Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic

Total Page:16

File Type:pdf, Size:1020Kb

Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic Journal of Marine Science and Engineering Article Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic Alexey S. Egorov 1, Oleg M. Prischepa 2, Yury V. Nefedov 2,* , Vladimir A. Kontorovich 3 and Ilya Y. Vinokurov 4 1 The Faculty of Geology, Federal State Budget Educational Institution of Higher Education, Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia; [email protected] 2 Oil and Gas Geology Department, Federal State Budget Educational Institution of Higher Education, Saint-Petersburg Mining University, Saint-199106 Petersburg, Russia; [email protected] 3 Siberian Branch, Russian Academy of Science, The Trofimuk Institute of Petroleum Geology and Geophysics, 630090 Novosibirsk, Russia; [email protected] 4 Deep Geophysics Department, Russian Geological Research Institute, 199106 Saint-Petersburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-911-230-56-36 Abstract: The evolutionary-genetic method, whereby modern sedimentary basins are interpreted as end-products of a long geological evolution of a system of conjugate palaeo-basins, enables the assessment of the petroleum potential of the Western sector of the Russian Arctic. Modern basins in this region contain relics of palaeo-basins of a certain tectonotype formed in varying geodynamic regimes. Petroleum potential estimates of the Western Arctic vary broadly—from 34.7 to more than 100 billion tons of oil equivalent with the share of liquid hydrocarbons from 5.3 to 13.4 billion tons of oil equivalent. At each stage of the development of palaeo-basins, favourable geological, geochemical and thermobaric conditions have emerged and determined the processes of oil and gas formation, Citation: Egorov, A.S.; Prischepa, migration, accumulation, and subsequent redistribution between different complexes. The most O.M.; Nefedov, Y.V.; Kontorovich, recent stage of basin formation is of crucial importance for the modern distribution of hydrocarbon V.A.; Vinokurov, I.Y. Deep Structure, accumulations. The primary evolutionary-genetic sequence associated with the oil and gas formation Tectonics and Petroleum Potential of regime of a certain type is crucial for the assessment of petroleum potential. Tectonic schemes of the Western Sector of the Russian Arctic. J. Mar. Sci. Eng. 2021, 9, 258. individual crustal layers of the Western sector of the Russian Arctic have been compiled based on https://doi.org/10.3390/jmse9030258 the interpretation of several seismic data sets. These schemes are accompanied by cross-sections of the Earth’s crust alongside reference geophysical profiles (geo-traverses). A tectonic scheme of Academic Editors: the consolidated basement shows the location and nature of tectonic boundaries of cratons and Alexey Cherepovitsyn and platform plates with Grenvillian basement as well as Baikalian, Caledonian, Hercynian, and Early Alina Ilinova Cimmerian fold areas. Four groups of sedimentary basins are distinguished on the tectonic scheme of the platform cover according to the age of its formation: (1) Riphean-Mesozoic on the Early Received: 9 February 2021 Precambrian basement; (2) Paleozoic-Cenozoic on the Baikalian and Grenvillian basements; (3) Late Accepted: 20 February 2021 Paleozoic-Cenozoic on the Caledonian basement; (4) Mesozoic-Cenozoic, overlying a consolidated Published: 1 March 2021 basement of different ages. Fragments of reference sections along geo-traverses illustrate features of the deep structure of the main geo-structures of the Arctic shelf and continental regions of polar Publisher’s Note: MDPI stays neutral Russia. with regard to jurisdictional claims in published maps and institutional affil- Keywords: tectonic zoning; deep structure of the Earth’s crust; Western Russian Arctic; reference iations. geological and geophysical sections (geo-traverses); petroleum potential of the Western Russian Arctic; resource base of the Arctic shelf Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. 