Uranium Deposits in Africa: Geology and Exploration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Authority Review for the Former Staten Island Warehouse
-. -“” i\lf 2’-L THE AEROSPACE CORPORATION Suite 4000, 955 L’Enfant P.!aza, S. W., Washington, D. C. 20024, Telephone: (202) 488-6000 7117-03.85.eav.15 20 August 1985 bee: A. Wallo F. Hoch (w/o) Mr. Arthur Whitman F. Newman (w/o) Division of Remedial Action Projects, NE-24 R. Johnson (w/o) U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Whitman: AUTHORITY REVIEW FOR THE FORMER STATEN ISLAND WAREHOUSE Aerospace has completed the analysis of the available documentation related to the former Staten Island Warehouse. The attachment is sub- mitted for your review to determine whether DOE has authority to pursue remedial action at the site under FUSRAP. As indicated in the summary of the attached analysis, it would appear that, except for export controls imposed by the State Department, the ore stored in the former Staten Island Warehouse was not under the control of the U.S. Government. The Manhattan District only purchased a portion of the U308 content of the ore, while African Metals Corpora- tion retained ownership of the radium and other precious metals that remained in the ore after processing. Further, the U.S. Government did not take custody of the ore until delivered by lighter free alongside ship to the Lehigh Valley Railroad at the Dean Mill Plant of the Archer- Daniels-Midland Company. As a result, it does not appear that DOE has authority under the Atomic Energy Act to take remedial actions, if needed, at this site. Based upon your review and final authority determination, Aerospace will prepare an elimination package to document the status of the site as it is turned over to the EPA for remedial action. -
Research Article Pan-African Paleostresses and Reactivation of the Eburnean Basement Complex in Southeast Ghana (West Africa)
Hindawi Publishing Corporation Journal of Geological Research Volume 2012, Article ID 938927, 15 pages doi:10.1155/2012/938927 Research Article Pan-African Paleostresses and Reactivation of the Eburnean Basement Complex in Southeast Ghana (West Africa) Mahaman Sani Tairou,1 Pascal Affaton,2 Solomon Anum,3 and Thomas Jules Fleury2 1 D´epartement de G´eologie, Facult´e des Sciences, Universit´edeLom´e, BP 1515, Lom´e, Togo 2 Aix-Marseille Universit´e, CNRS, IRD, CEREGE UMR34, 13545 Aix en Provence Cedex 04, France 3 Geological Survey Department, Koforidua Eastern Region, P.O. Box 672, Koforidua, Ghana Correspondence should be addressed to Mahaman Sani Tairou, [email protected] Received 28 March 2012; Revised 18 May 2012; Accepted 25 May 2012 Academic Editor: Quan-Lin Hou Copyright © 2012 Mahaman Sani Tairou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This faulting tectonics analysis concerns the southernmost segment of the Dahomeyide Orogen and the West-African craton eastern margin in southeast Ghana. The analysis of strike-slip faults in the frontal units of the Dahomeyide Belt indicates that four distinct compressive events (NE-SW, ENE-WSW to E-W, ESE-WNW to SE-NW and SE-NW to SSE-NNW) originated the juxtaposition of the Pan-African Mobile Zone and the West-African craton. These paleostress systems define a clockwise rotation of the compressional axis during the structuring of the Dahomeyide Orogen (650–550 Ma). The SE-NW and SSE-NNW to N-S compressional axes in the cratonic domain and its cover (Volta Basin) suggest that the reactivation of the eastern edge of the West African craton is coeval with the last stages of the Pan-African tectogenesis in southeast Ghana. -
Callovian and Tithonian Paleogeography Legend (.Pdf)
