Historical Geography and Archaeology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2021 Garmin & Navionics Cartography Catalog
2021 CARTOGRAPHY CATALOG CONTENTS BlueChart® Coastal Charts �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 04 LakeVü Inland Maps �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 06 Canada LakeVü G3 �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 08 ActiveCaptain® App �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 09 New Chart Guarantee� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 10 How to Read Your Product ID Code �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 10 Inland Maps ��������������������������������������������������� 12 Coastal Charts ������������������������������������������������� 16 United States� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 18 Canada ���������������������������������������������������� 24 Caribbean �������������������������������������������������� 26 South America� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 27 Europe����������������������������������������������������� 28 Africa ����������������������������������������������������� 39 Asia ������������������������������������������������������ 40 Australia/New Zealand �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 42 Pacific Islands �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � -
Revised Draft Experiences with Inter Basin Water
REVISED DRAFT EXPERIENCES WITH INTER BASIN WATER TRANSFERS FOR IRRIGATION, DRAINAGE AND FLOOD MANAGEMENT ICID TASK FORCE ON INTER BASIN WATER TRANSFERS Edited by Jancy Vijayan and Bart Schultz August 2007 International Commission on Irrigation and Drainage (ICID) 48 Nyaya Marg, Chanakyapuri New Delhi 110 021 INDIA Tel: (91-11) 26116837; 26115679; 24679532; Fax: (91-11) 26115962 E-mail: [email protected] Website: http://www.icid.org 1 Foreword FOREWORD Inter Basin Water Transfers (IBWT) are in operation at a quite substantial scale, especially in several developed and emerging countries. In these countries and to a certain extent in some least developed countries there is a substantial interest to develop new IBWTs. IBWTs are being applied or developed not only for irrigated agriculture and hydropower, but also for municipal and industrial water supply, flood management, flow augmentation (increasing flow within a certain river reach or canal for a certain purpose), and in a few cases for navigation, mining, recreation, drainage, wildlife, pollution control, log transport, or estuary improvement. Debates on the pros and cons of such transfers are on going at National and International level. New ideas and concepts on the viabilities and constraints of IBWTs are being presented and deliberated in various fora. In light of this the Central Office of the International Commission on Irrigation and Drainage (ICID) has attempted a compilation covering the existing and proposed IBWT schemes all over the world, to the extent of data availability. The first version of the compilation was presented on the occasion of the 54th International Executive Council Meeting of ICID in Montpellier, France, 14 - 19 September 2003. -
2018 FIFA WORLD CUP RUSSIA'n' WATERWAYS
- The 2018 FIFA World Cup will be the 21st FIFA World Cup, a quadrennial international football tournament contested by the men's national teams of the member associations of FIFA. It is scheduled to take place in Russia from 14 June to 15 July 2018,[2] 2018 FIFA WORLD CUP RUSSIA’n’WATERWAYS after the country was awarded the hosting rights on 2 December 2010. This will be the rst World Cup held in Europe since 2006; all but one of the stadium venues are in European Russia, west of the Ural Mountains to keep travel time manageable. - The nal tournament will involve 32 national teams, which include 31 teams determined through qualifying competitions and Routes from the Five Seas 14 June - 15 July 2018 the automatically quali ed host team. A total of 64 matches will be played in 12 venues located in 11 cities. The nal will take place on 15 July in Moscow at the Luzhniki Stadium. - The general visa policy of Russia will not apply to the World Cup participants and fans, who will be able to visit Russia without a visa right before and during