1. Introduction This article is an open access article distributed under the terms and At the present stage of regional oil and gas exploration in the Arctic, much attention is conditions of the Creative Commons given to studies of the deep structure of sedimentary basins in conjunction with studies of Attribution (CC BY) license (https:// the consolidated basement underlying them. Such an approach allows the assessment of creativecommons.org/licenses/by/ the age interval and geodynamic settings of the platform cover formation, the morphology 4.0/). of these structures, and the nature of the tectonic dislocations. J. Mar. Sci. Eng. 2021, 9, 258. https://doi.org/10.3390/jmse9030258 https://www.mdpi.com/journal/jmse J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 2 of 28 J. Mar. Sci. Eng. 2021, 9, 258 of the age interval and geodynamic settings of the platform cover formation,2 ofthe 26 morphology of these structures, and the nature of the tectonic dislocations. At the present level of regional geological and geophysical studies of the Russian Federation and adjacent continental shelf development of new methodological approachesAt the presentto the geotectonic level of regional modeling geological of structural and geophysicaland compositional studies inhomogeneities of the Russian Federationof the Earth's and adjacent crust, continentaltheir geodynamic shelf development and evolutionary of new methodological interpretation, approaches and the toimplementation the geotectonic of modeling regional of forecast structural-mineragenic and compositional estimates inhomogeneities for various types of theof ore Earth’s and crust,nonmetallic their geodynamic minerals, are and of particular evolutionary relevance. interpretation, and the implementation of re- gionalThe forecast-mineragenic lithosphere-scale 3- estimatesD structural for model various of typesthe Barents of ore andSea and nonmetallic Kara Sea minerals,region of areKlitzke of particular et al. [1 relevance.,2] was the first attempt to combine information about sediments, crystallineThe lithosphere-scale crust and lithospheric 3-D structural mantle. model of the Barents Sea and Kara Sea region of Klitzke et al. [1,2] was the first attempt to combine information about sediments, crystalline This model refines the four main mega-sequence boundaries: the bottom of the crust and lithospheric mantle. upper crystalline crust, the Moho, and the calculated lithosphere–asthenosphere (LAB) This model refines the four main mega-sequence boundaries: the bottom of the upper boundary. crystalline crust, the Moho, and the calculated lithosphere–asthenosphere (LAB) boundary. The Northern (1) and Southern (2) Kara Sea, the Eastern (3) and Western (4) Barents The Northern (1) and Southern (2) Kara Sea, the Eastern (3) and Western (4) Barents Sea, and the oceanic domain comprising the Norwegian–Greenland Sea and the Eurasia Sea, and the oceanic domain comprising the Norwegian–Greenland Sea and the Eurasia Basin (5) are the five main offshore areas. The western Barents Sea is underlain by a thin Basin (5) are the five main offshore areas. The western Barents Sea is underlain by a thin (~80 km) lithosphere. It was formed through multiple Phanerozoic rifting phases and/or (~80 km) lithosphere. It was formed through multiple Phanerozoic rifting phases and/or the opening of the Atlantic starting from Paleocene/Eocene times onwards. the opening of the Atlantic starting from Paleocene/Eocene times onwards. The most important results of the development of the structural model [3] for the The most important results of the development of the structural model [3] for the assessment of petroleum potential relate to the South-West Barents Sea and show a assessment of petroleum potential relate to the South-West Barents Sea and show a classical riftclassical system rift with system major with extensional major extensional faults. faults. MoreMore recentrecent researchresearch resultedresulted inin thethe compilationcompilation ofof aa tectonictectonic mapmap ofof thethe ArcticArctic [[4]4] thatthat showsshows the the age age and and main main structural structural features features of coastal of coastal and oceanic and oceanic sedimentary sedimentary basins ofbasins the Barents, of the Barents, Kara, Laptev, Kara, EastLaptev, Siberian, East Siberian, and Chukotka and Chukotka Seas [5]. TheSeas basement [5]. The b structureasement ofstructure these basins of these and basins Arctic and islands Arctic is alsoislands discussed. is also discussed. TheThe databasedatabase ofof regionalregional investigationsinvestigations ofof thethe deepdeep structurestructure ofof thethe crust,crust, tectonics,tectonics, andand geodynamicsgeodynamics ofof sedimentarysedimentary basinsbasins andand foldfold areasareas includesincludes refractionrefraction andand reflectionreflection (CDP)(CDP) seismicseismic data, data, deep deep seismic seismic sounding sounding (DSS) (DSS) data, data, magnetotellurics magnetotellurics (MT), (MT), audio audio mag- netotelluricsmagnetotellurics (AMT) (AMT) sections, sections digital, potentialdigital potential fields, and fields, remote and sensing remote data. sensing Geological data. mappingGeological results mapping and geologicalresults and and geological geophysical and studies geophysical of wells studies were alsoof wells used towere inform also ourused interpretations. to inform our interpretations. These were collected These were in the collected framework in the of framework government of programs
