The Periglacial Climate and Environment in Northern Eurasia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Frasnian Atrypida (Brachiopoda) from the South Urals, South Timan and Kuznetsk Basin (Russia)
Late Frasnian Atrypida (Brachiopoda) from the South Urals, South Timan and Kuznetsk Basin (Russia) MARIA A. RZHONSMTSKAYA, BORIS p. MARKOVSKtr T, YULIA A. YUDINA, andELENA V. SOKIRAN Rzhonsnitskaya, M.A., Markovskii, B.P., Yudina, Y.A., & Sokiran E.V. 1998. Late Frasnian Atrypida (Brachiopoda) from the South Urals, South Timan and Kuznetsk Basin (Russia). - Acta Palaeontologica Polonica 43,2,305-344. Late Frasnian AĘpida @rachiopoda) from the South Urals, South Timan and Kuznetsk Basin in Russia (east Laurussian and south Siberian shelf domains in Devonian time) reveal significant geneńc and specific diversĘ in the broadly defined Frasnian-Famen- nian (F-F) bio-crisis time. Eighteen species of aĘpid brachiopods have been recorded, representing 4 subfamilies and 10 genera. The new genus GibberosatrypaMarkovskii & Rzhonsnitskaya, and the new subgenus Spinatrypa (Plicspinatrypa)Rzhonsnitskaya are proposed. Four new species Spinatrypina (Spinatrypina) sosnovkiensis Yudina, Spinar rypa (Plicspinatrypa) rossica Rzhonsnitskaya, Iowatrypa nalivkini Rzhonsnitskaya & Sokiran, and Cartnatina(?) biohermica Yudina are described. The representatives of the Vańatrypinae (including especially conrmon Desquamatia (Desquamatia) alticolifur- mis), Spinatrypinae (Spinatrypina) andAtypinae(Pseudoatrypa,?Costatrypa) arewide- ly distributed in the studied regions. The Pseudogruenewaldtiinae are represented by Iowatrypa artdPseudogruenewaldtla, of which the first is distributed worldwide, where- as the only undoubted species of the second is resfficted to South Timan, and probably represents a localized latest Frasnian descendant of lowatrypa. The decline phase of aĘpid development was controlled by a variety of environmental factors tied to the globalKellwasser events, although it was not directĘ triggered by anoxic conditions. The investigated atrypid brachiopods, which were all confined to lower latitudes, disappeared duńng the F-F mass extinction, independently of their environmental and biogeographic settings. -
Geochemistry of Late Devonian Oils of the Timan-Pechora Basin
Available online at www.sciencedirect.com ScienceDirect Russian Geology and Geophysics 58 (2017) 332–342 www.elsevier.com/locate/rgg Geochemistry of Late Devonian oils of the Timan–Pechora basin D.A. Bushnev a,*, N.S. Burdel’naya a, O.V. Valyaeva a, A.A. Derevesnikova b a Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, ul. Pervomaiskaya 54, Syktyvkar, Komi Republic, 167982, Russia b Syktyvkar State University, Oktyabr’skii pr. 55, Syktyvkar, Komi Republic, 167001, Russia Received 20 July 2016; accepted 1 September 2016 Abstract The composition of biomarkers and aromatic hydrocarbons of Late Devonian oils of the Timan–Pechora Basin has been studied. It shows that the organic matter of oil-generating deposits is at the close stages of thermal maturity, which are within the early and middle stages of the oil window. Five groups of oils have been recognized, three of which were generated by organic matter of Domanik deposits and the other two formed from organic matter of another source. Most of the studied oil samples contain derivates of isorenieratene indicating that the organic matter of oil source rocks formed in the photic-zone anoxia of the paleobasin. © 2017, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved. Keywords: Timan–Pechora basin oil; biomarkers; domanikites; alkylbenzenes; carbon isotope composition of oils Introduction HC biomarkers and the carbon isotope composition of Late Devonian oils of the Timan–Pechora basin are related to the Geochemical study of oils in a particular area and at a varying composition of organic matter (OM) of the oil source particular stratigraphic stage is aimed at answering several rocks. -
Timan-Pechora Basin Province, Russia, 2008