CALLOVIAN AND TITHONIAN AaTa Aaiun-Tarfay a Basin EVB East Venezuela Basin Mar Mardin SBet Subbetic Adha Adhami Ev ia Ev ia MarB Marmarica Basin SuBu Subbucov inian PALEOGEOGRAPHY Adri Adriatic Ex Li Ex ternal Ligurian Mars Marseille SuDa Susuz Dag LEGEND Akse Akseki Ex Ri Ex ternal Rif MAt Middle Atlas SuGe Supra-Getic Alda Aldama Ex Su Ex ternal Subetic MaU May a Uplift SuMo Supramonte Almo Almopias Ex u Ex uma MazP Mazagan Plateau Tab Tabriz Author: Caroline Wilhem Ana Anamas Fat Fatric Mec Mecsek Taba Tabas University of Lausanne - Institute of Earth Sciences Ani Anina FCB Flemish Cap Basin MC Massif Central Tac Tacchi Sheet 3 (3 sheets: 2 maps + legend; explanatory text) Ann Annecy Flor Florida Med Medv elica TadB Taoudeni Basin Anta Antaly a FoAm Foz do Amazonas Basin Mel Meliata Tahu Tahue Apu Apulia Fran Francardo Men Menderes Tal Talesh Aqui Aquitaine Basin Fri Friuli Meri Merida TaMi Tampica-Misant Basina Argo Argolis Gab Gabrov o Mese Meseta TanA Tanaulipas Arch PALEOENVIRONMENTS Armo Armorica GalB Galicia Bank MeSu Median Subbetic TaOr Talea Ori Ask Askipion Gav Gav roro Mig Migdhalista Tat Tatric Exposed land Atla Atlas GBB Grand Banks Basin Mir Mirdita Teh Tehran GeBB Georges Bank Basin Fluviodeltaic environment BaCa Baja California Mist Mistah Terek Terek BaDa Barla Dag GCau Great Caucasus Mix Mix teca TeT Tellian Trough Evaporitic platform Bade Badenli Geme Gemeric Mo Mostar Theo Theokafta Baju Bajuv aric Gen Genev a MoeP Moesian Platform TimB Timimoun Basin Terrigenous shelf and shallow basin Bako Bakony Gere Gerecse Monc -
Vanished Planes
FIU Law Review Volume 10 Number 2 Article 13 Spring 2015 Vanished Planes Robert M. Jarvis Nova Southeastern University Follow this and additional works at: https://ecollections.law.fiu.edu/lawreview Part of the Other Law Commons Online ISSN: 2643-7759 Recommended Citation Robert M. Jarvis, Vanished Planes, 10 FIU L. Rev. 519 (2015). DOI: https://dx.doi.org/10.25148/lawrev.10.2.13 This Article is brought to you for free and open access by eCollections. It has been accepted for inclusion in FIU Law Review by an authorized editor of eCollections. For more information, please contact [email protected]. 37333-fiu_10-2 Sheet No. 86 Side A 01/11/2016 08:19:25 JARVIS (DO NOT DELETE)1/4/166:38PM Vanished Planes Robert M. Jarvis* I. INTRODUCTION The history of aviation is marked by aircraft that have disappeared without a trace.1 Such flights leave a host of legal issues in their wake, and * Professor of Law, Nova Southeastern University ([email protected]). 1 It generally is agreed that Matías Pérez was the first person in history to vanish in flight—on June 29, 1856, he took off from Havana, Cuba, in a hot air balloon and was never seen again. Even today, when someone or something disappears, it is common for locals to invoke Pérez’s name. See Emma Álvarez-Tabío Albo, The City in Midair, in HAVANA BEYOND THE RUINS:CULTURAL MAPPINGS AFTER 1989, at 149, 167 (Anke Birkenmaier & Esther Vhitfield eds., Eric Felipe-Barkin trans., 2011) (explaining that Pérez “is immortalized in the colloquial phrase ‘Voló como Matías Pérez’ (He flew [away] like Matías Pérez)”). -
Junior Ranger Book Is for All Ages
National Park Service Manhattan Project U.S. Department of the Interior National Historical Park NM, TN, WA Manhattan Project National Historical Park JUNIORat Hanford, RANGERWashington Turn the page to accept this mission Welcome friends! My name is Atom U235 Fission. I will be your guide as we explore the Hanford site of the Manhattan JR JR RANGER Manhattan a Project N Project National Historical Park G SITE, WA ER together. This project was So big it changed the world! How to earn points This junior ranger book is for all ages. You may find some activities harder than others. That’s okay. You choose what activities to complete by earning enough points for your age. 4 points —— ages 6-8 Points needed 6 points —— ages 9-11 to earn a badge 8 points —— ages 12-14 10 points —— ages 15 and older ACTIVITIES POINT VALUE YOUR POINTS Complete activities in 1 activity = the Junior Ranger Book. 1 pt Join a docent tour or 1 pt ranger program. Total: Watch a park film. 1 pt Download the park’s app. Learn about our other locations. 