Lithofacies and Paleogeography of the Conasauga Group, (Middle and Late Cambrian) in the Valley and Ridge Province of East Tennessee

Total Page:16

File Type:pdf, Size:1020Kb

Lithofacies and Paleogeography of the Conasauga Group, (Middle and Late Cambrian) in the Valley and Ridge Province of East Tennessee Lithofacies and paleogeography of the Conasauga Group, (Middle and Late Cambrian) in the Valley and Ridge province of east Tennessee KENNETH O. HASSON Department of Geography/Geology, East Tennessee State University, Johnson City, Tennessee 37614, and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 C. STEPHEN HAASE Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ABSTRACT A sub-basin within the regional intrashelf basin has been identi- fied. The axis of this sub-basin is oriented northwest, perpendicular to A comprehensive data base for the Conasauga Group (Middle the regional trend of the shelf and Appalachian structure. Approxi- and Late Cambrian) throughout the Valley and Ridge province in east mately 2,900 ft (883 m) of Conasauga strata accumulated in the sub- Tennessee was compiled from published and unpublished sources. basin, which first appeared during Pumpkin Valley Shale deposition Lithofacies and isopach maps and stratigraphic cross sections were and persisted through Maynardville Limestone deposition. We inter- constructed from this data base on both present-day and palinspastic pret the abrupt thickening at the margin of this basin to result from bases to define regional depositional patterns of the Conasauga basement faulting, which produced a graben that subsided intermit- Group. tently during basin filling. This structure may have economic signifi- Isopach and lithofacies trends recognized on present-day base cance in that there is an apparent correlation between the margin of maps are generally consistent with those previously recognized. Litho- this second-order basin and zinc mineralization in overlying carbon- facies data are consistent with a shelf-intrashelf-basin-carbonate- ates of the Knox Group. ramp model proposed by other investigators for the Nolichucky Shale. Our study suggests that the southern edge of an intrashelf basin rec- INTRODUCTION ognized within the Conasauga Group in southwest Virginia was 20 to 50 km southwest of present-day Knoxville. Strata of the Conasauga Group were deposited marginally to and Palinspastic-base lithofacies and isopach patterns for the Cona- within an intrashelf basin bounded on the east by a high-relief carbonate sauga Group in east Tennessee suggest (1) the existence of a generally shelf and on the west by the craton (Rodgers, 1968; Palmer, 1971; Mar- elliptical intrashelf basin that closes to the southwest and the north- kello and Read, 1982). The depositional environments and lithofacies east; (2) that the eastern margin of the intrashelf basin consists of shaly limestone and dolostone, the dolostone being dominant eastward; (3) that basin sediments are limestone, shale, and shaly limestone (40%-80% limestone); and (4) that the western basin margin sediments are mostly calcareous shale and siltstone (20%-60% limestone) that become terrigenous west of the basin. Figure 1. Location map of study area, illustrat- ing Conasauga Group outcrop belts (Hardeman and others, 1966). References for data points are summarized in Table A. Additional material for this article (tables) may be obtained free of charge by requesting Supplementary Data 8801 from the GSA Documents Secretary. Geological Society of America Bulletin, v. 100, p. 234-246, 13 figs., February 1988. 234 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/100/2/234/3379924/i0016-7606-100-2-234.pdf by guest on 28 September 2021 LITHOFACIES AND PALEOGEOGRAPHY OF CONASAUGA GROUP, TENNESSEE 235 Figure 2. Palinspastic base map of study area, illustrating pre-Appalachian orogeny positions, major thrust faults, and displacement on faults. Faults are labeled within area of displacement. Palinspastic base taken from Roeder and Witherspoon (1978). Letters refer to towns mentioned in text and are as follows: K = Knoxville, JC = Johnson City, S = Sneedville, C = Cleveland, M = Morristown, R = Rogersville, E = Elizabethton, G = Greenville, B = Blountville. recorded in Conasauga Group strata include (1) shallow water, shale- data is from localities northeast of Knoxville (K)2; southwest of Knoxville, dominated peritidal settings on the cratonward northwestern margin of the there are few data. To facilitate