the competition regardless of their citizenship [https://en.wikipedia.org/wiki/2018_FIFA_World_Cup]. IDWWS SECTION: Rybinsk – Moscow (433 km) Barents Sea WATERWAYS: Volga River, Rybinskoye, Ughlichskoye, Ivan’kovskoye Reservoirs, Moscow Electronic Navigation Charts for Russian Inland Waterways (RIWW) Canal, Ikshinskoye, Pestovskoye, Klyaz’minskoye Reservoirs, Moskva River 600 MOSCOW Luzhniki Arena Stadium (81.000), Spartak Arena Stadium (45.000) White Sea Finland Belomorsk [White Sea] Belomorsk – Petrozavodsk (402 km) Historic towns: Rybinsk, Ughlich, Kimry, Dubna, Dmitrov Baltic Sea Lock 13,2 White Sea – Baltic Canal, Onega Lake Small rivers: Medveditsa, Dubna, Yukhot’, Nerl’, Kimrka, 3 Helsinki 8 4,0 Shosha, Mologa, Sutka 400 402 Arkhangel’sk Towns: Seghezha, Medvezh’yegorsk, Povenets Lock 12,2 Vyborg Lakes: Vygozero, Segozero, Volozero (>60.000 lakes) 4 19 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 1 2 3 6 7 10 14 15 4,0 MOSCOW, Group stage 1/8 1/4 1/2 3 1 Estonia Petrozavodsk IDWWS SECTION: [Baltic Sea] St. -
Use of Classification Algorithms for the Ice Jams Forecasting Problem
E3S Web of Conferences 163, 02008 (2020) https://doi.org/10.1051/e3sconf/202016302008 IV Vinogradov Conference Use of classification algorithms for the ice jams forecasting problem Natalia Semenova1*, Alexey Sazonov1,2, Inna Krylenko1,2,andNatalia Frolova1 1 Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991, Moscow, Russia 2 Water Problems Institute of the Russian Academy of Science, Gubkina st., 3, 119333, Moscow, Russia Abstract. In the research the prediction of occurrence of ice jam based on the K Nearest Neighbor method was considered by example of the city of Velikiy Ustyug, located at the confluence of the Sukhona and Yug Rivers. A forecast accuracy of 82% was achieved based on selected most significant hydrological and meteorological features. 1 Introduction Floods gain a lead among natural disasters both in terms of area of distribution and damage caused for Russia. Flooding can be caused by snow cover melting, a large amount of precipitation, the effects of surges, a breakthrough of a dam, etc. For northern rivers, including rivers of the European part of Russia, ice jams often cause floods. The goal of this research is developing a methodology for predicting the occurrence of ice jam based on the machine learning method. The place of confluence of the Sukhona and Yug Rivers, where the city of Velikiy Ustyug is located, was chosen as the object of study. The probability of the ice jams formation in this area is 43.5% according to statistics. Their occurrence leads to an increase of water level and flooding of residential and utility buildings. 2 Data and methods Over the past two decades, there has been a huge leap in the development of computer technology and machine learning, which has allowed the application of various machine learning algorithms to a large number of applied problems, including the prediction of flood characteristics. -
European Bison in Russia – Past, Present and Future
European Bison Conservation Newsletter Vol 2 (2009) pp: 148–159 European bison in Russia – past, present and future Taras P. Sipko Institute of Problems Ecology and Evolution RAS, Moscow, Russia Abstract The area of the European bison during historical time Holocene is discussed with addition of new information published in last years. Northern border of an area corresponds 60 0 N. The area included average and southern Urals Mountains, the south of Western Siberia. On the east the European bison lived up to the Altay Mountains and Lake Baikal. The same area at a red deer having similar ecological needs. Increase of inbreeding level considerably and negatively influences adaptable and reproductive opportunities of a bison. This circumstance is especially shown in case of its reintroduction in mountain areas. The basic projects on cultivation of the European bison in Russia are discussed. Keywords : European bison, geographical range, inbreeding, reintroduction Bison Habitat The studies on historical changes of European bison habitat are important both theoretically and practically. Historical geographical range of a species is the most favorable area for reintroduction and creation new free populations. In Pleistocene, the European bison range covered the most part of Eurasia (Flerov 1979). From the beginning of Holocene natural conditions changed (especially in the western part of the region). Glacier shield and vast pre-glacier lakes shortened and disappeared. Forest boundary migrated to the North. Humans occupied the area. Snow cover became deeper and lasted longer and become a limiting factor of European bison distribution at the Russian plain. All factors mentioned above served in drawing of northeastern boundary of European bison range in historic time (Heptner et al. -