1 pt This QR code will take you to the free National Park Service app. Once you have the app, search for the Manhattan Project to explore the entire park including sites in New Mexico, Tennessee, and Washington. WHEN FINISHED: Return your book to the visitor center and be sworn in as an official junior ranger. PARENTS: Participate with your aspiring junior ranger to learn about this park as a family. NEED MORE TIME? Mail your book to Manhattan Project National Historical Park, 2000 Logston Blvd. -
Of the 90 YEARS of the RAAF
90 YEARS OF THE RAAF - A SNAPSHOT HISTORY 90 YEARS RAAF A SNAPSHOTof theHISTORY 90 YEARS RAAF A SNAPSHOTof theHISTORY © Commonwealth of Australia 2011 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission. Inquiries should be made to the publisher. Disclaimer The views expressed in this work are those of the authors and do not necessarily reflect the official policy or position of the Department of Defence, the Royal Australian Air Force or the Government of Australia, or of any other authority referred to in the text. The Commonwealth of Australia will not be legally responsible in contract, tort or otherwise, for any statements made in this document. Release This document is approved for public release. Portions of this document may be quoted or reproduced without permission, provided a standard source credit is included. National Library of Australia Cataloguing-in-Publication entry 90 years of the RAAF : a snapshot history / Royal Australian Air Force, Office of Air Force History ; edited by Chris Clark (RAAF Historian). 9781920800567 (pbk.) Australia. Royal Australian Air Force.--History. Air forces--Australia--History. Clark, Chris. Australia. Royal Australian Air Force. Office of Air Force History. Australia. Royal Australian Air Force. Air Power Development Centre. 358.400994 Design and layout by: Owen Gibbons DPSAUG031-11 Published and distributed by: Air Power Development Centre TCC-3, Department of Defence PO Box 7935 CANBERRA BC ACT 2610 AUSTRALIA Telephone: + 61 2 6266 1355 Facsimile: + 61 2 6266 1041 Email: [email protected] Website: www.airforce.gov.au/airpower Chief of Air Force Foreword Throughout 2011, the Royal Australian Air Force (RAAF) has been commemorating the 90th anniversary of its establishment on 31 March 1921. -
A New Coelurosaurian Dinosaur from the Forest Sandstone of Rhodesia. Arnoldia, 4(28
-'- .ARNOLDIA (RHODESIA) SERIES OF MISCELLANEOUS PUBLICATIONS NATIONAL MUSEUMS OF RHODESIA No. 28 Volume 4 14th October, 1969 A NEW COELUROSAURIAN DINOSAUR FROM THE FOREST SANDSTONE OF RHODESIA by M. A. RAATH Queen Victoria Museum, Salisbury INTRODUCTION During 1963, a group of boys from North1ea School, Bulawayo, under the direction of their teacher, Mr. Ian K. Stewart, came across a partially exposed fossil in Forest Sandstone on Southcote Farm in the Nyamandhlovu district of Rhodesia. When the author joined the staff of the school in 1964, the fossil was pointed out to him and was later excavated over a protracted period, during weekends and school holidays. On development, the fossil proved to consist of most of the postcranial skeleton of-a small Coelurosaurian dinosaur in a very remarkable state of preservation and articu lation. The animal was preserved lying on its left side, which was largely complete, while the right side had been exposed