Radioactivity in the Arctic Seas

Total Page:16

File Type:pdf, Size:1020Kb

Radioactivity in the Arctic Seas IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment. This report summarize wore sth k done under parts (vii)(i)d resulte ,an (ii)Th ) . (v s, obtained under parts (iii), (iv) and (vi) have already been published in the scientific literature and the modelling components (vi) will also be included in a report of the Modelling and Assessment Working Group currently in preparation. The source term component of the IASA s beeha P n e Sourctreatee reporth th f n o i etd Term Working Group, Predicted Radionuclide Release from Marine Reactors Dumped in the Kara Sea (IAEA-TECDOC-938 (1997)) presene Th . t report shoul reae d b conjunctio n di n wit maie hth n reporIASAe th f o tP project, Radiological Condition Westere th f so n Kar (Radiologicaa aSe l Assessment Reports Series, IAEA, Vienna (1998)) so that the full radiological context is appreciated. This wor co-ordinates kwa IAEA'e th n di s Marine Environment Laborator Monacn yi o and the responsible officer was P.P. Povinec. The success of the project was due to the full collaboration of the institutions participating in the IASAP programme. The IAEA would like to expres gratituds sit Governmente th o et Germanyf so , Norway Russiae th , n Federatiod nan the United States of America for their generous support. The IAEA also extends its thanks to several institutions, namely the Norwegian Defence Research Establishment (Horten, Norway), the Norwegian Radiation Protection Authority (Osteras, Norway), SPA Typhoon (Obninsk, Russian Federation), the Murmansk Marine Biology Institute of the Russian Academy of Sciences (Murmansk, Russian Federation), the Arctic and Antarctic Research Institute (St. Petersburg, Russian Federation), MAFF (Lowestoft, United Kingdom) and others for their hel n providini p g radionuclide datd othean a r information necessare th r fo y completion of this report. The IAEA does not normally maintain stocks of reports in this series. However, copie f thesso e report microfichn so electronin i r eo obtainece b for n mca d from INIS Clearinghouse International Atomic Energy Agency Wagramer Strasse5 0 10 P.Ox Bo . A-1400 Vienna, Austria E-mail: CHOUSE ©IAEA.ORG URL: http://www.iaea.org/programmes/inis/inis.htm Orders should be accompanied by prepayment of Austrian Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. EDITORIAL NOTE In preparing this publication for press, staff of the IAEA have made up the pages from the original manuscripts). The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. Throughout the text names of Member States are retained as they were when the text was compiled. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions delimitation ofthe or of their boundaries. The mention namesof specificof companies productsor (whetherindicatednot or as registered) does imply intentionnot any infringeto proprietary rights, should construednor be it as an endorsement or recommendation on the part of the IAEA. CONTENTS SUMMARY................................................................................................................................ 1 1. INTRODUCTION.................................................................................................................3 2. DESCRIPTIO REGIOE TH F NNO ......................................................................................4 2.1. Oceanography.............................................................................................................^ 2.1.1. Arctic Ocean...................................................................................................4 2.1.2. Barents Sea.....................................................................................................8 2.1.3. Kara Sea..........................................................................................................9 2.1.4. Kar dumpsitea aSe s ......................................................................................19 2.2. Ecology ......................................................................................................................23 2.2.1. Biological productio Arctie th n i c ..............................................................23 2.2.2. Marine food-web Arctic....................................................................2e th n si 5 2.2.3. Fisfisheried hBarentan e th Karn d si san a Seas ...........................................28 3. RADIOACTIVITY IN THE KARA SEA...........................................................................29 3.1. Marine Radioactivity database...................................................................................29 3.2. Pre-1992 radionuclide concentrations........................................................................30 3.2.1. Water............................................................................................................30 3.2.2. Sediment.......................................................................................................33 3.3. Present radionuclide concentration Kare th an s i Sea.................................................3 3 3.3.1. Dumpsites.....................................................................................................33 opee 3.3.2Th n Kar. a Sea........................................................................................45 Yenised an 3.3.3b O y .estuaries..............................................................................4 6 3.3.4. Biota..............................................................................................................46 3.3.5. Intercomparison exercises ............................................................................51 3.3.6. Conclusion radionuclidn so e inventorie Kar e ............................5a th aSe n s i 1 4. DISTRIBUTION COEFFICIENTS AND CONCENTRATION FACTORS .....................52 4.1. Distribution coefficients ............................................................................................52 4.1.1. Result laboratorf so y experiments................................................................53 4.1.2. Results of field experiments .........................................................................56 4.1.3. Conclusion distribution so n coefficients ......................................................57 4.2. Concentration factors.................................................................................................57 4.2.1. 