Abstracts Book

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts Book GONDWANA 15 North meets South NDWANA GO 15 NORTH meets SOUTH MADRID 2014 ABSTRACTS BOOK 14-18 July 2014, Madrid (Spain) GONDWANA 15 North meets South Madrid (Spain) 14-18 July, 2014 COORDINATORS César Casquet Universidad Complutense de Madrid Instituto de Geociencias (CSIC-UCM), SPAIN Juan Carlos Gutiérrez-Marco Instituto de Geociencias (CSIC-UCM), SPAIN Javier Fernández-Suárez Universidad Complutense de Madrid Instituto de Geociencias (CSIC-UCM), SPAIN EDITORS Robert J. Pankhurst (BGS, UK) Pedro Castiñeiras (UCM, SPAIN) Sonia Sánchez Martínez (UCM, SPAIN) Meeting venue Superior Technical School of Mines i ORGANISING COMMITTEE Ricardo Arenas (Universidad Complutense, Madrid) Jacobo Abati (Universidad Complutense, Madrid) Pedro Castiñeiras (Universidad Complutense, Madrid) Diego García-Bellido (University of Adelaide, Australia) Enrique Díaz-Martínez (Instituto Geológico y Minero de España, Madrid) Ricardo Castroviejo (Superior School of Mining Engineers, ETSIM, Spain) Francisco Pereira (University of Évora, Portugal) Jean-Paul Liegeois (Royal Museum for Central Africa, Tervuren, Belgium) Ulf Linnemann (Museum für Mineralogie und Geologie Sektion Geochronologie, Dresden, Germany) Nasser Ennih (University El Jadida, Morocco) Udo Zimmermann (University of Stavanger, Norway) TREASURER AND REGISTRATION Sonia Sánchez Martínez (Universidad Complutense de Madrid, UCM, Spain) ii SCIENTIFIC COMMITTEE Miguel Basei (Brasil) Umberto Cordani (Brasil) Carlos Rapela (Arg) Robert Pankhurst (U.K.) Víctor Ramos (Argentina) Peter Cawood (Australia) Alan Collins (Australia) Maarten de Wit (S. Africa) Brendan Murphy (Canada) Axel Gerdes (Germany) Ulf Linnemann (Germany) Javier Álvaro (Spain) Madhava Santosh (India, China) Ian Dalziel (USA) COLLABORATORS Carmen Galindo (Tenured Professor, UCM) Alicia López Carmona (Postdoctoral research fellow, UCM) Richard Albert (PhD student, UCM) Enrique Merino (PhD student, UCM) Ana Filipa Montóia Jacinto (Graduate student, Lisbon University) Irene Novo Fernández (Graduate student, UCM) Alejandro Ramiro Camacho (Graduate student, UCM) Andrea Mazón Carro (Graduate student, UCM) Francisco Javier López Acevedo (Honorary collaborator, UCM) iii SPONSORS Geological Society of Spain Superior School of Mining Engineers of Madrid Spanish Geological Survey - IGME Universidad Complutense de Madrid Institute of Geosciences IGEO (CSIC, UCM) International Association for Gondwana Research IGCP Projects 574, 591, 596, 597 & 628 (IUGS-UNESCO) iv PAST GONDWANA MEETINGS Gondwana 1; 1967 Mar del Plata, Argentina Gondwana 2; 1970 Cape Town & Johannesburg, South Africa Gondwana 3; 1973 Canberra, Australia Gondwana 4; 1977 Calcultta, India Gondwana 5; 1980 Wellinton, New Zealand Gondwana 6; 1985 Ohio, USA Gondwana 7; 1988 São Paulo, Brazil Gondwana 8; 1991 Hobart, Tasmania Gondwana 9; 1994 Hyderabad, India Gondwana 10; 1998 Cape Town, South Africa Gondwana 11; 2002 Christchurch, New Zealand Gondwana 12; 2005 Mendoza, Argentina Gondwana 13; 2008 Dali, China Gondwana 14; 2011 Búzios, Brazil Gondwana 15; 2014 Madrid, Spain v SESSIONS 1) Gondwana assembly: Neoproterozoic to Cambrian 2) Margins of Gondwana a. The Proto-Andean margin b. The northern margin and the peri Gondwanan terranes c. The accretion to Laurussia: the Varsican Orogeny d. The southern margin e. The Gondwana orogeny (cancelled) 3) Processes in Gondwana away from the margins (cancelled) 4) Gondwana break-up and dispersal: sedimentary record, magmatism and geodynamics 5) Ore deposits and Gondwana evolution 6) Record of paleo-climatic events in Gondwana (cancelled) 7) Gondwana biota 8) Paleomagnetic constraints on the Gondwana paleo- geographical evolution (cancelled) 9) Gondwana to Asia (reduced) vi FOREWORD This Gondwana Symposium takes place for the first time in Europe. It is the 15th of a series of symposia that started 47 years ago in Mar del Plata (Argentina) and which have persisted to date every three years. The symposia were formerly run under the auspices of the IUGS and have been overseen by the Gondwana Committee, currently chaired by Dr. Renata Schmitt of Universidad Federal do Rio de Janeiro. Nowadays the Gondwana Symposium has consolidated the efforts of geoscientists involved in one or more of the many issues involved in the formation, evolution and dispersal of this supercontinent. The topics are relevant to scientists from many different areas and countries. On this occasion the number of attendants is close to 180 which is quite impressive if we consider the many difficulties that geoscientists in general and those interested in basic science in particular are now experiencing. The past few years have been -and still are- times of economic crisis- which for Spain has meant severe cuts in research budgets for all disciplines. Also the timing of the conference in July has discouraged many from attending because it falls within the busiest