Sedimentary Organic Matter from A

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Schneebeli‑Hermann et al. Swiss J Palaeontol (2020) 139:5 https://doi.org/10.1186/s13358‑020‑00205‑9 Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access Sedimentary organic matter from a cored Early Triassic succession, Georgetown (Idaho, USA) Elke Schneebeli‑Hermann1* , Borhan Bagherpour1,2* , Torsten Vennemann3, Marc Leu1 and Hugo Bucher1 Abstract The plant fossil record from Lower Triassic sedimentary successions of the Western USA is extremely meager. In this study, samples from a drill core taken near Georgetown, Idaho, were analyzed for their palynological content as well as their stable carbon isotope composition. The concentration of palynomorphs is generally low. The lowermost part of the drilled succession represents Dinwoody/Woodside Formation and contains spore and pollen assemblages with Permian and Early Triassic afnity. Representatives of lycophytes (Densoisporites spp., Lundbladisporites spp.) were found in the overlying Meekoceras Limestone, in agreement with middle Smithian assemblages elsewhere. Ammo‑ noids and conodonts are extremely rare, but confrm a middle Smithian age. Bulk organic and carbonate carbon isotope composition provide a stratigraphic framework. Carbonate carbon isotope compositions are compatible with the Smithian–Spathian global trend, with a middle Smithian shift towards lower δ13C values followed by a late Smithian shift towards higher values. Bulk organic carbon isotope compositions have been infuenced by changes in the constitution of organic matter. A comparison with other paired carbon isotope datasets from the same basin is difcult due to lithostratigraphic inconsistencies (Hot Springs, ID) or biochemical mediated disturbance of isotope signals (Mineral Mountains, UT). Keywords: Palynology, Particulate organic matter, Stable carbon isotopes Introduction part of this area (New Mexico, Arizona) (Ash 1972; In the western United States, plant fossils from sediments Litwin 1985; Litwin et al. 1991; Lindström et al. 2016). straddling the Permian–Triassic boundary are scarce Approaching the Permian–Triassic boundary from (McKee 1954), thus reconstructing the vegetation his- the Palaeozoic, the youngest Palaeozoic plant macrofos- tory during this period is impossible for this region. Te sils are known from the mid-Permian Blaine Formation scarcity of late Permian–Early Triassic plant macro- and in Texas (DiMichele et al. 2004). From Roadian–Word- microfossils contrasts with the rich plant fossil records ian deposits of the Park City and Phosphoria formations from the Late Triassic Chinle Formation in the southern in NE Utah a number of acritarchs have been described (Jacobson et al. 1982). Younger Permian fossiliferous deposits are not known from the Western United States (Collinson et al. 1976; Wardlaw et al. 1995). Besides the Editorial handling: Susanne Feist‑Burkhardt. rich plant fossil record of the Late Triassic Chinle For- *Correspondence: [email protected]; [email protected] mation, the oldest Mesozoic plant fossils have been 1 Paleontological Institute and Museum, University of Zurich, Karl Schmid‑Str. 4, 8006 Zurich, Switzerland described from the Lower–Middle Triassic Moenkopi 2 Department of Earth Sciences, Faculty of Sciences, Shiraz University, Group. Tis formation stretches from SE Utah, New Shiraz, Iran Mexico, Arizona and interfngers with the Taynes Full list of author information is available at the end of the article © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. 5 Page 2 of 16 E. Schneebeli‑Hermann et al. Group towards the NW (Idaho) and the Chugwater in Morales 1987). However, their identifcation was ques- Group to the N (Montana) (Kummel 1954, 1957; Stew- tioned (Litwin and Ash in Morales 1987). art et al. 1972; Lucas et al. 2007) (Fig. 1). Since the early During the Early Triassic the climate was suggested twentieth century poorly preserved plant remains, to have been globally infuenced by the Pangean mega- mostly impressions and a few petrifed stem fossils, were monsoon (Parrish 1993; Miller and Baranyi 2019). Te known from the upper part of the Moenkopi Group (late Sonoma basin was situated on the western Pangean mar- Spathian–Anisian) (McKee 1954; Morales 1987) includ- gin close to the equator. Continent interiors were arid to ing sphenophytes and plant remains resembling the semi-arid, but not necessarily stable throughout the Early Palaeozoic