Novaya Zemlya Archipelago (Russian Arctic)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protozoologica Special Issue: Protists in Soil Processes
Acta Protozool. (2012) 51: 271–289 http://www.eko.uj.edu.pl/ap ActA doi:10.4467/16890027AP.12.022.0768 Protozoologica Special issue: Protists in Soil Processes Testate Amoebae as Proxy for Water Level Changes in a Brackish Tidal Marsh Marijke OOMS, Louis BEYENS and Stijn TEMMERMAN University of Antwerp, Department of Biology, Ecosystem Management Research Group (ECOBE), Belgium Abstract. Few studies have examined testate amoebae assemblages of estuarine tidal marshes. This study investigates the possibility of us- ing soil testate amoebae assemblages of a brackish tidal marsh (Scheldt estuary, Belgium) as a proxy for water level changes. On the marsh surface an elevation gradient is sampled to be analyzed for testate amoebae assemblages and sediment characteristics. Further, vegetation, flooding frequency and soil conductivity have been taken into account to explain the testate amoebae species variation. The data reveal that testate amoebae are not able to establish assemblages at the brackish tidal marsh part with flooding frequencies equal to or higher than 36.5%. Further, two separate testate amoebae zones are distinguished based on cluster analysis. The lower zone’s testate amoebae species composition is influenced by the flooding frequency (~ elevation) and particle size, while the species variability in the higher zone is related to the organic content of the soil and particle size. These observations suggest that the ecological meaning of elevation shifts over its range on the brackish tidal marsh. Testate amoeba assemblages in such a brackish habitat show thus a vertical zonation (RMSEP: 0.19 m) that is comparable to the vertical zonation of testate amoebae and other protists on freshwater tidal marshes and salt marshes. -
Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia Vietnamicasp
Acta Protozool. (2018) 57: 215–229 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.18.016.10092 PROTOZOOLOGICA LSID urn:lsid:zoobank.org:pub:AEE9D12D-06BD-4539-AD97-87343E7FDBA3 Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia vietnamicasp. nov. Hoan Q. TRANa, Yuri A. MAZEIb, c a Vietnamese-Russian Tropical Center, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Ha Noi, Vietnam b Department of Hydrobiology, Lomonosov Moscow State University, Moscow, Russia c Department of Zoology and Ecology, Penza State University, Penza, Russia Abstract. Testate amoebae in Vietnam are still poorly investigated. We studied species composition of testate amoebae in 47 waterbodies of South Vietnam provinces including natural lakes, reservoirs, wetlands, rivers, and irrigation channels. A total of 109 species and subspe- cies belonging to 16 genera, 9 families were identified from 191 samples. Thirty-five species and subspecies were observed in Vietnam for the first time. New speciesDifflugia vietnamica sp. nov. is described. The most species-rich genera are Difflugia (46 taxa), Arcella (25) and Centropyxis (14). Centropyxis aculeata was the most common species (observed in 68.1% samples). Centropyxis aerophila sphagniсola, Arcella discoides, Difflugia schurmanni and Lesquereusia modesta were characterised by a frequency of occurrence >20%. Other spe- cies were rarer. The species accumulation curve based on the entire dataset of this work was unsaturated and well fitted by equation S = 19.46N0.33. Species richness per sample in natural lakes and wetlands were significantly higher than that of rivers (p < 0.001). The result of the Spearman rank test shows weak or statistically insignificant relationships between species richness and water temperature, pH, dissolved oxygen, and electrical conductivity. -
Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Protistology Review of Diversity and Taxonomy of Cercomonads
Protistology 3 (4), 201217 (2004) Protistology Review of diversity and taxonomy of cercomonads Alexander P. Myl’nikov 1 and Serguei A. Karpov 2 1 Institute for the Biology of Inland Waters, Borok, Yaroslavl district, Russia 2 Biological Faculty, Herzen Pedagogical State University, St. Petersburg, Russia Summary Cercomonads are very common heterotrophic flagellates in water and soil. Phylogenetically they are a key group of a protistan phylum Cercozoa. Morphological and taxonomical analysis of cercomonads reveals that the order Cercomonadida (Vickerman) Mylnikov, 1986 includes two families: Cercomonadidae Kent, 1880 (=Cercobodonidae Hollande, 1942) and Heteromitidae Kent, 1880 em. Mylnikov, 2000 (=Bodomorphidae Hollande, 1952), which differ in several characters: body shape, temporary/habitual pseudopodia, presence/absence of plasmodia stage and microtubular cone, type of extrusomes. The family Cercomonadidae includes Cercomonas Dujardin, 1841 and Helkesimastix Woodcock et Lapage, 1914. All species of Cercobodo are transferred to the genus Cercomonas. The family Heteromitidae includes Heteromita Dujardin, 1841 emend. Mylnikov et Karpov, Protaspis Skuja, 1939, Allantion Sandon, 1924, Sainouron Sandon, 1924, Cholamonas Flavin et al., 2000 and Katabia Karpov et al., 2003. The names Bodomorpha and Sciviamonas are regarded as junior synonyms of Heteromita. The genus Proleptomonas Woodcock, 1916 according to its morphology is not a cercomonad, and is not included in the order. The genus Massisteria Larsen and Patterson, 1988 is excluded from -