Assessment of Undiscovered Oil and Gas Resources of the Timan-Pechora Basin Province, Russia, 2008 40°E 45°E 50°E 55°E 60°E 65°E 70°E Using a geology-based assessment methodology, the 70°N U.S. Geological Survey (USGS) estimated means of 1.6 billion barrels of undiscovered oil and 9 trillion cubic feet of natural gas north of the Arctic Circle in the Timan- BARENTS Pechora Basin Province of Russia. SEA KARA SEA Introduction The U.S. Geological Survey (USGS) recently assessed PAY-KHOY RIDGE the undiscovered oil and gas potential of the Timan-Pechora Basin Province in Russia as part of the USGS Circum-Arctic NORTHWEST Arctic Circle IZHMA Oil and Gas Resource Appraisal program. Geologically, A DEPRESSION the Timan-Pechora Basin Province is a triangular-shaped AU MAIN BASIN PLATFORM AU cratonic block bounded by the northeast-southwest trend- 65°N ing Ural Mountains and the northwest-southeast trending Timan Ridge. The northern boundary is shared with the BASINS AU South Barents Sea Province (fig. 1). The Timan-Pechora A’ Basin Province has a long history of oil and gas exploration S IN TA and production. The first field was discovered in 1930 and, N U O after 75 years of exploration, more than 230 fields have been TIMAN RIDGE M discovered and more than 5,400 wells have been drilled. This L A R has resulted in the discovery of more than 16 billion barrels U of oil and 40 trillion cubic feet of gas. Several studies have presented geological summaries FOREDEEP RUSSIA of the Timan-Pechora Basin Province and the potential for its remaining oil and gas resources (for example, Ulmishek, 1982; Lindquist, 1999; Ulmishek, 2000). -
Soft Security Problems in Northwest Russia and Their Implications for the Outside World
Soft security problems in Northwest Russia and their implications for the outside world A framework for analysis and action Dr Christer Pursiainen (ed.) Director Aleksanteri Institute – Finnish Centre for Russian and East European Studies at the University of Helsinki www.kolumbus.fi/christer .pursiainen [email protected] with the assistance of Pekka Haavisto and Nikita Lomagin of the Finnish Institute of International Affairs 2 Contents: I Introduction: a holistic approach to soft security problems 3 II The severity of Russian soft security problems for the outside world 3 Nuclear safety – waiting for a catastrophe? 4 Environmental problems: from individual risks to potential catastrophes 9 Infectious diseases: a creeping crisis? 11 Illegal immigration: still under control? 13 III Russian decision-making in soft security issues 17 State agents in soft security: the sources of impotence 18 Business and soft security: extra benefits by violating laws? 21 Does civil society matter? 22 The conflicting nature of Russian soft security decision-making 24 IV International co-operation: widespread but fragmented 25 The international agents 25 Problems of co-operation 30 V Towards a more intensified soft security analysis and action 32 3 I Introduction: a holistic approach to soft security problems* Ten years after the end of the Cold War, the traditional security dilemma based on the perception of a military threat between Russia and the West has largely given way to a variety of new challenges related to non-military security, so-called soft security threats. These threats are not merely problems internal to Russia, but constitute existing or potential problems for other countries as well. -
Revised Draft Experiences with Inter Basin Water
REVISED DRAFT EXPERIENCES WITH INTER BASIN WATER TRANSFERS FOR IRRIGATION, DRAINAGE AND FLOOD MANAGEMENT ICID TASK FORCE ON INTER BASIN WATER TRANSFERS Edited by Jancy Vijayan and Bart Schultz August 2007 International Commission on Irrigation and Drainage (ICID) 48 Nyaya Marg, Chanakyapuri New Delhi 110 021 INDIA Tel: (91-11) 26116837; 26115679; 24679532; Fax: (91-11) 26115962 E-mail: [email protected] Website: http://www.icid.org 1 Foreword FOREWORD Inter Basin Water Transfers (IBWT) are in operation at a quite substantial scale, especially in several developed and emerging countries. In these countries and to a certain extent in some least developed countries there is a substantial interest to develop new IBWTs. IBWTs are being applied or developed not only for irrigated agriculture and hydropower, but also for municipal and industrial water supply, flood management, flow augmentation (increasing flow within a certain river reach or canal for a certain purpose), and in a few cases for navigation, mining, recreation, drainage, wildlife, pollution control, log transport, or estuary improvement. Debates on the pros and cons of such transfers are on going at National and International level. New ideas and concepts on the viabilities and constraints of IBWTs are being presented and deliberated in various fora. In light of this the Central Office of the International Commission on Irrigation and Drainage (ICID) has attempted a compilation covering the existing and proposed IBWT schemes all over the world, to the extent of data availability. The first version of the compilation was presented on the occasion of the 54th International Executive Council Meeting of ICID in Montpellier, France, 14 - 19 September 2003. -