The Periglacial Climate and Environment in Northern Eurasia
ARTICLE IN PRESS Quaternary Science Reviews 23 (2004) 1333–1357 The periglacial climate andenvironment in northern Eurasia during the Last Glaciation Hans W. Hubbertena,*, Andrei Andreeva, Valery I. Astakhovb, Igor Demidovc, Julian A. Dowdeswelld, Mona Henriksene, Christian Hjortf, Michael Houmark-Nielseng, Martin Jakobssonh, Svetlana Kuzminai, Eiliv Larsenj, Juha Pekka Lunkkak, AstridLys a(j, Jan Mangerude, Per Moller. f, Matti Saarnistol, Lutz Schirrmeistera, Andrei V. Sherm, Christine Siegerta, Martin J. Siegertn, John Inge Svendseno a Alfred Wegener Institute for Polar and Marine Research (AWI), Telegrafenberg A43, Potsdam D-14473, Germany b Geological Faculty, St. Petersburg University, Universitetskaya 7/9, St. Petersburg 199034, Russian Federation c Institute of Geology, Karelian Branch of Russian Academy of Sciences, Pushkinskaya 11, Petrozavodsk 125610, Russian Federation d Scott Polar Research Institute and Department of Geography, University of Cambridge, Cambridge CBZ IER, UK e Department of Earth Science, University of Bergen, Allegt.! 41, Bergen N-5007, Norway f Quaternary Science, Department of Geology, Lund University, Geocenter II, Solvegatan. 12, Lund Sweden g Geological Institute, University of Copenhagen, Øster Voldgade 10, Copenhagen DK-1350, Denmark h Center for Coastal and Ocean Mapping, Chase Ocean Engineering Lab, University of New Hampshire, Durham, NH 03824, USA i Paleontological Institute, RAS, Profsoyuznaya ul., 123, Moscow 117868, Russia j Geological Survey of Norway, PO Box 3006 Lade, Trondheim N-7002, Norway -
A JOURNEY THROUGH RUSSIA with LOVE an Adventurous German Couple Takes a Marlow Explorer 72E to Moscow
A JOURNEY THROUGH RUSSIA WITH LOVE An adventurous German couple takes a Marlow Explorer 72E to Moscow. BY JOHN WOOLDRIDGE PHOTOGRAPHY BY THOMAS KITTEL FEBRUARY 2015 YACHTING 85 YTG0215_Russia Marlow.indd 85 12/19/14 11:14 AM DISCOVER | RUSSIA IT WAS THE TRIP OF A LIFETIME FOR THEM. thomas and jutta kittel had a dream of couple, whom I fi rst met during the Marlow Marine cruising where few have had a chance to go. They Rendezvous in April 2014 on Florida’s Captiva Is- boarded their Marlow Explorer 72E, Azura, on May land. Thomas joked that they had hoped to demon- 1, 2014, in Rostock, Germany, and cruised the Baltic strate that an American-brand boat built in China Sea along the coasts of Germany, Poland, Lithua- and sailing under a German fl ag could get in front nia, Latvia and Estonia to St. Petersburg in Russia. of the Kremlin without the slightest problem. They They then entered the Russian inland waterways accomplished this to their satisfaction, though not and voyaged to Moscow and back to St. Petersburg, by themselves. spending more than seven weeks within Russia. “During the trip we had many guests on board — “We traveled the Neva River, Lake Ladoga, the family members, friends and a Russian pilot, which Svir River, Lake Onega, the Vytegra canal (part is required by their laws and is absolutely needed of the Volga-Baltic Waterway), the Kovsha River, on the Russian inland waterways,” he said. “So Lake Beloye (the White Lake), the Sheksna River, during about 12 out of 20 weeks, we were not com- the Rybinsk Reservoir, the Volga River, the Moscow pletely alone.” Canal and the Moskva (or Moscow) River,” Thomas The Kittels had their fi rst cruising-under-power Overleaf : Azura Kittel told me. -
Translation Series No.2137