Recommended publications
  • Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
    BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background
    [Show full text]
  • Late Frasnian Atrypida (Brachiopoda) from the South Urals, South Timan and Kuznetsk Basin (Russia)
    Late Frasnian Atrypida (Brachiopoda) from the South Urals, South Timan and Kuznetsk Basin (Russia) MARIA A. RZHONSMTSKAYA, BORIS p. MARKOVSKtr T, YULIA A. YUDINA, andELENA V. SOKIRAN Rzhonsnitskaya, M.A., Markovskii, B.P., Yudina, Y.A., & Sokiran E.V. 1998. Late Frasnian Atrypida (Brachiopoda) from the South Urals, South Timan and Kuznetsk Basin (Russia). - Acta Palaeontologica Polonica 43,2,305-344. Late Frasnian AĘpida @rachiopoda) from the South Urals, South Timan and Kuznetsk Basin in Russia (east Laurussian and south Siberian shelf domains in Devonian time) reveal significant geneńc and specific diversĘ in the broadly defined Frasnian-Famen- nian (F-F) bio-crisis time. Eighteen species of aĘpid brachiopods have been recorded, representing 4 subfamilies and 10 genera. The new genus GibberosatrypaMarkovskii & Rzhonsnitskaya, and the new subgenus Spinatrypa (Plicspinatrypa)Rzhonsnitskaya are proposed. Four new species Spinatrypina (Spinatrypina) sosnovkiensis Yudina, Spinar rypa (Plicspinatrypa) rossica Rzhonsnitskaya, Iowatrypa nalivkini Rzhonsnitskaya & Sokiran, and Cartnatina(?) biohermica Yudina are described. The representatives of the Vańatrypinae (including especially conrmon Desquamatia (Desquamatia) alticolifur- mis), Spinatrypinae (Spinatrypina) andAtypinae(Pseudoatrypa,?Costatrypa) arewide- ly distributed in the studied regions. The Pseudogruenewaldtiinae are represented by Iowatrypa artdPseudogruenewaldtla, of which the first is distributed worldwide, where- as the only undoubted species of the second is resfficted to South Timan, and probably represents a localized latest Frasnian descendant of lowatrypa. The decline phase of aĘpid development was controlled by a variety of environmental factors tied to the globalKellwasser events, although it was not directĘ triggered by anoxic conditions. The investigated atrypid brachiopods, which were all confined to lower latitudes, disappeared duńng the F-F mass extinction, independently of their environmental and biogeographic settings.
    [Show full text]
  • Geochemistry of Late Devonian Oils of the Timan-Pechora Basin
    Available online at www.sciencedirect.com ScienceDirect Russian Geology and Geophysics 58 (2017) 332–342 www.elsevier.com/locate/rgg Geochemistry of Late Devonian oils of the Timan–Pechora basin D.A. Bushnev a,*, N.S. Burdel’naya a, O.V. Valyaeva a, A.A. Derevesnikova b a Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, ul. Pervomaiskaya 54, Syktyvkar, Komi Republic, 167982, Russia b Syktyvkar State University, Oktyabr’skii pr. 55, Syktyvkar, Komi Republic, 167001, Russia Received 20 July 2016; accepted 1 September 2016 Abstract The composition of biomarkers and aromatic hydrocarbons of Late Devonian oils of the Timan–Pechora Basin has been studied. It shows that the organic matter of oil-generating deposits is at the close stages of thermal maturity, which are within the early and middle stages of the oil window. Five groups of oils have been recognized, three of which were generated by organic matter of Domanik deposits and the other two formed from organic matter of another source. Most of the studied oil samples contain derivates of isorenieratene indicating that the organic matter of oil source rocks formed in the photic-zone anoxia of the paleobasin. © 2017, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved. Keywords: Timan–Pechora basin oil; biomarkers; domanikites; alkylbenzenes; carbon isotope composition of oils Introduction HC biomarkers and the carbon isotope composition of Late Devonian oils of the Timan–Pechora basin are related to the Geochemical study of oils in a particular area and at a varying composition of organic matter (OM) of the oil source particular stratigraphic stage is aimed at answering several rocks.