Ancient Fennoscandian Genomes Reveal Origin and Spread of Siberian Ancestry in Europe
ARTICLE DOI: 10.1038/s41467-018-07483-5 OPEN Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe Thiseas C. Lamnidis1, Kerttu Majander1,2,3, Choongwon Jeong1,4, Elina Salmela 1,3, Anna Wessman5, Vyacheslav Moiseyev6, Valery Khartanovich6, Oleg Balanovsky7,8,9, Matthias Ongyerth10, Antje Weihmann10, Antti Sajantila11, Janet Kelso 10, Svante Pääbo10, Päivi Onkamo3,12, Wolfgang Haak1, Johannes Krause 1 & Stephan Schiffels 1 1234567890():,; European population history has been shaped by migrations of people, and their subsequent admixture. Recently, ancient DNA has brought new insights into European migration events linked to the advent of agriculture, and possibly to the spread of Indo-European languages. However, little is known about the ancient population history of north-eastern Europe, in particular about populations speaking Uralic languages, such as Finns and Saami. Here we analyse ancient genomic data from 11 individuals from Finland and north-western Russia. We show that the genetic makeup of northern Europe was shaped by migrations from Siberia that began at least 3500 years ago. This Siberian ancestry was subsequently admixed into many modern populations in the region, particularly into populations speaking Uralic languages today. Additionally, we show that ancestors of modern Saami inhabited a larger territory during the Iron Age, which adds to the historical and linguistic information about the population history of Finland. 1 Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany. 2 Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, 72070 Tübingen, Germany. 3 Department of Biosciences, University of Helsinki, PL 56 (Viikinkaari 9), 00014 Helsinki, Finland. -
The SIS Limits and Related Proglacial Events in the Severnaya Dvina Basin, Northwestern Russia: Review and New Data
Bulletin of the Geological Society of Finland, Vol. 90, 2018, pp 301–313, https://doi.org/10.17741/bgsf/90.2.012 The SIS limits and related proglacial events in the Severnaya Dvina basin, northwestern Russia: review and new data Nataliya E. Zaretskaya1*, Andrei V. Panin2,3 and Natalia V. Karpukhina2 1 Geological Institute of RAS, Pyzhesky per. 7, Moscow, 119017, RUSSIA 2 Institute of Geography of RAS, Staromonetny per. 29, Moscow, 119017, RUSSIA 3 Lomonsov Moscow State University, Vorobiovy Gory 1, Moscow, 119991, RUSSIA Abstract Two underlying problems of the Late Quaternary history of the Scandinavian Ice Sheet (SIS) are reviewed in the paper: the position of the southeastern SIS boundary at the Late Glacial Maximum (LGM), which is still widely “migrating” depending on authors’ concepts, and the formation of associated proglacial lakes (i.e. their dimensions, drainage and chronology) in the valleys of Severnaya Dvina River basin. The position of maximum ice limit in the northwest of the Russian Plain remains debatable and is the least reliable compared to the other SIS sectors. Most of the recent reconstructions concerning ice-dammed lakes (water overflows, restructuring of river valleys etc.) exploited the geological survey results of mid-20th century: since then no geological studies have been conducted of the proposed spillways, their filling sediments and age using the modern sedimentological and geochronological techniques. As a result, the majority of the above-mentioned reconstructions have to be considered hypothetical. Here we present new results on two valley sites that allow to suggest that: 1) the SIS did not advance through the lower and middle Vychegda valley at LGM as suggested in some recent publications; 2) the LGM glacier-dammed lake had a very limited extension in the Severnaya Dvina valley and did not exceed to the Vychegda River mouth. -