137 60d CCsan o transfer factor Arctir sfo c clams...........................................58 4.2.2. Concentration factors for Arctic benthic organisms.....................................58 4.2.3. Concentration factors for a Kara Sea bivalve...............................................61 4.2.4. Conclusion concentration so n factors...........................................................62 5. CONCLUSIONS.................................................................................................................64 REFERENCES .........................................................................................................................65 CONTRIBUTORS TO DRAFTING AND REVIEW ..............................................................71 SUMMARY From 199 199o 3t Internationae 6th l Atomic Energy Agency carrieInternationan
Recommended publications
  • Regional Maps of Locations Mentioned in Global Review of The
    Regional Maps of Locations Mentioned in Global Review of the Conservation Status of Monodontid Stocks These maps provide the locations of the geographic features mentioned in the Global Review of the Conservation Status of Monodontid Stocks. Figure 1. Locations associated with beluga stocks of the Okhotsk Sea (beluga stocks 1-5). Numbered locations are: (1) Amur River, (2) Ul- bansky Bay, (3) Tugursky Bay, (4) Udskaya Bay, (5) Nikolaya Bay, (6) Ulban River, (7) Big Shantar Island, (8) Uda River, (9) Torom River. Figure 2. Locations associated with beluga stocks of the Bering Sea and Gulf of Alaska (beluga stocks 6-9). Numbered locations are: (1) Anadyr River Estuary, (2) Anadyr River, (3) Anadyr City, (4) Kresta Bay, (5) Cape Navarin, (6) Yakutat Bay, (7) Knik Arm, (8) Turnagain Arm, (9) Anchorage, (10) Nushagak Bay, (11) Kvichak Bay, (12) Yukon River, (13) Kuskokwim River, (14) Saint Matthew Island, (15) Round Island, (16) St. Lawrence Island. Figure 3. Locations associated with beluga stocks of the Chukchi and Beaufort Seas, Canadian Arctic and West Greenland (beluga stocks 10-12 and 19). Numbered locations are: (1) St. Lawrence Island, (2) Kotzebue Sound, (3) Kasegaluk Lagoon, (4) Point Lay, (5) Wain- wright, (6) Mackenzie River, (7) Somerset Island, (8) Radstock Bay, (9) Maxwell Bay, (10) Croker Bay, (11) Devon Island, (12) Cunning- ham Inlet, (13) Creswell Bay, (14) Mary River Mine, (15) Elwin Bay, (16) Coningham Bay, (17) Prince of Wales Island, (18) Qeqertarsuat- siaat, (19) Nuuk, (20) Maniitsoq, (21) Godthåb Fjord, (22) Uummannaq, (23) Upernavik. Figure 4. Locations associated with beluga stocks of subarctic eastern Canada, Hudson Bay, Ungava Bay, Cumberland Sound and St.
    [Show full text]
  • Novaya Zemlya Archipelago (Russian Arctic)
    This is a repository copy of First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127196/ Version: Accepted Version Article: Mazei, Yuri, Tsyganov, Andrey N, Chernyshov, Viktor et al. (2 more authors) (2018) First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). Polar Biology. ISSN 0722-4060 https://doi.org/10.1007/s00300-018-2273-x Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic) 2 Yuri A. Mazei1,2, Andrey N. Tsyganov1, Viktor A. Chernyshov1, Alexander A. Ivanovsky2, Richard J. 3 Payne1,3* 4 1. Penza State University, Krasnaya str., 40, Penza 440026, Russia. 5 2. Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russia. 6 3. University of York, Heslington, York YO10 5DD, United Kingdom.
    [Show full text]
  • Mobilization and Isolation As Outcomes of a Dysfunctional Soviet Landscape
    Mobilization and Isolation as Outcomes of a Dysfunctional Soviet Landscape. [a working title] Craig Campbell This paper is about the resilience of soviet landscapes in post-communist Siberia. It is my thesis that the Soviet landscape endures into the early years of the 21st Century as a dysfunctional artifact of the Soviet era. Many indigenous Siberian peoples living in remote villages and settlements have little or no access to means of travel and subsequently are suffering from a variety of problems associated with impoverishment and isolation. The soviet era placement of settlements and their requisite infrastructures are material reminders of a built environment that has failed to adapt to the conditions of market capitalism that now characterize the economies of central Siberia and are poorly suited to provide for the needs of remotely located rural peoples in the post-Soviet era. The settlements were designed to function with the redistributive inputs of fuel and subsidies associated with Soviet socialism and fail to work in their absence. In other words, Soviet settlements in rural Siberia are de-localized (Pelto 1973) technological systems. All of the artifacts of socialism are now precariously situated because of their dependence upon transfer payments, subsidies, and centralized bureaucracies. The post-Soviet landscape is littered with crippled devices of industrial manufacture, confounding the possibility for rural peoples to develop healthy communities. This paper presents a history organized around mobility where travel and the inability to travel is taken as a key experience for both indigenous northerners and newcomers. In my argument the current predicament of de- mobilization and isolation in remote villages of central Siberia is shown to be in part a result of enduring dysfunctional landscapes and the difficulty of negotiating mobility within these landscapes.
