The Position of Madagascar Within Gondwana and Its Movements During Gondwana Dispersal ⇑ Colin Reeves

Total Page:16

File Type:pdf, Size:1020Kb

The Position of Madagascar Within Gondwana and Its Movements During Gondwana Dispersal ⇑ Colin Reeves Journal of African Earth Sciences xxx (2013) xxx–xxx Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci The position of Madagascar within Gondwana and its movements during Gondwana dispersal ⇑ Colin Reeves Earthworks BV, Achterom 41A, 2611 PL Delft, The Netherlands article info abstract Article history: A reassembly of the Precambrian fragments of central Gondwana is presented that is a refinement of a Available online xxxx tight reassembly published earlier. Fragments are matched with conjugate sides parallel as far as possible and at a distance of 60–120 km from each other. With this amount of Precambrian crust now stretched Keywords: into rifts and passive margins, a fit for all the pieces neighbouring Madagascar – East Africa, Somalia, the Madagascar Seychelles, India, Sri Lanka and Mozambique – may be made without inelegant overlap or underlap. This Gondwana works less well for wider de-stretched margins on such small fragments. A model of Gondwana dispersal Aeromagnetics is also developed, working backwards in time from the present day, confining the relative movements of Indian Ocean the major fragments – Africa, Antarctica and India – such that ocean fracture zones collapse back into Dykes themselves until each ridge-reorganisation is encountered. The movements of Antarctica with respect to Africa and of India with respect to Antarctica are defined in this way by a limited number of interval poles to achieve the Gondwana ‘fit’ situation described above. The ‘fit’ offers persuasive alignments of structural and lithologic features from Madagascar to its neighbours. The dispersal model helps describe the evolution of Madagascar’s passive margins and the role of the Madagascar Rise as a microplate in the India–Africa–Antarctica triple junction. Intrusions, extrusions and dykes observed in Madagascar and its neighbours, largely from aeromagnetic survey data, are related to the outbreak of the Karoo/Bouvet man- tle plume at 182 Ma, the Marion mantle plume at 88 Ma and the Reunion mantle plume at 66 Ma. The dispersal model may be viewed and downloaded as an animation at: http://www.reeves.nl/ gondwana. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction 2. Gondwana reassembled The purpose of this paper is to describe and define (a) a well- The continent of Gondwana became an entity as a result of substantiated central position for Madagascar within reassembled complex Neoproterozoic and early Cambrian tectonism – primarily Gondwana and (b) the disruption and dispersal process by which the collision of several pre-existing continents – that involved the disintegration of Gondwana led to the present situation of many parts of Africa, South America, India and Antarctica and led Madagascar as a small continent within the Indian Ocean. The to a continuous landmass that included more than half the land work is based on many years of building and refining plate tectonic area of the world. In the vicinity of Madagascar, the north–south- models of Gondwana using the ‘Atlas’ paleogeographic mapping striking East African orogeny was formed by the east–west colli- system (http://www.the-conference.com/cpsl/atlas.htm) and sion of India with the Tanzania craton following the closure of an experience in many hitherto-adjacent parts of Gondwana with ocean that previously separated them (Collins and Pisarevsky, the interpretation of regional geophysical data – particularly aero- 2005). This process was complete by early Cambrian times magnetic surveys – in support of geological mapping. The paper (530 Ma) and most of Gondwana, including certainly the central therefore attempts to set Madagascar into its global-tectonic con- parts around Madagascar, became stable for the next 250 myr. The text such that the geological results from the recent World Bank principal activities affecting Gondwana during this period of quies- project (BGS-USGS-GLW, 2008; GAF, 2009; BRGM-USGS, 2012) cence were the rafting of several fragments off the north coast of may be better seen in respect to other fragments of Gondwana the continent and the development of an orogeny that extended and their common tectonic history. along Gondwana’s Pacific coast (Trouw and de Wit, 1999), both processes remote from Madagascar itself. The central parts of the united continent were stable until Late ⇑ Tel.: +31 611356272. Carboniferous time when the so-called ‘Karoo’ rifting episodes E-mail address: [email protected] started and led to the preservation of continental sediments in 1464-343X/$ - see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jafrearsci.2013.07.011 Please cite this article in press as: Reeves, C. The position of Madagascar within Gondwana and its movements during Gondwana dispersal. J. Afr. Earth Sci. (2013), http://dx.doi.org/10.1016/j.jafrearsci.2013.07.011 2 C. Reeves / Journal of African