conifer genus Walchia spp. (Gregory 1917; Triassic, various studies present evidence for changes in McKee 1954). Ash and Morales (1993) described Anisian temperature and precipitation (Preto et al. 2010). Te plant assemblages from the Holbrook Member of the formation of red beds during the Early Triassic indicates Moenkopi Group of Arizona. Tese belong to the old- at least seasonal precipitation (van Houten 1973; Parrish est known Mesozoic megafora in North America. Te 1993). During the Triassic, the strength of the monsoonal fora is composed of fungi, pith casts of Neocalamites sp., systems may have enabled circulation patterns that are petrifed fern trunks, and conifer wood resembling Arau- drawing moisture from the equatorial Panthalassa onto carioxylon arizonicum (Ash and Morales 1993). From the western coast of Pangea (Parrish 1993). Tis provided the late Early Triassic (?) Wupatki Member only spheno- conditions for red bed formation, and rich plant commu- phyte stems are reported (Morales 1987). Benz (1980; in nities during the Late Triassic. Morales 1987) was the frst to document palynomorphs Despite the dearth of plant fossils, the lithologies of from late Spathian to Anisian coprolites of the Moenkopi the western United States are well known for their Early Group in Arizona. Te spores and pollen grains were Triassic marine fauna including ammonoids, conodonts, poorly preserved and were assignable to Gnetales, Cor- bivalves, and gastropods (Kummel 1943, 1954; McKee daitales, seed ferns, sphenophytes and ferns (Benz 1980 1954; Müller 1956; Ware et al. 2011; Brayard et al. 2013). A B 43° K WASHINGTON MONTANA NORTH DAKOTA MINNESOTA J CARIBOU COUNTY WISCONSIN Tr MICHIGAN OREGON SOUTH DAKOTA Soda IDAHO ? Springs WYOMING IOWA CP OHIO NEBRASKA INDIANA ILLINOIS George NC~ town NEVADA BEAR LAKE MISSOURI COUNTY UTAH ? UNCOM ~~CO KANSAS 89 FRONT RANGE P A HIGHLAND GRE HI TENNESSEEMontpelier COLORADO 30 G CALIFORNIA HLA ND OKLAHOMA Paris ARKANSAS ? Dayton Ne ALABAMA O~SDMISSISSIPPI ? Preston NEW MEXICO Bear Hot Springs Lake MOGOLLO 91 N HIGHLAN Weston FRANKLIN COUNTY D 42° ARIZONA 112° 111° TEXAS 30 0 LOUISIANA 40 Georgetown Core, Idaho Hot Springs, Idaho (Caravaca et al., 2018) Mineral Mountains, Utah (Thomazo et al., 2016) Fig. 1 a Map of the Western USA (based on Google maps). The Sonoma basin is indicated after Caravaca et al. (2018), direction of the Smithian transgression after Vennin et al. (2015) and Brayard et al. (2013). Extent of the Moenkopie and Chugwater groups (pale area) as well as sediment transport directions after Stewart et al. (1972). b Geological map of the Bear Lake area based on Lewis et al. (2012) (Geological map of Idaho 1:750,000) Early Triassic organic matter Georgetown, Idaho, USA Page 3 of 16 5 More recently, both fsh and ichthyosaurs have also been Fifty-four samples were selected from the Georgetown described (Romano et al. 2012, 2017; Scheyer et al. 2014) core. Tey were cleaned, crushed and weighed (15 g on and exceptionally diverse Early Triassic marine fauna, average) and subsequently treated with concentrated known as the Paris biota (Brayard et al. 2017), is found hydrochloric and hydrofuoric acid as described by Trav- approximately 20 km South of Georgetown. erse (2007). Te residues were sieved over a 11-µm mesh Tis study documents palynomorphs partly from the screen. For palynofacies analysis organic matter particles Dinwoody/Woodside Formation and from the lower part were counted on unoxidized slides to a minimum of 250 of the Taynes Group recovered from samples of a drill counts. Particle counts included the categories of trans- core from a scientifc borehole near Georgetown in the lucent and opaque wood (charcoal), but also degraded Bear Lake district. With respect to the scarcity of land woody particles (pseudoamorphous particles partly with plant fossils so far recovered in this region, these fndings angular shape and/or remaining internal structure). Cuti- are illustrated and discussed. Paired carbon isotope com- cles, inertinite (used for particles describable as “worn positions including particulate organic matter data are and transported oxidized or carbonized wood” Tyson discussed. 1995, p 351), membranes, spores and bisaccate pol- len grains were also counted (Tyson 1995; Batten 1996). Geological setting Aquatic particles include acritarchs, Leiospheridia
Recommended publications
  • Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, B, *, Hongshan Wangc, David L

    Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, B, *, Hongshan Wangc, David L

    ISSN 0031-0301, Paleontological Journal, 2019, Vol. 53, No. 11, pp. 1216–1235. © Pleiades Publishing, Ltd., 2019. Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, b, *, Hongshan Wangc, David L. Dilchera, b, d, E. Bugdaevae, Xiao Tana, b, d, Tao Lia, b, Yu-Ling Naa, b, and Chun-Lin Suna, b, ** aKey Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Changchun, Jilin, 130026 China bResearch Center of Palaeontology and Stratigraphy, Jilin University, Changchun, Jilin, 130026 China cFlorida Museum of Natural History, University of Florida, Gainesville, Florida, 32611 USA dDepartment of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, 47405 USA eFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia *e-mail: [email protected] **e-mail: [email protected] Received April 3, 2018; revised November 29, 2018; accepted December 28, 2018 Abstract—The Ordos Basin is one of the largest continental sedimentary basins and it represents one major and famous production area of coal, oil and gas resources in China. The Jurassic non-marine deposits are well developed and cropped out in the basin. The Middle Jurassic Yan’an Formation is rich in coal and con- tains diverse plant remains. We recognize 40 species in 25 genera belonging to mosses, horsetails, ferns, cycadophytes, ginkgoaleans, czekanowskialeans and conifers. This flora is attributed to the early Middle Jurassic Epoch, possibly the Aalenian-Bajocian. The climate of the Ordos Basin during the Middle Jurassic was warm and humid with seasonal temperature and precipitation fluctuations.
  • A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E

    A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E

    ISSN 0031-0301, Paleontological Journal, 2009, Vol. 43, No. 10, pp. 1262–1271. © Pleiades Publishing, Ltd., 2009. A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E. V. Karasev Borissiak Paleontological Institute of the Russian Academy of Sciences, 117997, Profsoyuznaya, 123, Moscow e-mail: [email protected] Received January 25, 2009 Abstract—A new genus of peltaspermalean ovuliferous organs Navipelta gen. nov. is described from the ter- restrial deposits of the Nedubrovo locality (village of Nedubrovo, Vologda Region, Russia), belonging to the base of Vetlugian Group (Upper Permian–Lower Triassic). Data on the anatomy of the peltate bilateral ovulif- erous organs are obtained for the first time. Vascular strands in the peltoid depart from that of a stalk and branch up to three times distally. Transfusion tissue around the vascular strands is well developed. The new genus had a system of radially arranged resin canals, broaden into large secretory cavities. Key words: Peltaspermaceae, ovuliferous organs, Peltaspermum, Autunia, Permian/Triassic boundary, Vetlu- gian Group, systematics. DOI: 10.1134/S0031030109100086 INTRODUCTION angium Zhao ex Gomankov et Meyen and Autuniopsis Poort et Kerp) or on the basis of their association with The family Peltaspermaceae attracts attention of different foliage (Peltaspermopsis buevichiae Goman- many researchers, because its members were the main kov et. Meyen and Meyenopteris, Poort et Kerp) component of the Late Permian Angaraland floras. (Gomankov and Meyen, 1986; Poort and Kerp, 1990). They escaped the global crisis on the Permian/Triassic boundary and transited in the Mesozoic, where domi- The morphology and epidermal structure of seed- nated during the Middle and Late Triassic of the North- bearing organs in the Peltaspermaceae were studied rel- ern as well as Southern hemispheres.
  • Palynology of the Upper Chinle Formation in Northern New Mexico, U.S.A

