A Single Origin of the Photosynthetic Organelle in Different Paulinella Lineages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novaya Zemlya Archipelago (Russian Arctic)
This is a repository copy of First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127196/ Version: Accepted Version Article: Mazei, Yuri, Tsyganov, Andrey N, Chernyshov, Viktor et al. (2 more authors) (2018) First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). Polar Biology. ISSN 0722-4060 https://doi.org/10.1007/s00300-018-2273-x Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic) 2 Yuri A. Mazei1,2, Andrey N. Tsyganov1, Viktor A. Chernyshov1, Alexander A. Ivanovsky2, Richard J. 3 Payne1,3* 4 1. Penza State University, Krasnaya str., 40, Penza 440026, Russia. 5 2. Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russia. 6 3. University of York, Heslington, York YO10 5DD, United Kingdom. -
Download This Publication (PDF File)
PUBLIC LIBRARY of SCIENCE | plosgenetics.org | ISSN 1553-7390 | Volume 2 | Issue 12 | DECEMBER 2006 GENETICS PUBLIC LIBRARY of SCIENCE www.plosgenetics.org Volume 2 | Issue 12 | DECEMBER 2006 Interview Review Knight in Common Armor: 1949 Unraveling the Genetics 1956 An Interview with Sir John Sulston e225 of Human Obesity e188 Jane Gitschier David M. Mutch, Karine Clément Research Articles Natural Variants of AtHKT1 1964 The Complete Genome 2039 Enhance Na+ Accumulation e210 Sequence and Comparative e206 in Two Wild Populations of Genome Analysis of the High Arabidopsis Pathogenicity Yersinia Ana Rus, Ivan Baxter, enterocolitica Strain 8081 Balasubramaniam Muthukumar, Nicholas R. Thomson, Sarah Jeff Gustin, Brett Lahner, Elena Howard, Brendan W. Wren, Yakubova, David E. Salt Matthew T. G. Holden, Lisa Crossman, Gregory L. Challis, About the Cover Drosophila SPF45: A Bifunctional 1974 Carol Churcher, Karen The jigsaw image of representatives Protein with Roles in Both e178 Mungall, Karen Brooks, Tracey of various lines of eukaryote evolution Splicing and DNA Repair Chillingworth, Theresa Feltwell, refl ects the current lack of consensus as Ahmad Sami Chaouki, Helen K. Zahra Abdellah, Heidi Hauser, to how the major branches of eukaryotes Salz Kay Jagels, Mark Maddison, fi t together. The illustrations from upper Sharon Moule, Mandy Sanders, left to bottom right are as follows: a single Mammalian Small Nucleolar 1984 Sally Whitehead, Michael A. scale from the surface of Umbellosphaera; RNAs Are Mobile Genetic e205 Quail, Gordon Dougan, Julian Amoeba, the large amoeboid organism Elements Parkhill, Michael B. Prentice used as an introduction to protists for Michel J. Weber many school children; Euglena, the iconic Low Levels of Genetic 2052 fl agellate that is often used to challenge Soft Sweeps III: The Signature 1998 Divergence across e215 ideas of plants (Euglena has chloroplasts) of Positive Selection from e186 Geographically and and animals (Euglena moves); Stentor, Recurrent Mutation Linguistically Diverse one of the larger ciliates; Cacatua, the Pleuni S. -
Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life
Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 10-1-2010 Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life Laura Wegener Parfrey University of Massachusetts Amherst Jessica Grant Smith College Yonas I. Tekle Smith College Erica Lasek-Nesselquist Marine Biological Laboratory Hilary G. Morrison Marine Biological Laboratory See next page for additional authors Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Parfrey, Laura Wegener; Grant, Jessica; Tekle, Yonas I.; Lasek-Nesselquist, Erica; Morrison, Hilary G.; Sogin, Mitchell L.; Patterson, David J.; and Katz, Laura A., "Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life" (2010). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/126 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] Authors Laura Wegener Parfrey, Jessica Grant, Yonas I. Tekle, Erica Lasek-Nesselquist, Hilary G. Morrison, Mitchell L. Sogin, David J. Patterson, and Laura A. Katz This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/bio_facpubs/126 Syst. Biol. 59(5):518–533, 2010 c The Author(s) 2010. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syq037 Advance Access publication on July 23, 2010 Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life LAURA WEGENER PARFREY1,JESSICA GRANT2,YONAS I. TEKLE2,6,ERICA LASEK-NESSELQUIST3,4, 3 3 5 1,2, HILARY G. -
Protozoologica Special Issue: Protists in Soil Processes