Earth Sciences xxx (2013) xxx–xxx an extensive rift system across southern and eastern Africa, India tinents of Gondwana and their outlines determined from and adjacent Antarctica (Catuneanu et al., 2005). The Karoo sedi- geological maps such as the Geological Map of the World (Bouysse, ments were later covered in southern Africa by extensive basalts 2010) and the digital map series of the USGS (2000). These out- that are attributed to the outbreak of the Karoo/Bouvet large igne- lines, where obscured by younger cover rocks, may often be deter- ous province at 182 Ma (Toarcian – Svensen et al. (2012)) which mined with assistance from airborne geophysical data, such as pre-dated the onset of Gondwana dispersal by about 15 myr. aeromagnetic surveys (e.g. Barritt, 1993), or gravity anomaly Starting with the pioneering insights of Du Toit (1937), the pre- images (e.g. Andersen and Knudsen, 2009). In the worst cases, cise geometry of the Gondwana reassembly has undergone re- boundaries have been estimated or interpolated conservatively, peated refinements (e.g. Smith and Hallam (1970)) and the minimising unlikely invention. These outlines have all been care- Gondwana geological map of De Wit et al. (1988) has been widely fully digitized and attached to the appropriate fragments. used. Lawver et al. (1997) introduced the idea of a tighter fit of the At the margins of these fragments, outcropping or near-out- continents off East Africa that has been pursued by the present cropping Precambrian basement rocks are down-faulted at the author, following the first publication of detailed ocean-floor (hidden) shoulders of rifts that, in many cases, developed into pas- topography from satellite altimetry (Smith and Sandwell, 1997) sive margins. Inboard of these shoulders it is assumed that each and its subsequently improved definition (Andersen and Knudsen, fragment has retained the same size and shape throughout Phan- 2009). The most recent reassembly (CR12AALE) for the region sur- erozoic times and so is made up of Precambrian continental crust rounding Madagascar is illustrated in Fig. 1 and the finite rotation of undiminished thickness. The area shown in Fig. 1 was, then, parameters that achieve this configuration of the fragments are gi- essentially continuous Precambrian crust through Paleozoic times. ven in Table 1. The fragments so defined, about fifty for all Gondwana, were This reassembly has undergone some refinement from that gi- assembled with, as far as possible, their rift shoulders parallel to ven by Reeves et al. (2002) but is not, in principle, greatly different and separated from the previously conjugate rift shoulder by a dis- from it. The rationale for the reassembly is that areas of rigid Pre- tance that is a reasonable estimate of the width of the strip of Pre- cambrian crust may be identified throughout the present-day con- cambrian crust that foundered within the rift zone and became stretched in the rifting processes that, in many cases, led to drifting and ocean formation. This value will, undoubtedly, vary from place to place, but a solution for all fragments with persuasive elegance is found with values in the range 60–120 km is shown in Fig. 1. The average of seven closest points of contact with its neighbours for Madagascar is a distance of 72 km. Two types of independent information are offered here to sub- stantiate this reconstruction. First, data from global satellite gravity observations (Smith and Sandwell, 1997; Andersen and Knudsen, 2009) indicate clear linear anomalies may be found running parallel to many continental margins. These are in many cases attributable to the edges of the continental shelves, relics of a late stage of rifting turning into drifting with an area of stretched continental crust lying between them and the ‘inboard’ fragment margin described above. These (mostly offshore) anomalies have been traced and ascribed to the appropriate continental fragment so that they follow that fragment in any reconstruction. In Fig. 2 these features are shown reconstructed as per the model defined in Table 1. Madagascar dis- plays two distinctly different types of margin. In the east the margin is very narrow and the Madagascar anomaly coincides with that off India for a length of about 500 km; elsewhere there is underlap. The west coast of Madagascar has been extended by two episodes of rif- ting (Karoo and Cretaceous) leaving Madagascar with two anoma- lies, inboard and outboard, separated by about 175 km. The gravity margin of the East Africa and Somali coasts falls midway between these two anomalies in the reconstruction. A second demonstration comes from the USGS digital data set of (largely offshore) faults and basin depth contours (USGS, 2000). This data set has similarly been divided between the relevant Precam- brian fragments and reassembled in Fig. 3.InFig. 3(a) the data for all fragments except Madagascar is shown while in Fig. 3(b) only the data for Madagascar is displayed. The representations of faulting and basin depth contours fall mostly within the overlapping area of Fig.