    [Show full text]
  • Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period.
    [Show full text]
  • Molecular Systematics of Gadid Fishes: Implications for the Biogeographic Origins of Pacific Species
    Color profile: Disabled Composite Default screen 19 Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species Steven M. Carr, David S. Kivlichan, Pierre Pepin, and Dorothy C. Crutcher Abstract: Phylogenetic relationships among 14 species of gadid fishes were investigated with portions of two mitochondrial DNA (mtDNA) genes, a 401 base pair (bp) segment of the cytochrome b gene, and a 495 bp segment of the cytochrome oxidase I gene. The molecular data indicate that the three species of gadids endemic to the Pacific Basin represent simultaneous invasions by separate phylogenetic lineages. The Alaskan or walleye pollock (Theragra chalcogramma) is about as closely related to the Atlantic cod (Gadus morhua) as is the Pacific cod (Gadus macrocephalus), which suggests that T. chalcogramma and G. macrocephalus represent separate invasions of the Pacific Basin. The Pacific tomcod (Microgadus proximus) is more closely related to the Barents Sea navaga (Eleginus navaga) than to the congeneric Atlantic tomcod (Microgadus tomcod), which suggests that the Pacific species is derived from the Eleginus lineage and that Eleginus should be synonymized with Microgadus. Molecular divergences between each of the three endemic Pacific species and their respective closest relatives are similar and consistent with contemporaneous speciation events following the reopening of the Bering Strait ca. 3.0–3.5 million years BP. In contrast, the Greenland cod (Gadus ogac) and the Pacific cod have essentially identical mtDNA sequences; differences between them are less than those found within G. morhua. The Greenland cod appears to represent a contemporary northward and eastward range extension of the Pacific cod, and should be synonymized with it as G.
    [Show full text]
  • Zeszyt 10. Morza I Oceany
    Uwaga: Niniejsza publikacja została opracowana według stanu na 2008 rok i nie jest aktualizowana. Zamieszczony na stronie internetowej Komisji Standaryzacji Nazw Geograficznych poza Granica- mi Rzeczypospolitej Polskiej plik PDF jest jedynie zapisem cyfrowym wydrukowanej publikacji. Wykaz zalecanych przez Komisję polskich nazw geograficznych świata (Urzędowy wykaz polskich nazw geograficznych świata), wraz z aktualizowaną na bieżąco listą zmian w tym wykazie, zamieszczo- ny jest na stronie internetowej pod adresem: http://ksng.gugik.gov.pl/wpngs.php. KOMISJA STANDARYZACJI NAZW GEOGRAFICZNYCH POZA GRANICAMI RZECZYPOSPOLITEJ POLSKIEJ przy Głównym Geodecie Kraju NAZEWNICTWO GEOGRAFICZNE ŚWIATA Zeszyt 10 Morza i oceany GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Warszawa 2008 KOMISJA STANDARYZACJI NAZW GEOGRAFICZNYCH POZA GRANICAMI RZECZYPOSPOLITEJ POLSKIEJ przy Głównym Geodecie Kraju Waldemar Rudnicki (przewodniczący), Andrzej Markowski (zastępca przewodniczącego), Maciej Zych (zastępca przewodniczącego), Katarzyna Przyszewska (sekretarz); członkowie: Stanisław Alexandrowicz, Andrzej Czerny, Janusz Danecki, Janusz Gołaski, Romuald Huszcza, Sabina Kacieszczenko, Dariusz Kalisiewicz, Artur Karp, Zbigniew Obidowski, Jerzy Ostrowski, Jarosław Pietrow, Jerzy Pietruszka, Andrzej Pisowicz, Ewa Wolnicz-Pawłowska, Bogusław R. Zagórski Opracowanie Kazimierz Furmańczyk Recenzent Maciej Zych Komitet Redakcyjny Andrzej Czerny, Joanna Januszek, Sabina Kacieszczenko, Dariusz Kalisiewicz, Jerzy Ostrowski, Waldemar Rudnicki, Maciej Zych Redaktor prowadzący Maciej
    [Show full text]
  • December 20, 2007
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST THE RIBBON SEAL (HISTRIOPHOCA FASCIATA) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT © G. CARLETON RAY CENTER FOR BIOLOGICAL DIVERSITY DECEMBER 20, 2007 Notice of Petition____________________________________________________ Carlos M. Gutierrez Secretary of Commerce U.S. Department of Commerce 1401 Constitution Avenue, N.W., Room 5516 Washington, D.C. 20230 Dr. William Hogarth Assistant Administrator for Fisheries National Oceanographic and Atmospheric Administration 1315 East-West Highway Silver Springs, MD 20910 PETITIONER The Center for Biological Diversity 1095 Market Street, Suite 511 San Francisco, CA 94103 ph: (415) 436-9682 ext 301 fax: (415) 436-9683 __________________________ Date: this 20th day of December, 2007 Shaye Wolf, Ph.D. Martha Palomino Tovar, Ph.D. Candidate Brendan Cummings Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. §1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R. §424.14(a), the Center for Biological Diversity (“Petitioner”) hereby petitions the Secretary of Commerce, through the National Marine Fisheries Service (“NMFS”), to list the ribbon seal (Histriophoca fasciata) as a threatened or endangered species and to designate critical habitat to ensure its survival and recovery. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has over 40,000 members in Alaska and throughout the United States. The Center and its members are concerned with the conservation of endangered species, including the ribbon seal, and the effective implementation of the ESA.