interpretation, data are plotted on a Valley and Ridge, (2) mixed carbonate/shale intrashelf basin, and (3) shelf palinspastic map of east Tennessee (Roeder and Witherspoon, 1978) margin carbonate-dominated shoal and peritidal complex. which removes effects of Alleghanian orogeny foreshortening on facies The purpose of this paper is to summarize, using isopachous and and isopach patterns (Fig. 2). lithofacies maps and stratigraphic cross sections, regional depositional patterns of the Conasauga Group (Middle and Late Cambrian) in the GENERAL SETTING Valley and Ridge province of east Tennessee. We present a regional pic- ture of the stratigraphy and lithofacies patterns for a major unit of the In east Tennessee, Conasauga Group sediments crop out in northeast- Appalachian Valley and Ridge province. Our synthesis combines data southwest-trending belts (Fig. 1). Northwest of the Pulaski fault, Cona- from adjacent southwest Virginia (Markello and Read, 1981, 1982) and sauga Group exposures are on hanging walls of thrust faults. Between the Tennessee and summarizes the lithostratigraphy of the Conasauga Group Pulaski and Holston Mountain faults, Conasauga strata occur in a series of throughout a major portion of the southeastern Overthrust Belt. With the narrow, anticlinal folds commonly faulted on the northwest (Hardeman current interest in energy resource exploration within this region, such a and others, 1966). summary is useful for geological interpretation of seismic data and for the Conasauga Group rocks were deposited during the major Middle and understanding and identification of regional trends in sedimentation pat- Late Cambrian marine transgression over a subsiding, aggraded, and terns and paleogeography. rimmed shelf. This rimmed carbonate shelf has been documented by Locations of data sources are shown in Figure 1. References to data Rodgers (1968), Palmer (1971), Samman (1975), and Markello and Read points are given in Table A, which is available from the GSA Data (1981,1982). The Shady Dolomite comprises the pre-Conasauga Group Repository.1 Thickness data for the various Conasauga Group units at carbonate shelf rim sequence, which thins westward in east Tennessee and each of the data localities illustrated in Figure 1 are summarized in Table interfingers with the Rome Formation. The Shady Dolomite consists of B, which is also available from the GSA Data Repository.1 The bulk of the supratidal dolostones with abundant intercalated red shale and siltstone 'To obtain Tables A and B free of charge, request Supplementary Data 8801 2Letters and numbers within parentheses refer to cities and data localities, from the GSA Documents Secretary. respectively. Data localities are shown in Figure 1. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/100/2/234/3379924/i0016-7606-100-2-234.pdf by guest on 28 September 2021 236 HASSON AND HAASE NW SE 1 2 3 Maynardville Limestone Maynardville Limestone Maynardville Limestone Nolichucky Shale Nolichucky Shale Bradley Creek Mbr. Bradley Creek Mbr. Figure 3. Régional stratigraph- Maryville Limestone ie nomenclature of the Conasauga Group in east Tennessee. Conasauga Shale Rogersville Shale Undivided Honaker Dolomite Craig Mbr Rutledge Limestone Pumpkin Valley Shale 2,900 ft (885 m). Thickness trends change abruptly at the basin margin 1. Northwest of Wallen Valley Fault (Fig. 4); offset of isopach lines on opposite sides of the basin suggests that 2. Between Wallen Valley Fault and Pulaski Fault the Luttrell sub-basin is a fault-bounded graben, perhaps similar to the Rome trough but of smaller scale. The Luttrell sub-basin, prior to Appala- 3. Southeast of Pulaski Fault chian foreshortening, is — 70 mi (112 km) long and 20 mi (32 km) wide. Downward movement in the Luttrell sub-basin did not affect all forma- tions of the Conasauga Group, and subsidence was insufficient at any time (Byrd, 1973). The Rome Formation underlies the Conasauga Group to influence major lithofacies trends. throughout eastern Tennessee. To the west, closer to the craton, the Rome Lithofacies trends parallel present-day structural strike. The Cona- Formation consists of red and green sandstone, mudstone, and shale; oo- sauga Group becomes more calcareous from northwest to southeast, and litic limestone is present locally and glauconitic intervals are common, as the southeastern border of the basin is predominantly dolostone. Data are are halite casts and mudcracks (Samman, 1975; Spigai, 1963). Southeast- insufficient