part of the year at universities and research centres in the southern hemisphere – and it has to be admitted that summer in Madrid is quite hot. The syponsium will be held at the Superior Technical School of Mines. This institution was first founded in 1777 in Almadén, as an Academy of Mines next to this well-known and world-class Hg-mining district. This was only ten years after the first Academy of Mines was created in Freiberg (Saxony). It is a historical academy and we must gratefully acknowledge the authorities of the school, who were enthusiastic to house the symposium; in particular, the Director, Dr. J.L. Parra and Professor Dr. R. Castroviejo have helped with planning and organization. We also acknowledge the help of several institutions and people, starting with the Spanish Geological Society (Dr. M. Aurell), the Spanish Geological Survey-IGME (Dr. J. Civis), and its splendid Museum whose director (Dr. Isabel Rábano) has assisted us on many different issues with much skill. Dr. M. Santosh of IAGR has contributed with his sponsoring and advice. The Universidad Complutense has provided logistic help for the intra-conference field trips, and IGEO (UCM-CSIC Institute of Geosciences) has contributed financial support. At a personal level, Dr. A. Díez-Herrero from IGME has been an enthusiastic collaborator through the long process that started three years ago with the earlier idea that the city of Segovia could be the congress venue. Remarkably engineer Ignacio Gutierrez Perez also from Segovia was the website designer and the webmaster in charge of sending massive mailings to all those that we could reunite within a single mailing list built up from previous symposia lists. All those referred to at the start of this abstracts book have collaborated to different degrees and we acknowledge the effort. We are particularly indebted to Sonia Sánchez who was in charge of the registration and the treasury, and to the other two editors of the book, Bob Pankhurst and Pedro Castiñeiras. Carmen Galindo helped to set up the programme. Gondwana is a concept that is not so central a part of the northern hemisphere cultural heritage as it is for the southern one. Gondwana is truly alive in countries like Australia, South Africa or Southern South America. However the concept is becoming more significant for geologists in Europe, North America or Northern Asia. This symposium will be a modest contribution to enlarge this knowledge and a contribution to tie links between northern and southern cultures of Gondwana. vii Printed by the Instituto Geológico y Minero de España Madrid, July 2014 Abstract index Abati, J., Aghzer, A.M., Gerdes, A., Ennih, N. Precambrian isotopic sources of the Anti-Atlas (Morocco) .............................................................................................................................1 Albardeiro, L., Pereira, M.F., Gama, C., Chichorro, M., Hofmann, M., Linnemann, U. Tracing the geodymamic evolution of the North Gondwana margin using detrital-zircon geochro- nology of Pliocene–Pleistocene sand from SW Iberia .......................................................2 Albert, R., Arenas, R., Gerdes, A., Sánchez-Martínez, S., Fernández-Suárez, J., Fuenlabrada, J.M. Provenance of the Variscan Upper Allochthon (Cabo Ortegal complex, NW Iberian Massif) ..................................................................................................................................3 Almeida, J., Mohriak, W., Heilbron, M., Eirado, L.G., Valeriano, C., Tupinambá, M., Dios, F., Guedes, E. Magmatic activity in SE Brazil and SW Africa and the control on continent break-up ................................................................................................................................4 Alonso, J.L., Banchig, A.L., Voldman, G., Albanesi, G., Cardó, R., Fernández, L.P., Festa, A., Martín-Merino, G., Ortega, G., Rodríguez Fernández, L.R., Súarez, A., Ramos, V.A. Exten- sion and subsequent inversion tectonics in the Ratones section: the boundary between the Central and Western Argentine Precordillera .......................................................................5 Alonso, J.L., Gallastegui, J., García-Sansegundo, J., Rodríguez Fernández, L.R., Farias, P., Heredia, N., Cardó, R., Quintana, L., Ramos V.A. Fold reactivation in the Argentine Pre- cordillera ...............................................................................................................................6 Alvaro, J.J. The Cambrian anti-clockwise rotation of Gondwana and its palaeo-biogeographic implications ..........................................................................................................................7
Recommended publications
  • Sereno 20060098.Vp
    Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger PAUL C. SERENO and STEPHEN L. BRUSATTE Sereno, P.C. and Brusatte, S.L. 2008. Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica Polonica 53 (1): 15–46. We report the discovery of basal abelisaurid and carcharodontosaurid theropods from the mid Cretaceous (Aptian– Albian, ca. 112 Ma) Elrhaz Formation of the Niger Republic. The abelisaurid, Kryptops palaios gen. et sp. nov., is repre− sented by a single individual preserving the maxilla, pelvic girdle, vertebrae and ribs. Several features, including a maxilla textured externally by impressed vascular grooves and a narrow antorbital fossa, clearly place Kryptops palaios within Abelisauridae as its oldest known member. The carcharodontosaurid, Eocarcharia dinops gen. et sp. nov., is repre− sented by several cranial bones and isolated teeth. Phylogenetic analysis places it as a basal carcharodontosaurid, similar to Acrocanthosaurus and less derived than Carcharodontosaurus and Giganotosaurus. The discovery of these taxa sug− gests that large body size and many of the derived cranial features of abelisaurids and carcharodontosaurids had already evolved by the mid Cretaceous. The presence of a close relative of the North American genus Acrocanthosaurus on Af− rica suggests that carcharodontosaurids had already achieved a trans−Tethyan distribution by the mid Cretaceous. Key words: Theropod, abelisaurid, allosauroid, carcharodontosaurid, Kryptops, Eocarcharia, Cretaceous, Africa. Paul C. Sereno [[email protected]], Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, Illinois, 60637, USA; Stephen L. Brusatte [[email protected]], Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom.
    [Show full text]
  • From the Ordovician (Darriwillian) of Morocco
    Palaeogeographic implications of a new iocrinid crinoid (Disparida) from the Ordovician (Darriwillian) of Morocco Samuel Zamora1, Imran A. Rahman2 and William I. Ausich3 1 Instituto Geologico´ y Minero de Espana,˜ Zaragoza, Spain 2 School of Earth Sciences, University of Bristol, Bristol, United Kingdom 3 School of Earth Sciences, Ohio State University, Columbus, OH, United States ABSTRACT Complete, articulated crinoids from the Ordovician peri-Gondwanan margin are rare. Here, we describe a new species, Iocrinus africanus sp. nov., from the Darriwilian-age Taddrist Formation of Morocco. The anatomy of this species was studied using a combination of traditional palaeontological methods and non-destructive X-ray micro-tomography (micro-CT). This revealed critical features of the column, distal arms, and aboral cup, which were hidden in the surrounding rock and would have been inaccessible without the application of micro-CT. Iocrinus africanus sp. nov. is characterized by the presence of seven to thirteen tertibrachials, three in-line bifurcations per ray, and an anal sac that is predominantly unplated or very lightly plated. Iocrinus is a common genus in North America (Laurentia) and has also been reported from the United Kingdom (Avalonia) and Oman (middle east Gondwana). Together with Merocrinus, it represents one of the few geographically widespread crinoids during the Ordovician and serves to demonstrate that faunal exchanges between Laurentia and Gondwana occurred at this time. This study highlights the advantages of using both conventional
    [Show full text]
  • Conodonts in Ordovician Biostratigraphy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia 1 Conodonts in Ordovician biostratigraphy STIG M. BERGSTRÖM AND ANNALISA FERRETTI Conodonts in Ordovician biostratigraphy The long time interval after Pander’s (1856) original conodont study can in terms of Ordovician conodont biostratigraphic research be subdivided into three periods, namely the Pioneer Period (1856-1955), the Transition Period (1955-1971), and the Modern Period (1971-Recent). During the pre-1920s, the few published conodont investigations were restricted to Europe and North America and were not concerned about the potential use of conodonts as guide fossils. Although primarily of taxonomic nature, the pioneer studies by Branson & Mehl, Stauffer, and Furnish during the 1930s represent the beginning of the use of conodonts in Ordovician biostratigraphy. However, no formal zones were introduced until Lindström (1955) proposed four conodont zones in the Lower Ordovician of Sweden, which marks the end of the Pioneer Period. Because Lindström’s zone classification was not followed by similar work outside Baltoscandia, the time interval up to the late 1960s can be regarded as a Transition Period. A milestone symposium volume, entitled ‘Conodont Biostratigraphy’ and published in 1971, 2 summarized much new information on Ordovician conodont biostratigraphy and is taken as the beginning of the Modern Period of Ordovician conodont biostratigraphy. In this volume, the Baltoscandic Ordovician was subdivided into named conodont zones whereas the North American Ordovician succession was classified into a series of lettered or numbered Faunas. Although most of the latter did not receive zone names until 1984, this classification has been used widely in North America.