Recommended publications
  • 7 X 11 Long.P65
    Cambridge University Press 978-0-521-74583-3 - Structural Geology: An Introduction to Geometrical Techniques, Fourth Edition Donal M. Ragan Frontmatter More information STRUCTURAL GEOLOGY An Introduction to Geometrical Techniques fourth edition Many textbooks describe information and theories about the Earth without training students to utilize real data to answer basic geological questions. This volume – a combi- nation of text and lab book – presents an entirely different approach to structural geology. Designed for undergraduate laboratory classes, it is dedicated to helping students solve many of the geometrical problems that arise from field observations. The basic approach is to supply step-by-step instructions to guide students through the methods, which include well-established techniques as well as more cutting-edge approaches. Particular emphasis is given to graphical methods and visualization techniques, intended to support students in tackling traditionally challenging two- and three-dimensional problems. Exer- cises at the end of each chapter provide students with practice in using the techniques, and demonstrate how observations and measurements from the field can be converted into useful information about geological structures and the processes responsible for creating them. Building on the success of previous editions, this fourth edition has been brought fully up-to-date and incorporates new material on stress, deformation, strain and flow. Also new to this edition are a chapter on the underlying mathematics and discussions of uncertainties associated with particular types of measurement. With stereonet plots and full solutions to the exercises available online at www.cambridge.org/ragan, this book is a key resource for undergraduate students as well as more advanced students and researchers wanting to improve their practical skills in structural geology.
    [Show full text]
  • Solis Catherine 202006 MAS Thesis.Pdf
    An Investigation of Display Shapes and Projections for Supporting Spatial Visualization Using a Virtual Overhead Map by Catherine Solis A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Mechanical & Industrial Engineering University of Toronto c Copyright 2020 by Catherine Solis Abstract An Investigation of Display Shapes and Projections for Supporting Spatial Visualization Using a Virtual Overhead Map Catherine Solis Master of Applied Science Graduate Department of Mechanical & Industrial Engineering University of Toronto 2020 A novel map display paradigm named \SkyMap" has been introduced to reduce the cognitive effort associated with using map displays for wayfinding and navigation activities. Proposed benefits include its overhead position, large scale, and alignment with the mapped environment below. This thesis investigates the substantiation of these benefits by comparing a conventional heads-down display to flat and domed SkyMap implementations through a spatial visualization task. A within-subjects study was conducted in a virtual reality simulation of an urban environment, in which participants indicated on a map display the perceived location of a landmark seen in their environment. The results showed that accuracy at this task was greater with a flat SkyMap, and domes with stereographic and equidistant projections, than with a heads-down map. These findings confirm the proposed benefits of SkyMap, yield important design implications, and inform future research. ii Acknowledgements Firstly, I'd like to thank my supervisor Paul Milgram for his patience and guidance over these past two and a half years. I genuinely marvel at his capacity to consistently challenge me to improve as a scholar and yet simultaneously show nothing but the utmost confidence in my abilities.