and weathered to some extent. The specimen was found in the sandstone bank of a small stream, the Kwengula River, on Southcote farm, which lies 20 miles N.W. of Bulawayo (19058' S; 28°24' 35" E). Other dinosaur remains have been recovered from the rather limited exposures in the Southcote stream in the past (see e.g. Bond, 1955; Attridge, 1963), and on the basis of its fossil fauna Bond (op. cit.) has correlated the Forest Sandstone with the Upper part of the South African Red Beds. The deposits are thus Upper Karroo (Upper Triassic) in age. In order to preserve the articulated state of some of the bones, development has not yet been completed. -
The Origin and Early Evolution of Dinosaurs
Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’. -
Back Matter (PDF)
Index Page numbers in italic refer to tables, and those in bold to figures. accretionary orogens, defined 23 Namaqua-Natal Orogen 435-8 Africa, East SW Angola and NW Botswana 442 Congo-Sat Francisco Craton 4, 5, 35, 45-6, 49, 64 Umkondo Igneous Province 438-9 palaeomagnetic poles at 1100-700 Ma 37 Pan-African orogenic belts (650-450 Ma) 442-50 East African(-Antarctic) Orogen Damara-Lufilian Arc-Zambezi Belt 3, 435, accretion and deformation, Arabian-Nubian Shield 442-50 (ANS) 327-61 Katangan basaltic rocks 443,446 continuation of East Antarctic Orogen 263 Mwembeshi Shear Zone 442 E/W Gondwana suture 263-5 Neoproterozoic basin evolution and seafloor evolution 357-8 spreading 445-6 extensional collapse in DML 271-87 orogenesis 446-51 deformations 283-5 Ubendian and Kibaran Belts 445 Heimefront Shear Zone, DML 208,251, 252-3, within-plate magmatism and basin initiation 443-5 284, 415,417 Zambezi Belt 27,415 structural section, Neoproterozoic deformation, Zambezi Orogen 3, 5 Madagascar 365-72 Zambezi-Damara Belt 65, 67, 442-50 see also Arabian-Nubian Shield (ANS); Zimbabwe Belt, ophiolites 27 Mozambique Belt Zimbabwe Craton 427,433 Mozambique Belt evolution 60-1,291, 401-25 Zimbabwe-Kapvaal-Grunehogna Craton 42, 208, 250, carbonates 405.6 272-3 Dronning Mand Land 62-3 see also Pan-African eclogites and ophiolites 406-7 Africa, West 40-1 isotopic data Amazonia-Rio de la Plata megacraton 2-3, 40-1 crystallization and metamorphic ages 407-11 Birimian Orogen 24 Sm-Nd (T DM) 411-14 A1-Jifn Basin see Najd Fault System lithologies 402-7 Albany-Fraser-Wilkes -
The Eastern Sirte Basin, Libya
D-18 REVIEW OF THE REMAINING POTENTIAL IN THE EASTERN SIRTE BASIN , LIBYA RUT GE R G RAS a nd DREG J . AMBROSE Scfflumberger O ilfreld Services . Schlumberger House. Buckingham Gate , Gatwíck Airport West Sussex RH6 ONZ, UK A bstract In the Sine Basfin more than 1600 exploration wens drilled since 195 6 have discovered an estimated total of 130 bipion barrels of original all-equivalent in place (Thomas 1995, Gras & Thusu 1996). The play types testel successfully in the Sirte Basfin are botte carbonate and siliciclastic plays. The first category are predominantly Paleocene carbonate buildups, occurring in the tentral and western party of the basin, while Middle Eocene nummulite shoals are praductive in the southeast Sirte Basfin (e .g . Gialo field) . The oilfíelds in the Sine Basfin witte siliciclastic reservoirs are principally related to the consecutive Midfile Triassic and Late .lurassic-Early Cretaceotis rifting of the basin, and occur in the eastern part of the Sirte Basfin (fig. 1 ) . 20 MEDITERRANEAN N ,--'J 777 AK HD A R ~ I T CYRENAICA - d PLATFORM . 3 0 ry v 1 30 W EST ER N B AR H ~~- JAG HBU C S H EL F q~ HAME IM AT TROUGH Dr~ G IAL~-MESS LAH H4GH LE G END r~r n a SAR IR TROUGH G'l ,~T FQRM 0 ST RUCTU RAI IOWS ZEE YEN SOU T H 6F P RFSSIO N PLATFORM T E RTIARY YOL CANICS CAM6RIAN -óft Dl'11-1 CI ,: N SO UTHERN ~ S HE L F SARIR 20 2 0 TIB E STI 0 200 4 00 km 20 Figurc l : 5tructural overview of the Sirte Basfin. -