to allow mapping of a limestone-dolostone transition. On a ward, toward the shelf margin, the Rome Formation is principally shale palinspastic base (Fig. 5), lithofacies trends remain generally parallel to and dolomite and lacks sandstone (Rodgers, 1953). structural strike on the northwestern margin of the study area. The iso- Throughout the study area, the Conasauga Group is conformably pachs on the southeast side of the basin, however, are initially east-west overlain by the Knox Group. Northwest of the Pulaski fault, the basal and then swing to a northeast-southwest orientation. On the southeastern Knox formation is the Copper Ridge Dolomite. The base of this formation side of the study area, lithofacies trends (Fig. 5) generally follow isopachs, is defined
Recommended publications
  • IC-29 Geology and Ground Water Resources of Walker County, Georgia
    IC 29 GEORGIA STATE DIVISION OF CONSERVATION DEPARTMENT OF MINES, MINING AND GEOLOGY GARLAND PEYTON, Director THE GEOLOGICAL SURVEY Information Circular 29 GEOLOGY AND GROUND-WATER RESOURCES OF WALKER COUNTY, GEORGIA By Charles W. Cressler U.S. Geological Survey Prepared in cooperation with the U.S. Geological Survey ATLANTA 1964 CONTENTS Page Abstract _______________________________________________ -··---------------------------- _____________________ ----------------·----- _____________ __________________________ __ 3 In trodu ction ------------------------------------------ ________________________________ --------------------------------------------------------------------------------- 3 Purpose and scope ------------------------------"--------------------------------------------------------------------------------------------------------- 3 Previous inv es tigati o ns ____ _____ ________ _______ __________ ------------------------------------------------------------------------------------------ 5 Geo Io gy _________________________________________________________________ --- ___________________ -- ___________ ------------- __________________ ---- _________________ ---- _______ 5 Ph ys i ogr a p hy ______________________________________________________ ---------------------------------------- __________________ -------------------------------- 5 Geo Io gi c his tory __________________________ _ __ ___ ___ _______ _____________________________________________ ------------------------------------------------- 5 Stratigraphy -·· __________________
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • Overview of the Strategic and Structural Evolution of the Talladega Slate Belt, Alabama Appalachians
    fl d029-08 1st pgs page 1 The Geological Society of America Field Guide 29 2012 Overview of the stratigraphic and structural evolution of the Talladega slate belt, Alabama Appalachians James F. Tull* Department of Earth, Ocean, and Atmospheric Science, Florida State University Clinton I. Barineau* Department of Earth and Space Sciences, Columbus State University ABSTRACT The allochthonous Talladega belt of eastern-northeastern Alabama and north- western Georgia is a northeast striking, fault bounded block of lower greenschist facies metasedimentary and metaigneous rocks that formed along the margin of Lau- rentia at or outboard of the seaward edge of the Alabama promontory. Bounded by metamorphic rocks of the higher grade Neoproterozoic(?) to Carboniferous eastern Blue Ridge on the southeast and unmetamorphosed to anchimetamorphic Paleozoic rocks of the Appalachian foreland on the northwest, the Talladega belt includes shelf facies rocks of the latest Neoproterozoic/earliest Cambrian Kahatchee Mountain Group, Cambrian-Ordovician Sylacauga Marble Group, and the latest Silurian(?) to uppermost Devonian/earliest Mississippian Talladega Group. Along the southeast- ern fl ank of these metasedimentary sequences, a Middle Ordovician back-arc terrane (Hillabee Greenstone) was tectonically emplaced along a cryptic pre-metamorphic thrust fault (Hillabee thrust) and subsequently dismembered with units of the upper Talladega Group along the post-metamorphic Hollins Line fault system. Importantly, strata within the Talladega belt are critical for understanding the tectonic evolution of the southern Appalachian orogen when coupled with the geologic history of adjacent terranes. Rocks of the lower Talladega Group, the Lay Dam Formation, suggest latest Silurian-earliest Devonian tectonism that is only now being recognized in other areas of the southern Appalachians.