    [Show full text]
  • Circulation in the Southwestern Part of the Kara Sea in September 2007 A
    ISSN 00014370, Oceanology, 2010, Vol. 50, No. 5, pp. 643–656. © Pleiades Publishing, Inc., 2010. Original Russian Text © A.G. Zatsepin, E.G. Morozov, V.T. Paka, A.N. Demidov, A.A. Kondrashov, A.O. Korzh, V.V. Kremenetskiy, S.G. Poyarkov, D.M. Soloviev, 2010, published in Okeanologiya, 2010, Vol. 50, No. 5, pp. 683–697. MARINE PHYSICS Circulation in the Southwestern Part of the Kara Sea in September 2007 A. G. Zatsepina, E. G. Morozova, V. T. Pakab, A. N. Demidova, A. A. Kondrashovb, A. O. Korzhb, V. V. Kremenetskiya, S. G. Poyarkova, and D. M. Solovievc a Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Email: [email protected] b Atlantic Branch of the Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia c Marine Hydrophysical Institute, National Academy of Sciences of Ukraine, Sevastopol, Ukraine Received September 16, 2009; in final form, January 2, 2010 Abstract—During cruise 54 of the R/V Akademik Mstislav Keldysh to the southwestern Kara Sea (September 6 to October 7, 2007), a large amount of hydrophysical data with unique spatial resolution was obtained on the basis of measurements using different instruments. The analysis of the data gave us the possibility to study the dynamics and hydrological structure of the southwestern Kara Sea basin. The main elements of the gen eral circulation are the following: the Yamal Current, the Eastern Novaya Zemlya Current, and the St. Anna Trough Current. All these currents are topographically controlled; they flow over the bottom slopes along the isobaths. The Yamal Current begins at the Kara Gates Strait and turns to the east as part of the cyclonic cir culation.
    [Show full text]
  • Exceptional Retreat of Novaya Zemlya's Marine
    The Cryosphere, 11, 2149–2174, 2017 https://doi.org/10.5194/tc-11-2149-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013 J. Rachel Carr1, Heather Bell2, Rebecca Killick3, and Tom Holt4 1School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK 2Department of Geography, Durham University, Durham, DH13TQ, UK 3Department of Mathematics & Statistics, Lancaster University, Lancaster, LA1 4YF, UK 4Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 4RQ, UK Correspondence to: J. Rachel Carr ([email protected]) Received: 7 March 2017 – Discussion started: 15 May 2017 Revised: 20 July 2017 – Accepted: 24 July 2017 – Published: 8 September 2017 Abstract. Novaya Zemlya (NVZ) has experienced rapid ice al., 2013). This ice loss is predicted to continue during loss and accelerated marine-terminating glacier retreat dur- the 21st century (Meier et al., 2007; Radic´ et al., 2014), ing the past 2 decades. However, it is unknown whether and changes are expected to be particularly marked in the this retreat is exceptional longer term and/or whether it has Arctic, where warming of up to 8 ◦C is forecast (IPCC, persisted since 2010. Investigating this is vital, as dynamic 2013). Outside of the Greenland Ice Sheet, the Russian high thinning may contribute substantially to ice loss from NVZ, Arctic (RHA) accounts for approximately 20 % of Arctic but is not currently included in sea level rise predictions. glacier ice (Dowdeswell and Williams, 1997; Radic´ et al., Here, we use remotely sensed data to assess controls on NVZ 2014) and is, therefore, a major ice reservoir.