Acta Protozool. (2012) 51: 271–289 http://www.eko.uj.edu.pl/ap ActA doi:10.4467/16890027AP.12.022.0768 Protozoologica Special issue: Protists in Soil Processes Testate Amoebae as Proxy for Water Level Changes in a Brackish Tidal Marsh Marijke OOMS, Louis BEYENS and Stijn TEMMERMAN University of Antwerp, Department of Biology, Ecosystem Management Research Group (ECOBE), Belgium Abstract. Few studies have examined testate amoebae assemblages of estuarine tidal marshes. This study investigates the possibility of us- ing soil testate amoebae assemblages of a brackish tidal marsh (Scheldt estuary, Belgium) as a proxy for water level changes. On the marsh surface an elevation gradient is sampled to be analyzed for testate amoebae assemblages and sediment characteristics. Further, vegetation, flooding frequency and soil conductivity have been taken into account to explain the testate amoebae species variation. The data reveal that testate amoebae are not able to establish assemblages at the brackish tidal marsh part with flooding frequencies equal to or higher than 36.5%. Further, two separate testate amoebae zones are distinguished based on cluster analysis. The lower zone’s testate amoebae species composition is influenced by the flooding frequency (~ elevation) and particle size, while the species variability in the higher zone is related to the organic content of the soil and particle size. These observations suggest that the ecological meaning of elevation shifts over its range on the brackish tidal marsh. Testate amoeba assemblages in such a brackish habitat show thus a vertical zonation (RMSEP: 0.19 m) that is comparable to the vertical zonation of testate amoebae and other protists on freshwater tidal marshes and salt marshes. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
New Horizons the Microbial Universe of the Global Ocean
New Horizons The Microbial Universe of the Global Ocean BIGELOW LABORATORY FOR OCEAN SCIENCES 2012-13 ANNUAL REPORT BIGELOW LABORATORY FOR OCEAN SCIENCES • ANNUAL REPORT 2012–13 1 “Without global ocean color satellite data, humanity loses its capacity to take Earth’s pulse and to explore its unseen world. The fragility of the living Earth and its oceans has been noted by astronaut Sally Ride, who speaks of the changes in land, oceans, and atmosphere systems as witnessed from space, and the challenge that a changing climate presents to our beloved Earth. It is our duty to provide a long-term surveillance system for the Earth, not only to understand and monitor the Earth’s changing climate, but to enable the next generations of students to make new discoveries in our ocean gardens, as well as explore similar features on other planets.” —Dr. Charles S. Yentsch Bigelow Laboratory Founder 1927–2012 2 NEW HORIZONS: THE MICROBIAL UNIVERSE OF THE GLOBAL OCEAN Welcoming the Future A Message from the Chairman of the Board igelow Laboratory has just finished an exceptional and transformative period, a time that has witnessed the accomplishment of an array of Bprojects that will take the organization to new levels of achievement. The most obvious of these has been the completion of the $32 million Bigelow Ocean Science and Education Campus in East Boothbay. Shortly following the dedication of the new facilities in December, all of Bigelow Laboratory’s management, scientists, and staff were on board and operational on the new site, enabling a higher level of scientific and operational efficiency and effectiveness than ever before. -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
Phylogenomics Supports the Monophyly of the Cercozoa T ⁎ Nicholas A.T
Molecular Phylogenetics and Evolution 130 (2019) 416–423 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenomics supports the monophyly of the Cercozoa T ⁎ Nicholas A.T. Irwina, , Denis V. Tikhonenkova,b, Elisabeth Hehenbergera,1, Alexander P. Mylnikovb, Fabien Burkia,2, Patrick J. Keelinga a Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada b Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia ARTICLE INFO ABSTRACT Keywords: The phylum Cercozoa consists of a diverse assemblage of amoeboid and flagellated protists that forms a major Cercozoa component of the supergroup, Rhizaria. However, despite its size and ubiquity, the phylogeny of the Cercozoa Rhizaria remains unclear as morphological variability between cercozoan species and ambiguity in molecular analyses, Phylogeny including phylogenomic approaches, have produced ambiguous results and raised doubts about the monophyly Phylogenomics of the group. Here we sought to resolve these ambiguities