    Palynology of the Upper Chinle Formation in Northern New Mexico, U.S.A

    Lindström et al. 1 1 Palynology of the upper Chinle Formation in northern New Mexico, U.S.A.: 2 implications for biostratigraphy and terrestrial ecosystem change during the Late 3 Triassic (Norian–Rhaetian) 4 a* b c d 5 Sofie Lindström , Randall B. Irmis , Jessica H. Whiteside , Nathan D. Smith , Sterling J. e f 6 Nesbitt , and Alan H. Turner 7 a 8 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen 9 K, DENMARK, [email protected] b 10 Natural History Museum of Utah and Department of Geology & Geophysics, University of 11 Utah, Salt Lake City, UT 84108-1214, USA c 12 Ocean and Earth Science, National Oceanography Centre Southampton, University of 13 Southampton, European Way, Southampton SO14 3ZH, UNITED KINGDOM d 14 Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 15 90007, USA e 16 Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, 17 Virginia 24601 USA f 18 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 19 11794-8081, USA 20 21 Abstract 22 A new densely sampled palynological record from the vertebrate-bearing upper Chinle 23 Formation at Ghost Ranch in the Chama Basin of northwestern New Mexico provides insights 24 into the biostratigraphy and terrestrial ecosystem changes during the Late Triassic of 25 northwestern Pangaea. Spore-pollen assemblages from the Poleo Sandstone, Petrified Forest, Lindström et al. 2 26 and 'siltstone' members are dominated by pollen of corystospermous seed ferns (Alisporites) 27 and voltziacean conifers (Enzonalasporites, Patinasporites). Other abundant taxa include 28 Klausipollenites gouldii and the enigmatic fused tetrad Froelichsporites traversei, whereas 29 spores of ferns and fern allies are generally rare.
  • Late Permian to Middle Triassic Palaeogeographic Differentiation of Key Ammonoid Groups: Evidence from the Former USSR Yuri D

    Late Permian to Middle Triassic Palaeogeographic Differentiation of Key Ammonoid Groups: Evidence from the Former USSR Yuri D

    Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: evidence from the former USSR Yuri D. Zakharov1, Alexander M. Popov1 & Alexander S. Biakov2 1 Far-Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch), Stoletija Prospect 159, Vladivostok, RU-690022, Russia 2 North-East Interdisciplinary Scientific Research Institute, Russian Academy of Sciences (Far Eastern Branch), Portovaja 16, Magadan, RU-685000, Russia Keywords Abstract Ammonoids; palaeobiogeography; palaeoclimatology; Permian; Triassic. Palaeontological characteristics of the Upper Permian and upper Olenekian to lowermost Anisian sequences in the Tethys and the Boreal realm are reviewed Correspondence in the context of global correlation. Data from key Wuchiapingian and Chang- Yuri D. Zakharov, Far-Eastern Geological hsingian sections in Transcaucasia, Lower and Middle Triassic sections in the Institute, Russian Academy of Sciences (Far Verkhoyansk area, Arctic Siberia, the southern Far East (South Primorye and Eastern Branch), Vladivostok, RU-690022, Kitakami) and Mangyshlak (Kazakhstan) are examined. Dominant groups of Russia. E-mail: [email protected] ammonoids are shown for these different regions. Through correlation, it is doi:10.1111/j.1751-8369.2008.00079.x suggested that significant thermal maxima (recognized using geochemical, palaeozoogeographical and palaeoecological data) existed during the late Kun- gurian, early Wuchiapingian, latest Changhsingian, middle Olenekian and earliest Anisian periods. Successive expansions and reductions of the warm– temperate climatic zones into middle and high latitudes during the Late Permian and the Early and Middle Triassic are a result of strong climatic fluctuations. Prime Middle–Upper Permian, Lower and Middle Triassic Bajarunas (1936) (Mangyshlak and Kazakhstan), Popov sections in the former USSR and adjacent territories are (1939, 1958) (Russian northern Far East and Verkhoy- currently located in Transcaucasia (Ševyrev 1968; Kotljar ansk area) and Kiparisova (in Voinova et al.
  • Fossil Flora of Middle Jurassic Grojec Clays (Southern Poland)