    [Show full text]
  • Pan-African Orogeny 1
    Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).
    [Show full text]
  • The Phanerozoic Thermo-Tectonic Evolution of Northern Mozambique Constrained by Ar, Fission Track and (U-Th)/He Analyses
    THE PHANEROZOIC THERMO-TECTONIC EVOLUTION OF NORTHERN MOZAMBIQUE 40 39 CONSTRAINED BY AR/ AR, FISSION TRACK AND (U-TH)/HE ANALYSES Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften am Fachbereich Geowissenschaften der Universität Bremen Vorgelegt von Matthias Ch. Daßinnies Bremen, 2006 Tag des Kolloquiums: 22.12.2006 Gutachter: Prof. Dr. J. Jacobs Prof. Dr. W. Bach Prüfer: Prof. Dr. T. Mörz Prof. A. Kopf Contents CONTENTS ACKNOWLEDGEMENTS ...................................................................................................... v SUMMARY........................................................................................................................ vii ZUSAMMENFASSUNG ......................................................................................................... x CHAPTER 1 INTRODUCTION .................................................................................................................. 1 1.1 Scope of thesis.................................................................................................. 1 1.2 Research objectives and methods..................................................................... 3 1.3 Outline of thesis ............................................................................................... 4 CHAPTER 2 THERMOCHRONOLOGICAL METHODS AND ANALYTICS ...................................................... 6 2.1 40Ar/39Ar dating method................................................................................... 6 2.1.1 Argon isotope measurements
    [Show full text]
  • Detrital Zircon Provenance of North Gondwana Palaeozoic Sandstones from Saudi Arabia
    Geological Magazine Detrital zircon provenance of north Gondwana www.cambridge.org/geo Palaeozoic sandstones from Saudi Arabia Guido Meinhold1,2 , Alexander Bassis3,4, Matthias Hinderer3, Anna Lewin3 and Jasper Berndt5 Original Article 1School of Geography, Geology and the Environment, Keele University, Keele, Staffordshire, ST5 5BG, UK; Cite this article: Meinhold G, Bassis A, 2Abteilung Sedimentologie/Umweltgeologie, Geowissenschaftliches Zentrum Göttingen, Universität Göttingen, Hinderer M, Lewin A, and Berndt J (2021) Goldschmidtstraße 3, 37077 Göttingen, Germany; 3Institut für Angewandte Geowissenschaften, Technische Detrital zircon provenance of north Gondwana 4 Palaeozoic sandstones from Saudi Arabia. Universität Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany; Eurofins water&waste GmbH, 5 Geological Magazine 158:442–458. https:// Eumigweg 7, 2351 Wiener Neudorf, Austria and Institut für Mineralogie, Westfälische Wilhelms-Universität doi.org/10.1017/S0016756820000576 Münster, Corrensstraße 24, 48149 Münster, Germany Received: 12 February 2020 Abstract Revised: 18 May 2020 Accepted: 18 May 2020 We present the first comprehensive detrital zircon U–Pb age dataset from Palaeozoic sand- First published online: 24 June 2020 stones of Saudi Arabia, which provides new insights into the erosion history of the East African Orogen and sediment recycling in northern Gondwana. Five main age populations Keywords: U–Pb geochronology; sediment provenance; are present in varying amounts in the zircon age spectra, with age peaks at ~625 Ma, detrital zircon; Palaeozoic; north Gondwana; ~775 Ma, ~980 Ma, ~1840 Ma and ~2480 Ma. Mainly igneous rocks of the Arabian– Saudi Arabia Nubian Shield are suggested to be the most prominent sources for the Ediacaran to middle Tonian zircon grains. Palaeoproterozoic and Archaean grains may be xenocrystic zircons or Author for correspondence: Guido Meinhold, Email: [email protected] they have been recycled from older terrigenous sediment.