    [Show full text]
  • Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period.
    [Show full text]
  • Salt Tectonics in the Central and Northeastern Nordkapp Basin, Barents Sea
    Salt tectonics in the central and northeastern Nordkapp Basin, Barents Sea Silje Grimstad Master Thesis in Geoscience Petroleum geology and petroleum geophysics 30 credits Department of Geoscience Faculty of Mathematics and Natural Science UNIVERSITY OF OSLO June 2016 II Salt tectonics in the central and northeastern Nordkapp Basin, Barents Sea Silje Grimstad Master Thesis in Geoscience Petroleum geology and petroleum geophysics 30 credits Department of Geoscience Faculty of Mathematics and Natural Science UNIVERSITY OF OSLO June 2016 III © Silje Grimstad 2016 Salt tectonics in the central and northeastern Nordkapp Basin, Barents Sea Silje Grimstad http://www.duo.uio.no/ Print: Reprosentralen, University of Oslo IV Abstract The Nordkapp Basin is an elongated salt-filled basin that developed during the Late Paleozoic rifting in the southwestern Barents Sea. The study area is divided into the central sub-basin and the NE sub-basin. The NE sub-basin is positioned in the former disputed area between Norway and Russia. Salt diapirism and the formation of pillows attached to the basin margin make the Nordkapp Basin one crucial example of salt tectonics in the southwestern Barents Sea. The objective of this thesis is to study the salt distribution and evolution of the salt structures in the northern part of the Nordkapp Basin. The main dataset is 2D seismic reflection lines that are used in combination with filtered gravity data, selected time-slices from a pseudo-3D cube and well data. The rift basin architecture in the Nordkapp Basin is characterized by a wide fault zone of short densely-spaced fault segments. The lateral continuity of the fault segments increases upwards from the Late Paleozoic level.
    [Show full text]
  • Vertical Plate Motions in the West Siberian Basin and Northern Europe As Indicators of Mantle-Induced
    Vertical plate motions in the West Siberian Basin and Northern Europe as indicators of mantle-induced dynamic topography Yulia Vibe München 2017 Vertical plate motions in the West Siberian Basin and Northern Europe as indicators of mantle-induced dynamic topography Yulia Vibe Dissertation An der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München vorgelegt von Yulia Vibe aus Nowosibirsk München, 13.09.2017 Erstgutachter: Prof. Dr. Hans-Peter Bunge Zweitgutachter: Dr. Stuart R. Clark Tag der mündlichen Prüfung: 05.02.2018 Acknowledgements I would like to express my sincere gratitude to my supervisors Dr. Stuart R. Clark and Prof. Dr. Hans-Peter Bunge for all the support and guidance over the last years. I am very thankful for everything you taught me as a researcher and as a person. Also, I would like to thank my parents for always helping me in everything I do. Your example of dedication, hard work and passion to learn has always been my main inspiration in work and life. This thesis would be impossible without the help of Prof. Dr. Anke Friedrich, Dr. Lorenzo Colli, Dr. Stefanie Rieger and Dr. Christoph Moder. Thank you very much for the knowledge you gave me and for your contribution and support during this project. And, of course, thanks to my beloved friends and family: to the family Schmidt for being my home in Munich and to Bernardo and Teodora for making my PhD years joyful. Summary Motion of the lithospheric plates is a reflection of the convective circulation of the Earth’s mantle. Plate divergence is attributed to the mantle upwellings, while plate convergence to the mantle’s downwellings.