    Fossil Flora of Middle Jurassic Grojec Clays (Southern Poland)

    Acta Palaeobotanica 55(2): 149–181, 2015 DOI: 10.1515/acpa-2015-0013 Fossil flora of Middle Jurassic Grojec clays (southern Poland). Raciborski’s original material reinvestigated and supplemented. I. Sphenophytes AGATA JARZYNKA1 and GRZEGORZ PACYNA2 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] 2 Department of Palaeobotany and Palaeoherbarium, Institute of Botany, Jagiellonian University, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] Received 16 October 2015; accepted for publication 24 November 2015 ABSTRACT. Sphenopsid remains from Grojec clays (Grojec, Poręba, Mirów) collected and described by Racibor- ski in 1894 are re-examined for the first time and supplemented by Raciborski’s unpublished material housed at the Jagiellonian University (Institute of Botany) and by Stur’s preliminarily described material stored at the Geological Survey of Austria. Three species of Equisetum created by Raciborski (Equisetum renaulti, E. remo­ tum, E. blandum) are now attributed to the common Jurassic species Equisetites lateralis, and the earlier- undescribed Equisetites cf. columnaris is recognised. The occurrence of Neocalamites lehmannianus (originally described by Raciborski as Schizoneura hoerensis) has been confirmed from Grojec. The material that Raciborski referred to this species seems to be heterogeneous, and some specimens are now removed to the new proposed species Neocalamites grojecensis Jarzynka et Pacyna sp. nov. The new species is diagnosed by the following features: only a few prominent ribs present on shoot, leaf scars relatively large and ellipsoidal, numerous free leaves, vascular bundles alternate at node. Possibly the new species derives from Neocalamites lehmannianus or at least is closely related to it.
  • Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R

    Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R

    Review of Palaeobotany and Palynology, 19 (1975): 221—232 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands PLEUROMEIA FROM THE LOWER TRIASSIC OF THE FAR EAST OF THE U.S.S.R. V. A. KRASSILOV and Yu. D. ZAKHAROV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 26, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A. and Zakharov, Yu. D., 1975. Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R. Rev. Palaeobot. Palynol., 19: 221-232. Pleuromeia obrutschewii Elias from Russian Island (Russkiy Ostrov, near Vladivostok) is hardly distinguishable from the European P. sternbergii (Muenster) Corda. The sporangia are adaxial, filling spoon-like depressions of the megasporophylls which have sterile tips. P. olenekensis sp. nov. from the Olenek River (northeastern Siberia) has larger sporangia and much larger megaspores with three-layered walls. The outer layer (ectexosporium) is reticulate. It is assumed that in other species this layer is lacking due to imperfect preservation. Mature megasporophylls, when shed, have a buoy-like shape and are often deposited together with cephalopod shells. This suggests a special mecha- nism of propagation by means of megasporophylls dispersed by water currents. The cosmopolitan distribution of Pleuromeia points to weakened climatic zonation in the Early Triassic. INTRODUCTION Pleuromeia is famous for its spectacular habitus, its alleged phylogenic role as a link between the arborescent lycopods and the reduced Isoetes, and its geological history which is unusually short for a plant genus (Early- Middle Triassic).
  • Altered Fluvial Patterns in North China Indicate Rapid Climate Change