    [Show full text]
  • Mineralization and Sustainable Development in the West African Craton: from field Observations to Modelling
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Mineralization and sustainable development in the West African Craton: from field observations to modelling Tahar Aïfa Université de Rennes, CNRS, Géosciences Rennes–UMR 6118, Bât. 15, Campus de Beaulieu, 35042 Rennes, France 0000-0002-1573-7668 [email protected] Abstract: This Special Publication combines results obtained by interdisciplinary groups from numerous aca- demic institutions working on Paleoproterozoic formations to decipher the origins of the main mineralization resources in the West African Craton (WAC) and their impacts on African economic development. Structural, geophysical, sedimentological, stratigraphical, geochemical, petrophysical and mineralogical analyses have been used to highlight the complexities involved in mineralization emplacement and its origin and evolution within the WAC. Fourteen articles, mainly of basic research carried out in the WAC and surrounding areas, contribute to new knowledge in mineral research with updated references. They show that the geodynamic evo- lution of the WAC is complex from one area to another: it involves subduction, collision and obduction during several deformation phases ranging from Birimian (2.3–2.0 Ga) to Pan-African (650–450 Ma) events. Miner- alization is mainly controlled by tectonics within shear zones, orogenic belts, basins and faulting systems occur- ring in the various corridors. Mineralized fluid circulation is stressed and injected into appropriate formations and precipitate several types of well-documented ore deposits: porphyry, metal-bearing, volcanogenic massive sulfide, sedimentary exhalative and lateritic. Various modelling techniques, when integrated, help in under- standing the mechanisms of mineralization emplacement, some of which are still a matter of debate.
    [Show full text]
  • Determine Strike and Dip from Two Apparent Dips
    Structural geology - third year Geometrical Projection: Finding True Dip Lab.No.6 /11/2020 True dip: maximum dip angle of a plane measured in vertical section perpendicular to the strike line. Determine strike and dip from two apparent dips Example: A fault trace is exposed in two adjacent cliff faces. In one wall the apparent dip is15°, S50°E, and in the other it is 28°, N45°E (Fig.1-a).What is the strike and dip of the fault plane? Solution: (Fig.1-b) 1-Use the two trend lines, OA and OC, as fold lines .Also, use a vertical line of arbitrary length d. Draw the two trend lines in plan view. 2-From the junction of these two lines (point O) draw apparent dip angle α1 and α2. 3-Draw a line of length (d=h) perpendicular to each of the trend lines to form the triangle COZ and AOX. The value of d must always be drawn exactly the same length because it represents the depth to the layer along any strike line. 4- Triangles COZ and AOX Folded up into plan view with the two apparent-dip trend lines used as fold lines. In Fig.1-b, line AC is horizontal and parallel to the fault plane; therefore it defines the fault's strike. 5-Line OB is then plotted perpendicular to line AC; it represents the direction of true dip. 6-Using line OB as a fold line, triangle BOY (Fig.1-b) can be projected into the horizontal plane, again using length d to set the position of point Y.
    [Show full text]
  • A Review of the Neoproterozoic to Cambrian Tectonic Evolution
    Accepted Manuscript Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution H. Fritz, M. Abdelsalam, K.A. Ali, B. Bingen, A.S. Collins, A.R. Fowler, W. Ghebreab, C.A. Hauzenberger, P.R. Johnson, T.M. Kusky, P. Macey, S. Muhongo, R.J. Stern, G. Viola PII: S1464-343X(13)00104-0 DOI: http://dx.doi.org/10.1016/j.jafrearsci.2013.06.004 Reference: AES 1867 To appear in: African Earth Sciences Received Date: 8 May 2012 Revised Date: 16 June 2013 Accepted Date: 21 June 2013 Please cite this article as: Fritz, H., Abdelsalam, M., Ali, K.A., Bingen, B., Collins, A.S., Fowler, A.R., Ghebreab, W., Hauzenberger, C.A., Johnson, P.R., Kusky, T.M., Macey, P., Muhongo, S., Stern, R.J., Viola, G., Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution, African Earth Sciences (2013), doi: http://dx.doi.org/10.1016/j.jafrearsci.2013.06.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian 2 tectonic evolution 3 H.