FISHERIES RESEARCH BOARD OF CANADA Translation Series No. 2137 • Salmon of Lake Onega • by YU. A. Smirnov -Original title: •Losost onezhskogo ozera Biologiya vosproiFvodstvo ispOliziovapie From: Lososi onezhskogo ozera Biolop.iya vosproizvodstvc* ispoll .zovanie (Salmon of Lake Onega), : 1-143, 1Q71 Translated by the Translation Bureau-( PH) . Foreign Languages Division Department of the Secretary of . State of Canada Department of the-Environment- Fisheries Research Board of Canada Biological Station. Nanaimd, b... Biological Station, St. Andrews, X. S. Biological Station, St. John's, Nfld. 19 72 195 & pages typescript lleibliography 7:7 1 OF THE SECRETARY OF STATE s E DEPAR'RENT c R F.Pr r; D'iT A T • TRANSLATION BUREAU bUREAU DES RADUCTIONS N iq E DES, E LANGUES GAN A DA. 1C D!.\fî5i N L. TA9SLATED FROM — TRADUCTION DE INTO — EN Fusq .d. P.n Elish AU rtiop. AuTuun rnov Yu. "FITLE FI•LISH — TITRE ANGLAIS salmon of Lake Onega l bioloy reprouction - utilizetion Title in foreign language (transliterate foreign characters) Loos' onezhskoiy) ozera biolos,j_ya vosproizvoCts1;vo ispol";:.ovP.nie ------ RE'FrE..- RENCE IN FOREIGN LANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIG4 CHA.RACTERS. rzr,-FE,.PENCE EN LANGUE ÉTRANGÉRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET. TRANSCRIRE EN CARACTÉFiES PHONÉTIQUES. • REFERENcE IN ENGLISH — RÉFÉRENCE EN ANGLAIS Ao above PUBLISH ER —.ÉDITEUR PAGE NUMBERS IN ORIGINAL DATE OF PUBLICATION NUMÉROS DES PAGES DANS DATE DE PUBLICATION L'ORIGINAL yauka Press 3 143 YEAR ISSUE NO. VOLUME ANNÉE NUMERO PLACE OF PUBLICATION NUMBER OF TYPED PAGES LIEU DE PUBLICATION NOMBRE DE-PAGES DAÇTYLOGRAPHIÉEs 195 (exclusive of Lenirw.rad IWR 1971 Bibliographmj REQUESTING DEPARTMENT Environment TRANSLATION BUREAU NO. -
European River Lamprey Lampetra Fluviatilis in the Upper Volga: Distribution and Biology
European River Lamprey Lampetra Fluviatilis in the Upper Volga: Distribution and Biology Aleksandr Zvezdin AN Severtsov Institute of Ecology and Evolution Aleksandr Kucheryavyy ( [email protected] ) AN Severtsov Institute of Ecology and Evolution https://orcid.org/0000-0003-2014-5736 Anzhelika Kolotei AN Severtsov Institute of Ecology and Evolution Natalia Polyakova AN Severtsov Institute of Ecology and Evolution Dmitrii Pavlov AN Severtsov Institute of Ecology and Evolution Research Keywords: Petromyzontidae, behavior, invasion, distribution, downstream migration, upstream migration Posted Date: February 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-187893/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract After the construction of the Volga Hydroelectric Station and other dams, migration routes of the Caspian lamprey were obstructed. The ecological niches vacated by this species attracted another lamprey of the genus Lampetra to the Upper Volga, which probably came from the Baltic Sea via the system of shipways developed in the 18 th and 19 th centuries. Based on collected samples and observations from sites in the Upper Volga basin, we provide diagnostic characters of adults, and information on spawning behavior. Silver coloration of Lampetra uviatilis was noted for the rst time and a new size-related subsample of “large” specimens was delimited, in addition to the previously described “dwarf”, “small” and “common” adult resident sizes categories. The three water systems: the Vyshnii Volochek, the Tikhvin and the Mariinskaya, are possible invasion pathways, based on the migration capabilities of the lampreys. Dispersal and colonization of the Caspian basin was likely a combination of upstream and downstreams migrations. -
Nepcon CB Public Summary Report V1.4 Main Audit Sokol Timber
NEPCon Evaluation of “Sokol Timber Company” Joint-Stock Company Compliance with the SBP Framework: Public Summary Report Main (Initial) Audit www.sbp-cert.org Focusing on sustainable sourcing solutions Completed in accordance with the CB Public Summary Report Template Version 1.4 For further information on the SBP Framework and to view the full set of documentation see www.sbp-cert.org Document history Version 1.0: published 26 March 2015 Version 1.1: published 30 January 2018 Version 1.2: published 4 April 2018 Version 1.3: published 10 May 2018 Version 1.4: published 16 August 2018 © Copyright The Sustainable Biomass Program Limited 2018 NEPCon Evaluation of “Sokol Timber Company” Joint-Stock Company: Public Summary Report, Main (Initial) Audit Page ii Focusing on sustainable sourcing