Use of Classification Algorithms for the Ice Jams Forecasting Problem
E3S Web of Conferences 163, 02008 (2020) https://doi.org/10.1051/e3sconf/202016302008 IV Vinogradov Conference Use of classification algorithms for the ice jams forecasting problem Natalia Semenova1*, Alexey Sazonov1,2, Inna Krylenko1,2,andNatalia Frolova1 1 Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991, Moscow, Russia 2 Water Problems Institute of the Russian Academy of Science, Gubkina st., 3, 119333, Moscow, Russia Abstract. In the research the prediction of occurrence of ice jam based on the K Nearest Neighbor method was considered by example of the city of Velikiy Ustyug, located at the confluence of the Sukhona and Yug Rivers. A forecast accuracy of 82% was achieved based on selected most significant hydrological and meteorological features. 1 Introduction Floods gain a lead among natural disasters both in terms of area of distribution and damage caused for Russia. Flooding can be caused by snow cover melting, a large amount of precipitation, the effects of surges, a breakthrough of a dam, etc. For northern rivers, including rivers of the European part of Russia, ice jams often cause floods. The goal of this research is developing a methodology for predicting the occurrence of ice jam based on the machine learning method. The place of confluence of the Sukhona and Yug Rivers, where the city of Velikiy Ustyug is located, was chosen as the object of study. The probability of the ice jams formation in this area is 43.5% according to statistics. Their occurrence leads to an increase of water level and flooding of residential and utility buildings. 2 Data and methods Over the past two decades, there has been a huge leap in the development of computer technology and machine learning, which has allowed the application of various machine learning algorithms to a large number of applied problems, including the prediction of flood characteristics. -
Argus Nefte Transport
Argus Nefte Transport Oil transportation logistics in the former Soviet Union Volume XVI, 5, May 2017 Primorsk loads first 100,000t diesel cargo Russia’s main outlet for 10ppm diesel exports, the Baltic port of Primorsk, shipped a 100,000t cargo for the first time this month. The diesel was loaded on 4 May on the 113,300t Dong-A Thetis, owned by the South Korean shipping company Dong-A Tanker. The 100,000t cargo of Rosneft product was sold to trading company Vitol for delivery to the Amsterdam-Rotter- dam-Antwerp region, a market participant says. The Dong-A Thetis was loaded at Russian pipeline crude exports berth 3 or 4 — which can handle crude and diesel following a recent upgrade, and mn b/d can accommodate 90,000-150,000t vessels with 15.5m draught. 6.0 Transit crude Russian crude It remains unclear whether larger loadings at Primorsk will become a regular 5.0 occurrence. “Smaller 50,000-60,000t cargoes are more popular and the terminal 4.0 does not always have the opportunity to stockpile larger quantities of diesel for 3.0 export,” a source familiar with operations at the outlet says. But the loading is significant considering the planned 10mn t/yr capacity 2.0 addition to the 15mn t/yr Sever diesel pipeline by 2018. Expansion to 25mn t/yr 1.0 will enable Transneft to divert more diesel to its pipeline system from ports in 0.0 Apr Jul Oct Jan Apr the Baltic states, in particular from the pipeline to the Latvian port of Ventspils. -
322-3-Cultural Identity in Russia
CS 322 Peoples and Cultures of the Circumpolar World II Module 3 Changes in Expressions of Cultural Identity in Northwest Russia, Siberia and the Far East Contents Course objectives 1 Introduction 2 Indigenous and non-indigenous northern identities 4 The impact of media on indigenous peoples 7 Expression of identity and self-determination through media 9 Expression of identity and self-determination through literary and visual arts 12 Family, education and recreation as social institutions for self-determination 16 Indigenous families: the impact of assimilation processes 18 Education systems: indigenous concerns vs. educational practices 19 Recreation 22 Glossary of terms 23 Literature 24 Course objectives Whereas the changes in expressions of cultural identity