    [Show full text]
  • The Influence of Pre-Existing Crust in the Evolution of Ears and Its Impact on the Geothermal Exploration Strategy of the Western Rift
    Presented at SDG Short Course III on Exploration and Development of Geothermal Resources, organized by UNU-GTP and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 7-27, 2018. THE INFLUENCE OF PRE-EXISTING CRUST IN THE EVOLUTION OF EARS AND ITS IMPACT ON THE GEOTHERMAL EXPLORATION STRATEGY OF THE WESTERN RIFT Ermias Yohannes Ministry of Energy and Mines, Department of Mines P.O. Box 272, Asmara ERITREA [email protected] ABSTRACT The East African Rift System (EARS) is a well developed continental rifting that splitted the Somalian Plate from Africa (Nubian). Volcanism initiated in the north in Mid Oligocene, in Kenya at 25 Ma followed by episodic rifting. The western rift is young, in which volcanism began at about 12 Ma in the north and at about 7 Ma in the south. Volcanism in the south is only confined to four volcanic provinces, the Tore-Ankole, Virunga, South Kivu and Rungwe. The lithospheric and crustal structure is addressed through P and S wave anisotropy. The East African Rift and related plume extending from Malawi to the Red Sea illustrate the geodynamics of the mantle below Africa and the underlying mantle convection. Studies of lithospheric thickness along the northern rift, Main Ethiopian Rift indicate that, under the very northern most sections of the rift near Afar, where the extension factors are highest, and rifting has progressed furthest, the lithosphere has been thinned appreciably from its pre-rift, steady-state thickness. It becomes thicker towards Tanzania and around Rukwa and Lake Tanganyika with crustal thickness of 40-44 km. Pre-existing structures have controlled the location and rifting in the East African Rift System.
    [Show full text]
  • Using Palaeomagnetism to Determine Late Mesoproterozoic Palaeogeographic History and Tectonic Relations of the Sinclair Terrane, Namaqua Orogen, Namibia
    Downloaded from http://sp.lyellcollection.org/ by AJS on May 1, 2016 Using palaeomagnetism to determine late Mesoproterozoic palaeogeographic history and tectonic relations of the Sinclair terrane, Namaqua orogen, Namibia J. E. PANZIK1,2*, D. A. D. EVANS1, J. J. KASBOHM3, R. HANSON4, W. GOSE5 & J. DESORMEAU6 1Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA 2Department of Earth and Planetary Sciences, University of Tennessee, 1412 Circle Drive, Knoxville, TN 37996, USA 3Department of Geosciences, Princeton University, Guyot Hall, Princeton, NJ 08544, USA 4School of Geology, Energy, and the Environment, Texas Christian University, TCU Box 298830, Fort Worth, TX 76129, USA 5Department of Geological Sciences, University of Texas at Austin, 2275 Speedway Stop C9000, Austin, TX 78712, USA 6Geological Sciences and Engineering, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA *Corresponding author (e-mail: [email protected]) Abstract: The Sinclair terrane is an important part of the Namaqua orogenic province in southern Namibia containing well-preserved Mesoproterozoic volcano-sedimentary successions suitable for palaeomagnetic and geochronological studies. The Guperas Formation in the upper part of the Sin- clair stratigraphic assemblage contains both volcanic and sedimentary rocks cut by a bimodal dyke swarm with felsic members dated herein by U–Pb on zircon at c. 1105 Ma. Guperas igneous rocks yield a pre-fold direction and palaeomagnetic pole similar to that previously reported. Guperas sedimentary rocks yield positive conglomerate and fold tests, with a maximum concentration of characteristic remanence directions at 100% untilting. The combined Guperas data generate a palaeomagnetic pole of 69.88 N, 004.18 E(A95 ¼ 7.48, N ¼ 9).