    [Show full text]
  • Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R
    Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R. J. PANKHURST (CHIEF EDITOR) P. DOYLE E J. GREGORY J. S. GRIFFITHS A. J. HARTLEY R. E. HOLDSWORTH A. C. MORTON N. S. ROBINS M. S. STOKER J. P. TURNER Special Publication reviewing procedures The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society's Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted. Once the book is accepted, the Society has a team of Book Editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satis- factory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees' forms and comments must be available to the Society's Book Editors on request. Although many of the books result from meetings, the editors are expected to commission papers that were not pre- sented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book. Geological Society Special Publications are included in the ISI Science Citation Index, but they do not have an impact factor, the latter being applicable only to journals.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic refer to tables, and those in bold to figures. accretionary orogens, defined 23 Namaqua-Natal Orogen 435-8 Africa, East SW Angola and NW Botswana 442 Congo-Sat Francisco Craton 4, 5, 35, 45-6, 49, 64 Umkondo Igneous Province 438-9 palaeomagnetic poles at 1100-700 Ma 37 Pan-African orogenic belts (650-450 Ma) 442-50 East African(-Antarctic) Orogen Damara-Lufilian Arc-Zambezi Belt 3, 435, accretion and deformation, Arabian-Nubian Shield 442-50 (ANS) 327-61 Katangan basaltic rocks 443,446 continuation of East Antarctic Orogen 263 Mwembeshi Shear Zone 442 E/W Gondwana suture 263-5 Neoproterozoic basin evolution and seafloor evolution 357-8 spreading 445-6 extensional collapse in DML 271-87 orogenesis 446-51 deformations 283-5 Ubendian and Kibaran Belts 445 Heimefront Shear Zone, DML 208,251, 252-3, within-plate magmatism and basin initiation 443-5 284, 415,417 Zambezi Belt 27,415 structural section, Neoproterozoic deformation, Zambezi Orogen 3, 5 Madagascar 365-72 Zambezi-Damara Belt 65, 67, 442-50 see also Arabian-Nubian Shield (ANS); Zimbabwe Belt, ophiolites 27 Mozambique Belt Zimbabwe Craton 427,433 Mozambique Belt evolution 60-1,291, 401-25 Zimbabwe-Kapvaal-Grunehogna Craton 42, 208, 250, carbonates 405.6 272-3 Dronning Mand Land 62-3 see also Pan-African eclogites and ophiolites 406-7 Africa, West 40-1 isotopic data Amazonia-Rio de la Plata megacraton 2-3, 40-1 crystallization and metamorphic ages 407-11 Birimian Orogen 24 Sm-Nd (T DM) 411-14 A1-Jifn Basin see Najd Fault System lithologies 402-7 Albany-Fraser-Wilkes
    [Show full text]
  • The Position of Madagascar Within Gondwana and Its Movements During Gondwana Dispersal ⇑ Colin Reeves
    Journal of African Earth Sciences xxx (2013) xxx–xxx Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci The position of Madagascar within Gondwana and its movements during Gondwana dispersal ⇑ Colin Reeves Earthworks BV, Achterom 41A, 2611 PL Delft, The Netherlands article info abstract Article history: A reassembly of the Precambrian fragments of central Gondwana is presented that is a refinement of a Available online xxxx tight reassembly published earlier. Fragments are matched with conjugate sides parallel as far as possible and at a distance of 60–120 km from each other. With this amount of Precambrian crust now stretched Keywords: into rifts and passive margins, a fit for all the pieces neighbouring Madagascar – East Africa, Somalia, the Madagascar Seychelles, India, Sri Lanka and Mozambique – may be made without inelegant overlap or underlap. This Gondwana works less well for wider de-stretched margins on such small fragments. A model of Gondwana dispersal Aeromagnetics is also developed, working backwards in time from the present day, confining the relative movements of Indian Ocean the major fragments – Africa, Antarctica and India – such that ocean fracture zones collapse back into Dykes themselves until each ridge-reorganisation is encountered. The movements of Antarctica with respect to Africa and of India with respect to Antarctica are defined in this way by a limited number of interval poles to achieve the Gondwana ‘fit’ situation described above. The ‘fit’ offers persuasive alignments of structural and lithologic features from Madagascar to its neighbours. The dispersal model helps describe the evolution of Madagascar’s passive margins and the role of the Madagascar Rise as a microplate in the India–Africa–Antarctica triple junction.