solutions Table of Contents 1 Overview 2 Scope of the evaluation and SBP certificate 3 Specific objective 4 SBP Standards utilised 4.1 SBP Standards utilised 4.2 SBP-endorsed Regional Risk Assessment 5 Description of Company, Supply Base and Forest Management 5.1 Description of Company 5.2 Description of Company’s Supply Base 5.3 Detailed description of Supply Base 5.4 Chain of Custody system 6 Evaluation process 6.1 Timing of evaluation activities 6.2 Description of evaluation activities 6.3 Process for consultation with stakeholders 7 Results 7.1 Main strengths and weaknesses 7.2 Rigour of Supply Base Evaluation 7.3 Compilation of data on Greenhouse Gas emissions 7.4 Competency of involved personnel 7.5 Stakeholder feedback 7.6 Preconditions 8 Review -
Atlas of High Conservation Value Areas, and Analysis of Gaps and Representativeness of the Protected Area Network in Northwest R
34°40' 216 217 Chudtsy Efimovsky 237 59°30' 59°20' Anisimovo Loshchinka River Somino Tushemelka River 59°20' Chagoda River Golovkovo Ostnitsy Spirovo 59°10' Klimovo Padun zakaznik Smordomsky 238 Puchkino 236 Ushakovo Ignashino Rattsa zakaznik 59°0' Rattsa River N O V G O R O D R E G I O N 59°0' 58°50' °50' 58 0369 км 34°20' 34°40' 35°0' 251 35°0' 35°20' 217 218 Glubotskoye Belaya Velga 238 protected mire protected mire Podgornoye Zaborye 59°30' Duplishche protected mire Smorodinka Volkhovo zakaznik protected mire Lid River °30' 59 Klopinino Mountain Stone protected mire (Kamennaya Gora) nature monument 59°20' BABAEVO Turgosh Vnina River °20' 59 Chadogoshchensky zakaznik Seredka 239 Pervomaisky 237 Planned nature monument Chagoda CHAGODA River and Pes River shores Gorkovvskoye protected mire Klavdinsky zakaznik SAZONOVO 59°10' Vnina Zalozno Staroye Ogarevo Chagodoshcha River Bortnikovo Kabozha Pustyn 59°0' Lake Chaikino nature monument Izbouishchi Zubovo Privorot Mishino °0' Pokrovskoye 59 Dolotskoye Kishkino Makhovo Novaya Planned nature monument Remenevo Kobozha / Anishino Chernoozersky Babushkino Malakhovskoye protected mire Kobozha River Shadrino Kotovo protected Chikusovo Kobozha mire zakazhik 58°50' Malakhovskoye / Kobozha 0369 protected mire км 35°20' 251 35°40' 36°0' 252 36°0' 36°20' 36°40' 218 219 239 Duplishche protected mire Kharinsky Lake Bolshoe-Volkovo zakaznik nature monument Planned nature monument Linden Alley 59°30' Pine forest Sudsky, °30' nature monument 59 Klyuchi zakaznik BABAEVO абаево Great Mosses Maza River 59°20' -
United Nations ECE/TRANS/SC.3/2015/2
United Nations ECE/TRANS/SC.3/2015/2 Economic and Social Council Distr.: General 8 October 2015 English Original: English, French and Russian Economic Commission for Europe Inland Transport Committee Working Party on Inland Water Transport Fifty-ninth session Geneva, 9–11 November 2015 Item 6 (a) of the provisional agenda European inland waterway network: European Agreement on Main Inland Waterways of International Importance (AGN) Proposals on the development of concrete river-sea routes in the European Agreement on Main Inland Waterways of International Importance (AGN) Note by the secretariat I. Mandate 1. This document is submitted in line with cluster 5: Inland Waterway Transport, paragraph 5.1 of the programme of work 2014–2015 (ECE/TRANS/2014/23) adopted by the Inland Transport Committee on 27 February 2014. 2. The secretariat recalls that the Inland Transport Committee (hereafter ITC) at its sixty-fourth session adopted the plan of action for the implementation of decisions taken by the Pan-European Conference on Inland Water Transport (Rotterdam, 5–6 September 2001) as annex II to its Resolution No. 250 (ECE/TRANS/139, para. 84) which included actions to prepare proposals on the development of concrete river-sea routes in the context of the European Agreement on Main Inland Waterways of International Importance (AGN) (such as: River Don – Azov Sea – Black Sea – Dnieper – Danube; or Guadalquivir – coastal route E 60 – River Douro – River Gironde – River Loire – River Seine (E 80), etc.). These projects would have to set up conditions and requirements concerning both, sea-river routes themselves (their equipment with necessary aids to navigation, obligatory use of River Information Services, etc.) and vessels which can be used on those routes.