Exceptional Retreat of Novaya Zemlya's Marine
The Cryosphere, 11, 2149–2174, 2017 https://doi.org/10.5194/tc-11-2149-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013 J. Rachel Carr1, Heather Bell2, Rebecca Killick3, and Tom Holt4 1School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK 2Department of Geography, Durham University, Durham, DH13TQ, UK 3Department of Mathematics & Statistics, Lancaster University, Lancaster, LA1 4YF, UK 4Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 4RQ, UK Correspondence to: J. Rachel Carr ([email protected]) Received: 7 March 2017 – Discussion started: 15 May 2017 Revised: 20 July 2017 – Accepted: 24 July 2017 – Published: 8 September 2017 Abstract. Novaya Zemlya (NVZ) has experienced rapid ice al., 2013). This ice loss is predicted to continue during loss and accelerated marine-terminating glacier retreat dur- the 21st century (Meier et al., 2007; Radic´ et al., 2014), ing the past 2 decades. However, it is unknown whether and changes are expected to be particularly marked in the this retreat is exceptional longer term and/or whether it has Arctic, where warming of up to 8 ◦C is forecast (IPCC, persisted since 2010. Investigating this is vital, as dynamic 2013). Outside of the Greenland Ice Sheet, the Russian high thinning may contribute substantially to ice loss from NVZ, Arctic (RHA) accounts for approximately 20 % of Arctic but is not currently included in sea level rise predictions. glacier ice (Dowdeswell and Williams, 1997; Radic´ et al., Here, we use remotely sensed data to assess controls on NVZ 2014) and is, therefore, a major ice reservoir. -
Radioactivity in the Arctic Seas
IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment. -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
Barthelonids Represent a Deep-Branching Metamonad Clade with Mitochondrion-Related Organelles Generating No
bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 Barthelonids represent a deep-branching Metamonad clade with mitochondrion-related 4 organelles generating no ATP. 5 6 Euki Yazaki1*, Keitaro Kume2, Takashi Shiratori3, Yana Eglit 4,5,, Goro Tanifuji6, Ryo 7 Harada7, Alastair G.B. Simpson4,5, Ken-ichiro Ishida7,8, Tetsuo Hashimoto7,8 and Yuji 8 Inagaki7,9* 9 10 1Department of Biochemistry and Molecular Biology, Graduate School and Faculty of 11 Medicine, The University of Tokyo, Tokyo, Japan 12 2Faculty of Medicine, University of Tsukuba, Ibaraki, Japan 13 3Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, 14 Yokosuka, Japan 15 4Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada 16 5Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 17 Halifax, Nova Scotia, Canada 18 6Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan 19 7Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 20 Ibaraki, Japan 21 8Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan 22 9Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 23 24 Running head: Phylogeny and putative MRO functions in a new metamonad clade. 25 26 *Correspondence addressed to Euki Yazaki, [email protected] and Yuji Inagaki, 27 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019. -
The Revised Classification of Eukaryotes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. -
Author's Manuscript (764.7Kb)
1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses. -
Foreign Military Studies Office
community.apan.org/wg/tradoc-g2/fmso/ PENDING PUBLIC RELEASE/APPROVAL - QUESTIONS: 757-501-6236 Foreign Military Studies Office Volume 9 Issue #10 OEWATCH October 2019 FOREIGN NEWS & PERSPECTIVES OF THE OPERATIONAL ENVIRONMENT EURASIA 28 New Chinese Aircraft Carrier to Carry 50 Percent More 3 Sinking the Armata? Fighters AFRICA 4 Where is Strelkov Aiming? 30 China and Kazakhstan Upgrade Ties 59 Urban Deployment Reveals South African Military Deficiencies 5 Northern and Eastern Military Districts Get S-300V4 Air 32 China and Russia Sign Heavy Helicopter Deal 60 South Africa’s Xenophobic Violence: Foreigners as Scapegoats Defense Systems 34 China Reports the Launch of Unmanned ‘Mini-Aegis-Class for Failing Economy 7 Russian Ground Forces’ Air Defense: A Look At Russia’s Destroyer’ 61 Somalia’s Newest Military Commander Also Its Youngest Threat-Based Military 35 Contrasting Chinese and Foreign Media Accounts on 62 African Union Raises Concerns Over Foreign Military Bases in 8 The Modernization of Russian Coastal Defense Missiles Xinjiang Africa 10 Mines Seen as Key Capabilities for Russian Naval and Coastal 37 Papuans Hope for Independence, but is it Possible? 63 Regional Rivalries Heat Up as AMISOM Leaves Somalia Defense 39 Another Counter-Terrorism Operation in Palu, Indonesia 64 China’s Investment in African Aviation 12 Russia Developing On-Orbit Fueling Technologies 40 India to Create New Chief of Defence Staff Position 65 International Connections to Guinea-Bissau Drug Trafficking 13 Public Protests and “Hybrid War” 66 Borno Governor