using a 161-gene phylogenetic dataset with data from Single-cell transcriptomics newly available genomes and deeply sequenced transcriptomes, including three new transcriptomes from Aurigamonas solis, Abollifer prolabens, and a novel species, Lapot gusevi n. gen. n. sp. Our phylogenomic analysis strongly supported a monophyletic Cercozoa, and approximately-unbiased tests rejected the paraphyletic topologies observed in previous studies. The transcriptome of L. gusevi represents the first transcriptomic data from the large and recently characterized Aquavolonidae-Treumulida-'Novel Clade 12′ group, and phyloge- nomics supported its position as sister to the cercozoan subphylum, Endomyxa. These results provide insights into the phylogeny of the Cercozoa and the Rhizaria as a whole. -
Robert Lauterborn (1869—1952) and His Paulinella Chromatophora
ARTICLE IN PRESS Protist, Vol. 156, 253—262, August 2005 http://www.elsevier.de/protis Published online date 11 July 2005 FROM THE ARCHIVES Robert Lauterborn (1869—1952) and his Paulinella chromatophora Michael Melkoniana,1and Dieter Mollenhauerb aBotanisches Institut, Lehrstuhl I, Universita¨ tzuKo¨ ln, Gyrhofstr. 15, 50931 Ko¨ ln, Germany bForschungsinstitut Senckenberg, Frankfurt am Main, Forschungsstation fu¨ r Mittelgebirge, Lochmu¨ hle 2, 63599 Biebergemu¨ nd, Germany In 1895, in his second, short contribution about among the most interesting representatives of its protozoa (Protozoenstudien II.), Robert Lauter- division in freshwater.’’ ? born, then at the Zoology Department of the In the second half of the 19th century the socio- University of Heidelberg, described a novel organ- economic situation in Germany (i.e. urbanization, ism (nov. gen. et nov. spec.) which he named industrialization and the rise of an urban proletar- Paulinella chromatophora. He must have been iat) led to pronounced and lasting environmental very exited about his discovery which he made on changes (e.g. degradation of soil and natural Christmas Eve 1894, since he clearly recognized waters, epidemic human diseases, plant diseases, the importance of his observations for symbiosis decline of forests). The Janus face of prosperity research and biology, in general. And although his were difficulties of supply, lack of hygiene in Paulinella featured only occasionally in scientific settlements, and various kinds of diseases. publications during the next 100 years, it now Gradually, questions were raised which today are appears to be taking center stage in discussions known as problems of waste disposal. Careful about the endosymbiotic origin of plastids (some observers such as Ferdinand Cohn (1828—1898) recent reviews in this field that mention Paulinella had early recognized the problems and with the include Bhattacharya et al. -
Author's Manuscript (764.7Kb)
1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses. -
New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. -
Molecular Phylogeny of Euglyphid Testate Amoebae (Cercozoa: Euglyphida)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE ARTICLE IN PRESS provided by Infoscience - École polytechnique fédérale de Lausanne Molecular Phylogenetics and Evolution xxx (2010) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent Thierry J. Heger a,b,c,d,e,*, Edward A.D. Mitchell a,b,c, Milcho Todorov f, Vassil Golemansky f, Enrique Lara c, Brian S. Leander e, Jan Pawlowski d a Ecosystem Boundaries Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-1015 Lausanne, Switzerland b Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland c Institute of Biology, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland d Department of Zoology and Animal Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland e Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 f Institute of Zoology, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria article info abstract Article history: Marine and freshwater ecosystems are fundamentally different regarding many biotic and abiotic factors. Received 24 June 2009 The physiological adaptations required for an organism to pass the salinity barrier are considerable. Many Revised 22 November 2009 eukaryotic lineages are restricted to either freshwater or marine environments. Molecular phylogenetic Accepted 25 November 2009 analyses generally demonstrate that freshwater species and marine species segregate into different Available online xxxx sub-clades, indicating that transitions between these two environments occur only rarely in the course of evolution.