Provisional Programme
June 2016 DOWNLOADS PROVISIONAL PROGRAMME The provisional technical program was set during the first week in June, although the schedule of times and venues for 4th Announcement Circular presentations and posters will only be finalized mid- July. Currently, there are 4,824 accepted abstracts from over 5,200 submissions, of which 3087 are oral presentations and 1,737 are posters. These are divided between the three core topics, Geoscience in Society (31%), Geology in the Economy (24%) and Fundamental Geoscience (45%). There are between three and fifteen major symposia or general sessions per theme of which there are 48. There are nine plenary presentations, all of which are directed at themes of particular current relevance in the global earth sciences. See the website. Topics include: Formation of continental crust Science and the professions: service to society Climate and human evolution The mining industry and society Shale gas - the technical challenges Extraction technologies and the life cycle of metals Earthquakes in Africa Palaeobiology from fossil bones Under the core theme, Geoscience in Society, there are a considerable number of geoheritage and geoconservation presentations. Climate change is a high interest topic (as predicted!). Communication to the public sector is addressed, as is mapping of Africa and the world. Geohazards, engineering geology and environmental geoscience all SOCIAL MEDIA have strong support. Geoeducation at secondary and tertiary level is well represented. There is considerable interest in professionalism in the geosciences and geoethics. All of these topics are typically under-represented in conferences world-wide, and anyone interested in these subjects should definitely have a close look at this part of the program. -
The Position of Madagascar Within Gondwana and Its Movements During Gondwana Dispersal ⇑ Colin Reeves
Journal of African Earth Sciences xxx (2013) xxx–xxx Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci The position of Madagascar within Gondwana and its movements during Gondwana dispersal ⇑ Colin Reeves Earthworks BV, Achterom 41A, 2611 PL Delft, The Netherlands article info abstract Article history: A reassembly of the Precambrian fragments of central Gondwana is presented that is a refinement of a Available online xxxx tight reassembly published earlier. Fragments are matched with conjugate sides parallel as far as possible and at a distance of 60–120 km from each other. With this amount of Precambrian crust now stretched Keywords: into rifts and passive margins, a fit for all the pieces neighbouring Madagascar – East Africa, Somalia, the Madagascar Seychelles, India, Sri Lanka and Mozambique – may be made without inelegant overlap or underlap. This Gondwana works less well for wider de-stretched margins on such small fragments. A model of Gondwana dispersal Aeromagnetics is also developed, working backwards in time from the present day, confining the relative movements of Indian Ocean the major fragments – Africa, Antarctica and India – such that ocean fracture zones collapse back into Dykes themselves until each ridge-reorganisation is encountered. The movements of Antarctica with respect to Africa and of India with respect to Antarctica are defined in this way by a limited number of interval poles to achieve the Gondwana ‘fit’ situation described above. The ‘fit’ offers persuasive alignments of structural and lithologic features from Madagascar to its neighbours. The dispersal model helps describe the evolution of Madagascar’s passive margins and the role of the Madagascar Rise as a microplate in the India–Africa–Antarctica triple junction.