    [Show full text]
  • A Newly Discovered Glacial Trough on the East Siberian Continental Margin
    Clim. Past Discuss., doi:10.5194/cp-2017-56, 2017 Manuscript under review for journal Clim. Past Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. De Long Trough: A newly discovered glacial trough on the East Siberian Continental Margin Matt O’Regan1,2, Jan Backman1,2, Natalia Barrientos1,2, Thomas M. Cronin3, Laura Gemery3, Nina 2,4 5 2,6 7 1,2,8 9,10 5 Kirchner , Larry A. Mayer , Johan Nilsson , Riko Noormets , Christof Pearce , Igor Semilietov , Christian Stranne1,2,5, Martin Jakobsson1,2. 1 Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden 2 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10 3 US Geological Survey MS926A, Reston, Virginia, 20192, USA 4 Department of Physical Geography (NG), Stockholm University, SE-106 91 Stockholm, Sweden 5 Center for Coastal and Ocean Mapping, University of New Hampshire, New Hampshire 03824, USA 6 Department of Meteorology, Stockholm University, Stockholm, 106 91, Sweden 7 University Centre in Svalbard (UNIS), P O Box 156, N-9171 Longyearbyen, Svalbard 15 8 Department of Geoscience, Aarhus University, Aarhus, 8000, Denmark 9 Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 10 Tomsk National Research Polytechnic University, Tomsk, Russia Correspondence to: Matt O’Regan ([email protected]) 20 Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved.
    [Show full text]
  • The Soviet Doctrine of the Closed Sea
    The Soviet Doctrine of the Closed Sea JOSEPH J. DARBY* The Soviet Union's maritime borders include several enclosed and semi-enclosed seas. In order to strengthen its military defenses, Russian jurists, both Tsarist and Soviet, developed and offered to the community of nations the doctrine of the closed sea. According to this doctrine, which has never become part of customary inter- national law, the warships of all nonlittoral countries of certain designated peripheralseas would have no right to enter and navi- gate on those seas. Professor Darby analyzes the application of the doctrine to one of the most important of the peripheralseas on the borders of the USSR, namely the Black Sea, in light of recent history and contemporary developments in the Law of the Sea. SOVIET PUBLIC INTERNATIONAL LAW Writing in 1959, Gregorii Tunkin, who is generally recognized as the most authoritative spokesman of Soviet international law, stated that the international law position of a country is "determined by the basic principles of its foreign policy."' As far as it goes, this state- ment appears to be an accurate reflection of how the leaders of the Soviet Union perceive the nature and function of international law. International law is a means to be used by legal technicians to ad- vance the foreign policy goals of the Soviet state. Soviet legal schol- ars, whose writings are often obtuse and highly generalized, have al- ways been quite clear on this-no rule of international law is binding on the Soviet Union unless, through an unequivocal sovereign act, the Soviet Union has expressly and formally given its consent to be bound by it.
    [Show full text]
  • Mikhail Gorbachev's Speech in Murmansk at the Ceremonial Meeting on the Occasion of the Presentation of the Order of Lenin and the Gold Star to the City of Murmansk
    MIKHAIL GORBACHEV'S SPEECH IN MURMANSK AT THE CEREMONIAL MEETING ON THE OCCASION OF THE PRESENTATION OF THE ORDER OF LENIN AND THE GOLD STAR TO THE CITY OF MURMANSK Murmansk, 1 Oct. 1987 Indeed, the international situation is still complicated. The dangers to which we have no right to turn a blind eye remain. There has been some change, however, or, at least, change is starting. Certainly, judging the situation only from the speeches made by top Western leaders, including their "programme" statements, everything would seem to be as it was before: the same anti-Soviet attacks, the same demands that we show our commitment to peace by renouncing our order and principles, the same confrontational language: "totalitarianism", "communist expansion", and so on. Within a few days, however, these speeches are often forgotten, and, at any rate, the theses contained in them do not figure during businesslike political negotiations and contacts. This is a very interesting point, an interesting phenomenon. It confirms that we are dealing with yesterday's rhetoric, while real- life processes have been set into motion. This means that something is indeed changing. One of the elements of the change is that it is now difficult to convince people that our foreign policy, our initiatives, our nuclear-free world programme are mere "propaganda". A new, democratic philosophy of international relations, of world politics is breaking through. The new mode of thinking with its humane, universal criteria and values is penetrating diverse strata. Its strength lies in the fact that it accords with people's common sense.
    [Show full text]