    [Show full text]
  • U.S. Geological Survey Bulletin 1839-G, H
    Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H i i i I ' i ' i ' X- »-v l^,:^ Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia By ROBERT T. RYDER Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia By CHRYSA M. CULLATHER Chapters G and H are issued as a single volume and are not available separately U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H EVOLUTION OF SEDIMENTARY BASINS-APPALACHIAN BASIN U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging in Publication Data (revised for vol. G-H) Evoluation of sedimentary basins Appalachian basin. (U.S. Geological Survey bulletin ; 1839 A-D, G-H) Includes bibliographies. Supt. of Docs. no.:19.3:1839-G Contents: Horses in fensters of the Pulaski thrust sheet, southwestern Virginia / by Arthur P. Schultz [etc.] Stratigraphic framework of Cam­ brian and Ordovician rocks in central Appalachian basin from Morrow County, Ohio, to Pendleton County, West Virginia / by Robert T.
    [Show full text]
  • Newsletter No. 70
    Newsletter Winter 2006 No. 70 Commission Internationale de Microflore du Paléozoïque CIMP homepage: President: John Marshall http://www.cimp.ulg.ac.be Past President: Florentin Paris Secretary General & Newsletter Editor: Mike Stephenson Treasurer: Philippe Steemans Webmaster: Philippe Steemans I.F.P.S. representatives: Thomas Servais, Ken Higgs Contents Opinion: How do we sell Deep Time? ............................................................................. 2 New President’s message .................................................................................................. 4 Palynos News ..................................................................................................................... 4 Meetings and conferences................................................................................................. 5 CIMP Prague.....................................................................................................................9 CIMP General Meeting minutes.................................................................................... 58 Election of President of CIMP ....................................................................................... 59 New subcommission positions in CIMP ........................................................................ 59 Next CIMP Conference: Cracow 2010?........................................................................ 59 Gallery of Prague photos...............................................................................................
    [Show full text]
  • Regional Seismic Lines Across the Rome Trough and Allegheny Plateau of Northern West Virginia, Western Maryland, and Southwestern Pennsylvania
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I–2791 U.S. GEOLOGICAL SURVEY REGIONAL SEISMIC LINES ACROSS THE ROME TROUGH AND ALLEGHENY PLATEAU OF NORTHERN WEST VIRGINIA, WESTERN MARYLAND, AND SOUTHWESTERN PENNSYLVANIA By Christopher S. Kulander 1 and Robert T. Ryder 2 INTRODUCTION having thin-skinned structures with greater tectonic shortening. These provinces meet at a physiographic and structural boundary The study area for this investigation is the central Appalachian called the Allegheny structural front. The Rome trough, a north­ basin (see index map below). The northern West Virginia, west­ east-trending graben that involves basement, underlies the ern Maryland, and southwestern Pennsylvania parts of the cen­ Allegheny Plateau (fig. 2). Commonly, basement rocks in the tral Appalachian basin consist of complex structural geometries Rome trough are buried beneath at least 20,000 feet (ft) of and a thick Paleozoic sequence. Here, the basin coincides with Paleozoic strata (Shumaker, 1996). Little has been published that is related to the deep structure of 80˚ the Rome trough in northern West Virginia, western Maryland, and southwestern Pennsylvania. Wells drilled to basement are absent here and most of the multi-fold seismic data are propri­ etary. Although Ryder (1991) and Ryder and others (1992) con­ NY structed several detailed stratigraphic cross sections of Cambrian and Ordovician strata across parts of the Rome trough and Shumaker (1996) mapped basement structure along the entire PA NJ 40˚ Rome trough from central Kentucky to northeastern Pennsylvania, few interpreted, regional seismic-based geologic OH MD DE cross sections have been published in this area. The objective of this investigation is to interpret the structure and stratigraphy of 40˚ WV the Rome trough and Allegheny Plateau of northern West VA Virginia, western Maryland, and southwestern Pennsylvania KY based on three multi-fold seismic lines acquired by Amoco in the early 1980s.
    [Show full text]
  • Italic Page Numbers Indicate Major References]
    Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67.