in the North American Arctic was the main topic of the previous module, this module discusses the changes in expressions of cultural self-determination of the indigenous peoples of the Russian Arctic; often described as Northwest Russia, Siberia and the Russian Far East.1 Complex issues in relation to culture, identity and self-determination were discussed in detail in the first module of this course, which could be seen as an introduction to explain the theoretical background which 1 The Russian Far Eastern Federal District includes all the areas from Vladivostok and Primorskiy Krai right up through Khabarovsk, Amur, Sakha, Magadan, Kamchatka before reaching Chukotka in the north (Sakhalin and Kamchatka further east are included as well). University of the Arctic – CS 322 1 CS 322 Peoples and Cultures of the Circumpolar World II subsequently will be applied in this, the previous and the next module where the case studies of the different regions will be discussed. -
Vegetation and Lake Changes on the Southern Taymyr Peninsula, Northern Siberia, During the Last 300 Years Inferred from Pollen and Pediastrum Green Algae Records
Mathematisch-Naturwissenschaftliche Fakultät Bastian Niemeyer | Ulrike Herzschuh | Luidmila Pestryakova Vegetation and lake changes on the southern Taymyr peninsula, northern Siberia, during the last 300 years inferred from pollen and Pediastrum green algae records Suggested citation referring to the original publication: The Holocene 25(4) (2015) DOI https://doi.org/10.1177/0959683614565954 ISSN (print) 0959-6836 ISSN (online) 1477-0911 Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe ; 421 ISSN 1866-8372 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404880 HOL0010.1177/0959683614565954The HoloceneNiemeyer et al. 565954research-article2015 Research paper The Holocene 2015, Vol. 25(4) 596 –606 Vegetation and lake changes on the © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav southern Taymyr peninsula, northern DOI: 10.1177/0959683614565954 Siberia, during the last 300 years inferred hol.sagepub.com from pollen and Pediastrum green algae records Bastian Niemeyer,1 Ulrike Herzschuh1,2 and Luidmila Pestryakova3 Abstract Siberian arctic vegetation and lake water communities, known for their temperature dependence, are expected to be particularly impacted by recent climate change and high warming rates. However, decadal information on the nature and strength of recent vegetation change and its time lag to climate signals are rare. In this study, we present a 210Pb/137Cs dated pollen and Pediastrum species record from a unnamed lake in the south of the Taymyr peninsula covering the period from AD 1706 to 2011. Thirty-nine palynomorphs and 10 morphotypes of Pediastrum species were studied to assess changes in vegetation and lake conditions as probable responses to climate change. -
A Polar System of Intercontinental Bird Migration Thomas Alerstam1,*, Johan Ba¨Ckman1, Gudmundur A
Proc. R. Soc. B (2007) 274, 2523–2530 doi:10.1098/rspb.2007.0633 Published online 7 August 2007 A polar system of intercontinental bird migration Thomas Alerstam1,*, Johan Ba¨ckman1, Gudmundur A. Gudmundsson2, Anders Hedenstro¨m3, Sara S. Henningsson1,Ha˚kan Karlsson1, Mikael Rose´n1 and Roine Strandberg1 1Department of Animal Ecology, and 3Department of Theoretical Ecology, Lund University, Ecology Building, 223 62 Lund, Sweden 2Icelandic Institute of Natural History, Hlemmur 3, PO Box 5320, 125 Reykjavik, Iceland Studies of bird migration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 July to 19 August 2005 and we encountered extensive bird migration in the whole Beringia range from latitude 648 N in Bering Strait up to latitude 758 N far north of Wrangel Island, with eastward flights making up 79% of all track directions. The results from Beringia were used in combination with radar studies from the Arctic Ocean north of Siberia and in the Beaufort Sea to make a reconstruction of a major Siberian–American bird migration system in a wide Arctic sector between longitudes 1108 Eand1308 W, spanning one-third of the entire circumpolar circle. This system was estimated to involve more than 2 million birds, mainly shorebirds, terns and skuas, flying across the Arctic Ocean at mean altitudes exceeding 1 km (maximum altitudes 3–5 km).