    [Show full text]
  • Lab 01: Orientations of Lines & Planes
    GG303 Lab 1 9/10/03 1 ORIENTATIONS OF LINES AND PLANES IN SPACE I Main Topics A Definitions of points, lines, and planes B Geologic methods for describing lines and planes C Attitude symbols for geologic maps D Reference Frames II Definitions of points, lines, and planes A Point 1 Defined by one set of coordinates (an ordered triple in 3-D) 2 Defined by distance and direction from a reference point 3 Intersection of two lines 4 Intersection of three planes B Line 1 Defined by two sets of coordinates 2 Defined by two points 3 Defined by distance from a reference point and the direction of the line Direction Reference point 4 Intersection of two planes C Plane 1 Defined by three sets of coordinates 2 Defined by three points 3 Defined by distance and direction from a reference point Plane (edge view) Direction of line normal to d plane Reference point 4 Defined by two intersecting or two parallel lines Stephen Martel Lab1-1 University of Hawaii GG303 Lab 1 9/10/03 2 III Geologic methods for describing lines and planes A Orientations of lines 1 Trend & plunge a Trend: Direction (azimuth) of a vertical plane containing the line of interest. i Azimuth (compass bearing): direction of a horizontal line contained in a vertical plane. Measured by quadrant or (°). Examples: N90°E, N90°W, S90°W, 270°. ii The trend "points" in the direction a line plunges b Plunge: The inclination of a line below the horizontal 2 Pitch (or rake): the angle, measured in a plane of specified orientation, between one line and a horizontal line (see handout) B Orientations of planes 1 Orientation of two intersecting lines in the plane Strike & dip a Strike: direction of the line of intersection between an inclined plane and a horizontal plane (e.g., a lake); b Dip: inclination of a plane below the horizontal; 0°≤dip≤90° c The azimuth directions of strike and dip are perpendicular d Good idea to specify the direction of dip to eliminate ambiguity, but right hand rule (see handout) can also be used.
    [Show full text]
  • Pluto's Far Side
    Pluto’s Far Side S.A. Stern Southwest Research Institute O.L. White SETI Institute P.J. McGovern Lunar and Planetary Institute J.T. Keane California Institute of Technology J.W. Conrad, C.J. Bierson University of California, Santa Cruz C.B. Olkin Southwest Research Institute P.M. Schenk Lunar and Planetary Institute J.M. Moore NASA Ames Research Center K.D. Runyon Johns Hopkins University, Applied Physics Laboratory and The New Horizons Team 1 Abstract The New Horizons spacecraft provided near-global observations of Pluto that far exceed the resolution of Earth-based datasets. Most Pluto New Horizons analysis hitherto has focused on Pluto’s encounter hemisphere (i.e., the anti-Charon hemisphere containing Sputnik Planitia). In this work, we summarize and interpret data on Pluto’s “far side” (i.e., the non-encounter hemisphere), providing the first integrated New Horizons overview of Pluto’s far side terrains. We find strong evidence for widespread bladed deposits, evidence for an impact crater about as large as any on the “near side” hemisphere, evidence for complex lineations approximately antipodal to Sputnik Planitia that may be causally related, and evidence that the far side maculae are smaller and more structured than Pluto’s encounter hemisphere maculae. 2 Introduction Before the 2015 exploration of Pluto by New Horizons (e.g., Stern et al. 2015, 2018 and references therein) none of Pluto’s surface features were known except by crude (though heroically derived) albedo maps, with resolutions of 300-500 km obtainable from the Hubble Space Telescope (e.g., Buie et al. 1992, 1997, 2010) and Pluto-Charon mutual event techniques (e.g., Young & Binzel 1993, Young et al.
    [Show full text]