    [Show full text]
  • WV Generalized Stratigraphic Column/Chart
    Generalized Stratigraphic Chart for West Virginia Series/ Drillers’ Era System Stage Western WV Eastern WV Terminology CENOZOIC Paleogene Eocene Igneous Intrusives MESOZOIC Jurassic Igneous Intrusives PERMIAN Dunkard Group Carroll, Minshall, Murphy, Moundsville, Upper Monongahela Fm. 1st Cow Run, Little Conemaugh Group Dunkard, Big Dunkard Burning Springs, Middle Allegheny Fm. 2nd Cow Run, Kanawha Fm. Gas Sands, Horseneck (Subsystem) New River Fm. Pottsville PENNSYLVANIAN Lower Pocahontas Fm. Group Salt Sands Bluestone Fm. Pride, Ravencliff, Avis, Princeton Ss. Mauch Chunk Maxton, Little Lime, Upper Hinton Fm. Group Pencil Cave, Blue Monday Bluefield Fm. CARBONIFEROUS Greenbrier Group Big Lime, Keener, Middle Big Injun (Subsystem) Maccrady Fm. (south) MISSISSIPPIAN Lower Big Injun, Squaw, Sunbury Sh. Price Fm. Weir, Coffee (Sunbury) Sh. Berea Ss. Cleveland Sh. Gantz, 50’, 30’, Ohio Sh. Chagrin Sh. Hampshire Group Huron Sh. Gordon Stray, Gordon, Hanover Sh. bed 4th, 5th, Bayard, Java Fm. Pipe Creek Sh. bed Greenland Foreknobs Fm. Elizabeth, Warren, Upper West Falls Fm. Angola Sh. Gap Group Scherr Fm. Speechley, Balltown, Rhinestreet Sh. Bradford, Riley, Cashaqua Sh. Sonyea Fm. Middlesex Sh. Benson, Alexander, Elk, Haverty, Genesee Fm./ West River Sh. Brallier Fm. Geneseo Sh./Burket Sh. Fox, Sycamore Harrell Sh. Harrell Sh. DEVONIAN Tully Ls. Millboro Sh. Hamilton Group Mahantango Fm. Mahantango Fm. Marcellus Sh. Marcellus Sh. Middle Tioga ash beds Tioga ash beds Huntersville Chert Needmore Sh. Onondaga Ls. Oriskany Ss. “Corniferous” Lower (west only) Helderberg Group Bass Islands Fm. Big Mountain Sh. Clifton Forge Ss. Keyser Fm. PALEOZOIC Lower Keyser Mbr. PHANEROZOIC Salina Fm. Tonoloway Fm. Newburg Wills Creek Fm. Upper Bloomsburg Williamsport Fm. Fm.
    [Show full text]
  • Eastern Section American Association of Petroleum Geologists 46Th Annual Meeting Morgantown, West Virginia September 24-27, 2017
    Eastern Section American Association of Petroleum Geologists 46th Annual Meeting Morgantown, West Virginia September 24-27, 2017 Program with Abstracts Hosted by: Appalachian Geological Society West Virginia University Department of Geology and Geography With support from the West Virginia Geological and Economic Survey Meeting Sponsors We appreciate your support! Marcellus Level Meeting Sponsors Utica Level Rogersville Level We appreciate your support! Eastern Section American Association of Petroleum Geologists 46th Annual Meeting Morgantown, West Virginia September 24-27, 2017 Program with Abstracts Hosted by: Appalachian Geological Society West Virginia University Department of Geology and Geography With support from the West Virginia Geological and Economic Survey Cover photo used with permission from Jacob Everhart, Canary, LLC Contents Welcome………………………………………………………………………………………………………………………………………1 2017 Meeting Organizing Committee……………………………………………………………………………….1 Eastern Section AAPG Officers………………………………………………………………………………………….2 Appalachian Geological Society Officers……………………………………………………………………………2 General Information…………………………………………………………………………………………………………………….3 Registration Hours……………………………………………………………………………………………………………3 Parking………………………………………………………………………………………………………………………….….3 Maps………………………………………………………………………………………………………………………………..3 Exhibits……………………………………………………………………………………………………………………….……3 Presenters and Judges Room……………………………………………………………………………………..….…3 Presenters, Judges and Session Chairs Breakfast and Information……………………………………3
    [Show full text]
  • Structural Evolution and Petroleum Potential of a Cambrian Intracratonic Rift Yss Tem: Mississippi Valley Graben, Rough Creek Graben, and Rome Trough John B
    University of Kentucky UKnowledge Kentucky Geological Survey Report of Kentucky Geological Survey Investigations 9-25-2018 Structural Evolution and Petroleum Potential of a Cambrian Intracratonic Rift ysS tem: Mississippi Valley Graben, Rough Creek Graben, and Rome Trough John B. Hickman University of Kentucky, [email protected] David C. Harris University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/kgs_ri Part of the Tectonics and Structure Commons Repository Citation Hickman, John B. and Harris, David C., "Structural Evolution and Petroleum Potential of a Cambrian Intracratonic Rift ysS tem: Mississippi Valley Graben, Rough Creek Graben, and Rome Trough" (2018). Kentucky Geological Survey Report of Investigations. 40. https://uknowledge.uky.edu/kgs_ri/40 This Report is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Report of Investigations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Kentucky Geological Survey William C. Haneberg, State Geologist and Director University of Kentucky, Lexington Structural Evolution and Petroleum Potential of a Cambrian Intracratonic Rift System: Mississippi Valley Graben, Rough Creek Graben, and Rome Trough John B. Hickman and David C. Harris Report of Investigations 4 doi.org/10.13023/kgs.ri04.13 Series XIII, 2018 Our Mission The Kentucky Geological Survey is a state-supported research center and public resource within the University of Kentucky.
