenciatura em Ciências da Engenharia Química e Bioquímica Aqueous Biphasic System based on Cholinium Ionic Liquids: Extraction of Biologically Active Phenolic Acids Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica Orientador: Doutora Isabel Maria Delgado Jana Marrucho Ferreira, Investigadora Coordenadora, Laboratório de Termodinâmica Molecular, ITQB-UNL Presidente: Doutora Susana Filipe Barreiros Arguente: Doutor Alexandre Babo de Almeida Paiva Vogal: Doutora Isabel Maria Delgado Jana Marrucho Ferreira Setembro 2014 II UNIVERSIDADE NOVA DE LISBOA Faculdade de Ciências e Tecnologia Departamento de Química Aqueous Biphasic System based on Cholinium Ionic Liquids: Extraction of Biologically Active Phenolic Acids Sónia Isabel Pereira Branco Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em Engenharia Química e Bioquímica Orientadores: Doutora Isabel Maria Delgado Jana Marrucho Ferreira 2014 III IV Aqueous Biphasic Systems based on Cholinium Ionic Liquids: Extraction of Biologically Active Phenolic Acids COPYRIGHT Sónia Isabel Pereira Branco Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. V VI Agradecimentos Durante a realização desta tese, contei com o apoio de várias pessoas sem as quais não teria concluído esta etapa.
    [Show full text]
  • Vaccine Excipient Table
    Vaccine Excipient Summary Excipients Included in U.S. Vaccines, by Vaccine In addition to weakened or killed disease antigens (viruses or bacteria), vaccines contain very small amounts of other ingredients – excipients. Some excipients are added to a vaccine for a specific purpose. These include: Preservatives, to prevent contamination. For example, thimerosal. Adjuvants, to help stimulate a stronger immune response. For example, aluminum salts. Stabilizers, to keep the vaccine potent during transportation and storage. For example, sugars or gelatin. Others are residual trace amounts of materials that were used during the manufacturing process and removed. These can include: Cell culture materials, used to grow the vaccine antigens. For example, egg protein, various culture media. Inactivating ingredients, used to kill viruses or inactivate toxins. For example, formaldehyde. Antibiotics, used to prevent contamination by bacteria. For example, neomycin. The following table lists substances, other than active ingredients (i.e., antigens), shown in the manufacturers’ package insert (PI) as being contained in the final formulation of each vaccine. Note: Substances used in the manufacture of a vaccine but not listed as contained in the final product (e.g., culture media) can be found in each PI, but are not shown on this table. Each PI, which can be found on the FDA’s website (see below) contains a description of that vaccine’s manufacturing process, including the amount and purpose of each substance. In most PIs, this information is found
    [Show full text]
  • General Properties of the Alkaline Phosphates: - Major Food and Technical Applications
    Phosphorus Research Bulletin Vol. 15 (2004) p. 85-94 General Properties of the Alkaline Phosphates: - Major Food and Technical Applications P.HOURANT Deputy Business Line Manager, Prayon S.A., Business Unit Phosphates, Rue Joseph Wauters, 144 4480 Engis, Belgium; E-mail: [email protected] INTRODUCTION The alkaline phosphates are used for many food and technical applications. Phosphates have two characteristics that explain their four main properties: buffer agent, sequestering power, dispersing power and water holding capability. Those properties allow phosphates to be used in many food and technical applications. The main food applications are meat and seafood processing, baking and processed cheese, but others such as cereals, French fries, fruits and vegetables, beverages, noodles and so on also may need the use of phosphates. On the technical side, the main applications are the detergent products, the water treatment and the metal treatment. As for the food, many other applications require phosphates such as ceramics, bone china, paper and paints,... In meat products, phosphates salts interact in a unique way to bind water with proteins and improve the tenderness in meats. Treated products will maintain their juicy appearance as well as their natural nutritional properties texture and colour. In fish and seafood products, phosphates salts allow the retention of the natural juices of frozen fish fillets, prawns, shrimps, scallops and other seafood. Phosphates also help prevent the build-up of struvite crystals in tinned tuna and crabmeat. In processed cheese, phosphates are crucially important in the production of processed cheese. These products ensure a homogeneous and uniform melt of raw cheese and product stability.