    [Show full text]
  • Zeszyt 10. Morza I Oceany
    Uwaga: Niniejsza publikacja została opracowana według stanu na 2008 rok i nie jest aktualizowana. Zamieszczony na stronie internetowej Komisji Standaryzacji Nazw Geograficznych poza Granica- mi Rzeczypospolitej Polskiej plik PDF jest jedynie zapisem cyfrowym wydrukowanej publikacji. Wykaz zalecanych przez Komisję polskich nazw geograficznych świata (Urzędowy wykaz polskich nazw geograficznych świata), wraz z aktualizowaną na bieżąco listą zmian w tym wykazie, zamieszczo- ny jest na stronie internetowej pod adresem: http://ksng.gugik.gov.pl/wpngs.php. KOMISJA STANDARYZACJI NAZW GEOGRAFICZNYCH POZA GRANICAMI RZECZYPOSPOLITEJ POLSKIEJ przy Głównym Geodecie Kraju NAZEWNICTWO GEOGRAFICZNE ŚWIATA Zeszyt 10 Morza i oceany GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Warszawa 2008 KOMISJA STANDARYZACJI NAZW GEOGRAFICZNYCH POZA GRANICAMI RZECZYPOSPOLITEJ POLSKIEJ przy Głównym Geodecie Kraju Waldemar Rudnicki (przewodniczący), Andrzej Markowski (zastępca przewodniczącego), Maciej Zych (zastępca przewodniczącego), Katarzyna Przyszewska (sekretarz); członkowie: Stanisław Alexandrowicz, Andrzej Czerny, Janusz Danecki, Janusz Gołaski, Romuald Huszcza, Sabina Kacieszczenko, Dariusz Kalisiewicz, Artur Karp, Zbigniew Obidowski, Jerzy Ostrowski, Jarosław Pietrow, Jerzy Pietruszka, Andrzej Pisowicz, Ewa Wolnicz-Pawłowska, Bogusław R. Zagórski Opracowanie Kazimierz Furmańczyk Recenzent Maciej Zych Komitet Redakcyjny Andrzej Czerny, Joanna Januszek, Sabina Kacieszczenko, Dariusz Kalisiewicz, Jerzy Ostrowski, Waldemar Rudnicki, Maciej Zych Redaktor prowadzący Maciej
    [Show full text]
  • Circulation in the Southwestern Part of the Kara Sea in September 2007 A
    ISSN 00014370, Oceanology, 2010, Vol. 50, No. 5, pp. 643–656. © Pleiades Publishing, Inc., 2010. Original Russian Text © A.G. Zatsepin, E.G. Morozov, V.T. Paka, A.N. Demidov, A.A. Kondrashov, A.O. Korzh, V.V. Kremenetskiy, S.G. Poyarkov, D.M. Soloviev, 2010, published in Okeanologiya, 2010, Vol. 50, No. 5, pp. 683–697. MARINE PHYSICS Circulation in the Southwestern Part of the Kara Sea in September 2007 A. G. Zatsepina, E. G. Morozova, V. T. Pakab, A. N. Demidova, A. A. Kondrashovb, A. O. Korzhb, V. V. Kremenetskiya, S. G. Poyarkova, and D. M. Solovievc a Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Email: [email protected] b Atlantic Branch of the Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia c Marine Hydrophysical Institute, National Academy of Sciences of Ukraine, Sevastopol, Ukraine Received September 16, 2009; in final form, January 2, 2010 Abstract—During cruise 54 of the R/V Akademik Mstislav Keldysh to the southwestern Kara Sea (September 6 to October 7, 2007), a large amount of hydrophysical data with unique spatial resolution was obtained on the basis of measurements using different instruments. The analysis of the data gave us the possibility to study the dynamics and hydrological structure of the southwestern Kara Sea basin. The main elements of the gen eral circulation are the following: the Yamal Current, the Eastern Novaya Zemlya Current, and the St. Anna Trough Current. All these currents are topographically controlled; they flow over the bottom slopes along the isobaths. The Yamal Current begins at the Kara Gates Strait and turns to the east as part of the cyclonic cir culation.