    [Show full text]
  • Geology of the Eau Claire Formation and Conasauga Group in Part of Kentucky and Analysis of Their Suitability As Caprocks for Deeper Co2 Sequestration
    University of Kentucky UKnowledge Theses and Dissertations--Earth and Environmental Sciences Earth and Environmental Sciences 2012 GEOLOGY OF THE EAU CLAIRE FORMATION AND CONASAUGA GROUP IN PART OF KENTUCKY AND ANALYSIS OF THEIR SUITABILITY AS CAPROCKS FOR DEEPER CO2 SEQUESTRATION Ralph E. Bandy III University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Bandy, Ralph E. III, "GEOLOGY OF THE EAU CLAIRE FORMATION AND CONASAUGA GROUP IN PART OF KENTUCKY AND ANALYSIS OF THEIR SUITABILITY AS CAPROCKS FOR DEEPER CO2 SEQUESTRATION" (2012). Theses and Dissertations--Earth and Environmental Sciences. 8. https://uknowledge.uky.edu/ees_etds/8 This Master's Thesis is brought to you for free and open access by the Earth and Environmental Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Earth and Environmental Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Supplementary Information 1. Supplementary Methods
    Supplementary Information 1. Supplementary Methods Phylogenetic and age justifications for fossil calibrations The justifications for each fossil calibration are presented here for the ‘hornworts-sister’ topology (summarised in Table S2). For variations of fossil calibrations for the other hypothetical topologies, see Supplementary Tables S1-S7. Node 104: Viridiplantae; Chlorophyta – Streptophyta: 469 Ma – 1891 Ma. Fossil taxon and specimen: Tetrahedraletes cf. medinensis [palynological sample 7999: Paleopalynology Unit, IANIGLA, CCT CONICET, Mendoza, Argentina], from the Zanjón - Labrado Formations, Dapinigian Stage (Middle Ordovician), at Rio Capillas, Central Andean Basin, northwest Argentina [1]. Phylogenetic justification: Permanently fused tetrahedral tetrads and dyads found in palynomorph assemblages from the Middle Ordovician onwards are considered to be of embryophyte affinity [2-4], based on their similarities with permanent tetrads and dyads found in some extant bryophytes [5-7] and the separating tetrads within most extant cryptogams. Wellman [8] provides further justification for land plant affinities of cryptospores (sensu stricto Steemans [9]) based on: assemblages of permanent tetrads found in deposits that are interpreted as fully terrestrial in origin; similarities in the regular arrangement of spore bodies and size to extant land plant spores; possession of thick, resistant walls that are chemically similar to extant embryophyte spores [10]; some cryptospore taxa possess multilaminate walls similar to extant liverwort spores [11]; in situ cryptospores within Late Silurian to Early Devonian bryophytic-grade plants with some tracheophytic characters [12,13]. The oldest possible record of a permanent tetrahedral tetrad is a spore assigned to Tetrahedraletes cf. medinensis from an assemblage of cryptospores, chitinozoa and acritarchs collected from a locality in the Rio Capillas, part of the Sierra de Zapla of the Sierras Subandinas, Central Andean Basin, north-western Argentina [1].
    [Show full text]