    [Show full text]
  • Study of Phosphorus Behaviour in Levitated Silicon-Iron Droplets
    STUDY OF PHOSPHORUS BEHAVIOUR IN LEVITATED SILICON-IRON DROPLETS by Katherine Le A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Department of Materials Science and Engineering University of Toronto © Copyright by Katherine Le 2016 ii Study of Phosphorus Behaviour in Levitated Si-Fe Droplets Katherine Le Master of Applied Science Department of Materials Science and Engineering University of Toronto 2016 Abstract While the treatment of relatively inexpensive ferrosilicon alloys is a potential refining route in order to generate solar grade silicon, phosphorus is one of the more difficult impurities to remove by conventional processing. In this project, electromagnetic levitation was used to investigate the dephosphorization of ferrosilicon alloy droplets exposed to H2-Ar gas mixtures under various experimental conditions including, refining time, temperature (1450°C-1720°C), H2-Ar gas concentrations and flow rate, iron alloying content, and initial phosphorus concentration. Reaction rates increased with higher refining times, temperatures, and H2 gas concentrations. With unknown parameters associated with the kinetics of gas phase reactions, the approach involved comparison of apparent activation energies derived for the chemical reaction and gas diffusion steps of the dephosphorization process. The phosphorus removal rate is thought to be controlled by the interfacial reaction step; further work is required to confirm this conclusion. iii Acknowledgements I would like to express my gratitude and respect to my supervisor, Prof. Alex McLean for the opportunity to work on this research. I am thankful for his guidance, wisdom and encouragement throughout the course of my studies. He is a truly inspiring person, and a great enabler of new learning opportunities.
    [Show full text]
  • IFAC Summary of Phosphate Citations the International Food Additives
    IFAC Summary of Phosphate Citations The International Food Additives Council (IFAC) is a global association representing manufacturers of food ingredients, including phosphates used as food additives. IFAC strives for the harmonization of food additive standards and specifications worldwide, and supports regulatory processes to identify, categorize and document the safety of food additives. Phosphorus is an essential element critical for several key biochemical processes in the body, including development of cell membranes, growth of bones and teeth, maintenance of acid-base balance, and cellular energetics. Phosphorus is naturally occurring in various types of foods, including meat, grains, and dairy. Additionally, inorganic phosphates can be added to foods to improve texture, flavor, shelf life, and other technological functions. Inorganic phosphates are salts or esters of phosphoric acid. Phosphoric acid is produced starting with naturally-occurring phosphate ore mined around the world. As phosphoric acid, it can be combined with other elements such as calcium, potassium, and sodium into "salts." Phosphate additives are contained in a large number of processed foods and beverages and help contribute to the vast food supply while also minimizing food waste. Following is a comprehensive list of phosphates that are approved for use in food. All of these phosphates have either been approved by the US Food and Drug Administration (FDA) as a direct food additive or reviewed by FDA and determined to be generally recognized as safe (GRAS). Also included are the CAS numbers, International Numbering System (INS) numbers, Food Chemicals Codex (FCC) references and Joint FAO/WHO Expert Committee on Food Additives (JECFA) evaluations, as available.
    [Show full text]
  • Binary and Ternary Transition-Metal Phosphides As Hydrodenitrogenation Catalysts
    Research Collection Doctoral Thesis Binary and ternary transition-metal phosphides as hydrodenitrogenation catalysts Author(s): Stinner, Christoph Publication Date: 2001 Permanent Link: https://doi.org/10.3929/ethz-a-004378279 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 14422 Binary and Ternary Transition-Metal Phosphides as Hydrodenitrogenation Catalysts A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Natural Sciences Presented by Christoph Stinner Dipl.-Chem. University of Bonn born February 27, 1969 in Troisdorf (NRW), Germany Accepted on the recommendation of Prof. Dr. Roel Prins, examiner Prof. Dr. Reinhard Nesper, co-examiner Dr. Thomas Weber, co-examiner Zurich 2001 I Contents Zusammenfassung V Abstract IX 1 Introduction 1 1.1 Motivation 1 1.2 Phosphides 4 1.2.1 General 4 1.2.2 Classification 4 1.2.3 Preparation 5 1.2.4 Properties 12 1.2.5 Applications and Uses 13 1.3 Scope of the Thesis 14 1.4 References 16 2 Characterization Methods 1 2.1 FT Raman Spectroscopy 21 2.2 Thermogravimetric Analysis 24 2.3 Temperature-Programmed Reduction 25 2.4 X-Ray Powder Diffractometry 26 2.5 Nitrogen Adsorption 28 2.6 Solid State Nuclear Magnetic Resonance Spectroscopy 28 2.7 Catalytic Test 33 2.8 References 36 3 Formation, Structure, and HDN Activity of Unsupported Molybdenum Phosphide 37 3.1 Introduction
    [Show full text]