    [Show full text]
  • Plant Fossils and Gondwana Flora
    UNIT 12 PLANT FOSSILS AND GONDWANA FLORA Structure_____________________________________________________ 12.1 Introduction Vertebraria Expected Learning Outcomes Thinnfeldia 12.2 Plant Fossils Sigillaria Definition Nilssonia Classification Williamsonia Modes of Preservation Ptilophyllum Significance 12.5 Activity 12.3 Gondwana Flora of India 12.6 Summary 12.4 Descriptions of some Plant 12.7 Terminal Questions Fossils 12.8 References Glossopteris 12.9 Further/Suggested Readings Gangamopteris 12.10 Answers 12.1 INTRODUCTION The animals, plants and micro-organisms are the three main life forms surviving today. Even their fossilised remains are found in rocks that tell us about their past history. The animals comprise invertebrates and vertebrates. In Block 4, you will read about the invertebrates and their geological history that began in the latest Precambrian time. You also read about the microfossils in Unit 10 that too have a long geological record beginning from Precambrian onwards. In Unit 11, you read the evolutionary history of one of the vertebrate groups i.e., horse. In this unit, you will read the plant fossils and the Gondwana flora of India. Introduction to Palaeontology Block……………………………………………………………………………………………….….............….…........ 3 Like the kingdom Animalia, plants also form a separate kingdom known as the Plantae. It is thought that plants appeared first in the Precambrian, but their fossil record is poor. It is also proposed that earliest plants were aquatic and during the Ordovician period a transition from water to land took place that gave rise to non-vascular land plants. However, it was during the Silurian period, that the vascular plants appeared first on the land. The flowering plants emerged rather recently, during the Cretaceous period.
    [Show full text]
  • Locating South China in Rodinia and Gondwana: a Fragment of Greater India Lithosphere?
    Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Peter A. Cawood1, 2, Yuejun Wang3, Yajun Xu4, and Guochun Zhao5 1Department of Earth Sciences, University of St Andrews, North Street, St Andrews KY16 9AL, UK 2Centre for Exploration Targeting, School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 3State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 4State Key Laboratory of Biogeology and Environmental Geology, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China 5Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China ABSTRACT metamorphosed Neoproterozoic strata and From the formation of Rodinia at the end of the Mesoproterozoic to the commencement unmetamorphosed Sinian cover (Fig. 1; Zhao of Pangea breakup at the end of the Paleozoic, the South China craton fi rst formed and then and Cawood, 2012). The Cathaysia block is com- occupied a position adjacent to Western Australia and northern India. Early Neoproterozoic posed predominantly of Neoproterozoic meta- suprasubduction zone magmatic arc-backarc assemblages in the craton range in age from ca. morphic rocks, with minor Paleoproterozoic and 1000 Ma to 820 Ma and display a sequential northwest decrease in age. These relations sug- Mesoproterozoic lithologies. Archean basement gest formation and closure of arc systems through southeast-directed subduction, resulting is poorly exposed and largely inferred from the in progressive northwestward accretion onto the periphery of an already assembled Rodinia. presence of minor inherited and/or xenocrys- Siliciclastic units within an early Paleozoic succession that transgresses across the craton were tic zircons in younger rocks (Fig.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • Abstract Book
    Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 19 Graz 2014 IGCP 596 & 580, Joint Meeting Mongolia Ulaanbaatar, 5-18th August 2014 Berichte des Institutes für Erdwissenschaften, Karl-Franzens-Universität Graz, Band 19 IGCP 596 & IGCP 580 Joint Meeting and Field-Workshop International Symposium in Mongolia Ulaanbaatar, Mongolia 5-18th August 2014 ABSTRACT VOLUME Editorial: KIDO, E., WATERS, J.A., ARIUNCHIMEG, YA., SERSMAA, G., DA SILVA, A.C., WHALEN, M., SUTTNER, T.J. & KÖNIGSHOF, P. Impressum: Alle Rechte für das In- und Ausland vorbehalten. Copyright: Institut für Erdwissenschaften, Bereich Geologie und Paläontologie, Karl-Franzens-Universität Graz, Heinrichstrasse 26, A-8010 Graz, Österreich Medieninhaber, Herausgeber und Verleger: Institut für Erdwissenschaften, Karl-Franzens-Universität Graz, homepage: www.uni-graz.at Druck: Medienfabrik Graz GmbH, Dreihackengasse 20, 8020 Graz 1 Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 19 Graz 2014 IGCP 596 & 580, Joint Meeting Mongolia Ulaanbaatar, 5-18th August 2014 2 Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 19 Graz 2014 IGCP 596 & 580, Joint Meeting Mongolia Ulaanbaatar, 5-18th August 2014 Organization Organizing Committee Johnny A. Waters - Appalachian State University (USA) Ariunchimeg Yarinpil - Palaeontological Centre, Mongolian Academy of Sciences (Mongolia) Sersmaa Gonchigdorj - Mongolian University of Science and Technology (Mongolia) Anne-Christine da Silva - University of Liège (Belgium) Michael Whalen - University of Alaska Fairbanks (USA) Erika Kido - University of Graz (Austria) Thomas J. Suttner - University of Graz (Austria) Peter Königshof - Senckenberg Forschungsinstitut und Naturmuseum (Germany) Scientific Committee Johnny A. Waters Ariunchimeg Yarinpil Sersmaa Gonchigdorj Anne-Christine da Silva Michael Whalen Erika Kido Thomas J.
    [Show full text]
  • Catalog of Type Specimens of Invertebrate Fossils: Cono- Donta
    % {I V 0> % rF h y Catalog of Type Specimens Compiled Frederick J. Collier of Invertebrate Fossils: Conodonta SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 9 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti­ tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com­ mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes­ sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by mailing lists to libraries, laboratories, and other in­ terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • “Modern-Type Plate Tectonics”?
    SILEIR RA A D B E E G D E A O D L Special Session, “A tribute to Edilton Santos, a leader in Precambrian O E I G C I A Geology in Northeastern Brazil”, edited by A.N. Sial and V.P. Ferreira O BJGEO S DOI: 10.1590/2317-4889202020190095 Brazilian Journal of Geology D ESDE 1946 Dawn of metazoans: to what extent was this influenced by the onset of “modern-type plate tectonics”? Umberto G. Cordani1* , Thomas R. Fairchild1 , Carlos E. Ganade1 , Marly Babinski1 , Juliana de Moraes Leme1 Abstract The appearance of complex megascopic multicellular eukaryotes in the Ediacaran occurred just when the dynamics of a cooling Earth allowed establishment of a new style of global tectonics that continues to the present as “modern-type plate tectonics”. The advent of this style was first registered in 620 Ma-old coesite-bearing Ultra-High Pressure eclogites within the Transbrasiliano-Kandi mega-shear zone along the site of the West Gondwana Orogeny (WGO). These eclogites comprise the oldest evidence of slab-pull deep subduction capable of inducing con- tinental collisions and producing high-relief Himalayan-type mega-mountains. Life, prior to this time, was essentially microscopic. Yet with increasing Neoproterozoic oxygenation and intensified influx of nutrients to Ediacaran oceans, resulting from the erosion of these mountains, complex macroscopic heterotrophic eukaryotes arose and diversified, taking the biosphere to a new evolutionary threshold. The repeated elevation of Himalayan-type mega-mountains ever since then has continued to play a fundamental role in nutrient supply and biosphere evolution. Other authors have alluded to the influence of Gondwana mountain-building upon Ediacaran evolution, however we claim here to have identified when and where it began.
    [Show full text]