    [Show full text]
  • A Newly Discovered Glacial Trough on the East Siberian Continental Margin
    Clim. Past Discuss., doi:10.5194/cp-2017-56, 2017 Manuscript under review for journal Clim. Past Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. De Long Trough: A newly discovered glacial trough on the East Siberian Continental Margin Matt O’Regan1,2, Jan Backman1,2, Natalia Barrientos1,2, Thomas M. Cronin3, Laura Gemery3, Nina 2,4 5 2,6 7 1,2,8 9,10 5 Kirchner , Larry A. Mayer , Johan Nilsson , Riko Noormets , Christof Pearce , Igor Semilietov , Christian Stranne1,2,5, Martin Jakobsson1,2. 1 Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden 2 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10 3 US Geological Survey MS926A, Reston, Virginia, 20192, USA 4 Department of Physical Geography (NG), Stockholm University, SE-106 91 Stockholm, Sweden 5 Center for Coastal and Ocean Mapping, University of New Hampshire, New Hampshire 03824, USA 6 Department of Meteorology, Stockholm University, Stockholm, 106 91, Sweden 7 University Centre in Svalbard (UNIS), P O Box 156, N-9171 Longyearbyen, Svalbard 15 8 Department of Geoscience, Aarhus University, Aarhus, 8000, Denmark 9 Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 10 Tomsk National Research Polytechnic University, Tomsk, Russia Correspondence to: Matt O’Regan ([email protected]) 20 Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved.
    [Show full text]
  • Chapter 17 Uplift and Erosion of the Greater Barents Sea: Impact On
    Chapter 17 Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems E. HENRIKSEN1*, H. M. BJØRNSETH2, T. K. HALS2, T. HEIDE2, T. KIRYUKHINA3, O. S. KLØVJAN2, G. B. LARSSEN1, A. E. RYSETH2, K. RØNNING1, K. SOLLID2 & A. STOUPAKOVA1,3 1Statoil Global Exploration, Harstad, Norway 2Statoil Exploration and Production Norway, Harstad, Norway 3Moscow State University (MGU), Moscow, Russia *Corresponding author (e-mail: [email protected]) Abstract: A regional net erosion map for the greater Barents Sea shows that the different areas in the Barents Sea region have been subject to different magnitudes of uplift and erosion. Net erosion values vary from 0 to more than 3000 m. The processes have important consequences for the petroleum systems. Reservoir quality, maturity of the source rocks and the migration of hydrocarbons are affected by the processes. Owing to changes in the PVT conditions in a hydrocarbon-filled structure, uplift and erosion increase the risk of leakage and expansion of the gas cap in a structure. Understanding of the timing of uplift and re-migration of hydrocarbons has been increasingly important in the exploration of the Barents Sea. Ideas on uplift in the Barents Sea region can be traced back to have been over-stressed (Dore´ & Jensen 1996; Ohm et al. 2008). Fritjof Nansen (1904). During his expeditions in the Barents Sea The effects of uplift (former deeper burial) on reservoir properties he concluded from bathymetric investigations that the area had and hydrocarbon migration were described by Bjørkum et al. been quite recently uplifted. A renewed focus on this issue in the (2001).
    [Show full text]
  • Radioactivity in the Arctic Seas
    IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment.
    [Show full text]
  • The Petroleum Potential of the Riphean–Vendian Succession of Southern East Siberia
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/253369249 The petroleum potential of the Riphean–Vendian succession of southern East Siberia CHAPTER in GEOLOGICAL SOCIETY LONDON SPECIAL PUBLICATIONS · MAY 2012 Impact Factor: 2.58 · DOI: 10.1144/SP366.1 CITATIONS READS 2 95 4 AUTHORS, INCLUDING: Olga K. Bogolepova Uppsala University 51 PUBLICATIONS 271 CITATIONS SEE PROFILE Alexander P. Gubanov Scandiz Research 55 PUBLICATIONS 485 CITATIONS SEE PROFILE Available from: Olga K. Bogolepova Retrieved on: 08 March 2016 Downloaded from http://sp.lyellcollection.org/ by guest on March 25, 2013 Geological Society, London, Special Publications The petroleum potential of the Riphean-Vendian succession of southern East Siberia James P. Howard, Olga K. Bogolepova, Alexander P. Gubanov and Marcela G?mez-Pérez Geological Society, London, Special Publications 2012, v.366; p177-198. doi: 10.1144/SP366.1 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by guest on March 25, 2013 The petroleum potential of the Riphean–Vendian succession of southern East Siberia JAMES P. HOWARD*, OLGA K. BOGOLEPOVA, ALEXANDER P. GUBANOV & MARCELA GO´ MEZ-PE´ REZ CASP, West Building, 181a Huntingdon Road, Cambridge CB3 0DH, UK *Corresponding author (e-mail: [email protected]) Abstract: The Siberian Platform covers an area of c.
    [Show full text]