    Altered Fluvial Patterns in North China Indicate Rapid Climate Change

    www.nature.com/scientificreports OPEN Altered fuvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction Zhicai Zhu1, Yongqing Liu1*, Hongwei Kuang 1*, Michael J. Benton 2, Andrew J. Newell3, Huan Xu4, Wei An5, Shu’an Ji1, Shichao Xu6, Nan Peng1 & Qingguo Zhai1 The causes of the severest crisis in the history of life around the Permian-Triassic boundary (PTB) remain controversial. Here we report that the latest Permian alluvial plains in Shanxi, North China, went through a rapid transition from meandering rivers to braided rivers and aeolian systems. Soil carbonate carbon isotope (δ13C), oxygen isotope (δ18O), and geochemical signatures of weathering intensity reveal a consistent pattern of deteriorating environments (cool, arid, and anoxic conditions) and climate fuctuations across the PTB. The synchronous ecological collapse is confrmed by a dramatic reduction or disappearance of dominant plants, tetrapods and invertebrates and a bloom of microbially- induced sedimentary structures. A similar rapid switch in fuvial style is seen worldwide (e.g. Karoo Basin, Russia, Australia) in terrestrial boundary sequences, all of which may be considered against a background of global marine regression. The synchronous global expansion of alluvial fans and high- energy braided streams is a response to abrupt climate change associated with aridity, hypoxia, acid rain, and mass wasting. Where neighbouring uplands were not uplifting or basins subsiding, alluvial fans are absent, but in these areas the climate change is evidenced by the disruption of pedogenesis. Te severest ecological crisis in Earth history, the Permian-Triassic mass extinction (PTME), occurred 252 Ma and killed over 90% of marine species and about 70% of continental vertebrate families1,2.
  • Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation

    Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation

    i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction

    Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction

    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
  • Diversity and Homologies of Corystosperm Seed-Bearing Structures from the Early Cretaceous of Mongolia Aã B,C D E F Gongle Shi , Peter R

    Diversity and Homologies of Corystosperm Seed-Bearing Structures from the Early Cretaceous of Mongolia Aã B,C D E F Gongle Shi , Peter R

    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 Diversity and homologies of corystosperm seed- bearing structures from the Early Cretaceous of Mongolia Gongle Shi, Peter R. Crane, Patrick S. Herendeen, Niiden Ichinnorov, Masamichi Takahashi & Fabiany Herrera To cite this article: Gongle Shi, Peter R. Crane, Patrick S. Herendeen, Niiden Ichinnorov, Masamichi Takahashi & Fabiany Herrera (2019) Diversity and homologies of corystosperm seed- bearing structures from the Early Cretaceous of Mongolia, Journal of Systematic Palaeontology, 17:12, 997-1029, DOI: 10.1080/14772019.2018.1493547 To link to this article: https://doi.org/10.1080/14772019.2018.1493547 Published online: 14 Jan 2019. Submit your article to this journal Article views: 142 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2019 Vol. 17, No. 12, 997–1029, http://dx.doi.org/10.1080/14772019.2018.1493547 Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia aà b,c d e f Gongle Shi , Peter R. Crane , Patrick S. Herendeen , Niiden Ichinnorov , Masamichi Takahashi and Fabiany Herrerad aState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; bOak Spring Garden
  • Transformative Paleobotany

    Transformative Paleobotany

    Chapter 6 Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas William A. DiMichele1, Robert W. Hook2, Hans Kerp3, Carol L. Hotton1,4, Cindy V. Looy5 and Dan S. Chaney1 1NMNH Smithsonian Institution, Washington, DC, United States; 2The University of Texas at Austin, Austin, TX, United States; 3Westfälische Wilhelms-Universität Münster, Münster, Germany; 4National Institutes of Health, Bethesda, MD, United States; 5University of California Berkeley, Berkeley, CA, United States 1. INTRODUCTION 1985; Broutin, 1986; Popa, 1999; Steyer et al., 2000; Wagner and Mayoral, 2007; Bercovici and Broutin, 2008; Since 1989, field parties supported by the U.S. National Barthel, 2009; Wagner and Álvarez-Vázquez, 2010; Museum of Natural History have obtained large collections Barthel and Brauner, 2015). Furthermore, because this of mainly Permian plant fossils from north central Texas. locality was collected on three occasions over a time period This work was undertaken to study known localities and to of 50 years and by different parties, comparative analysis of find new fossiliferous deposits that would contribute to a the Sanzenbacher collections provides a basis for assessing better understanding of floral and paleoenvironmental sites that have comparable histories. changes within the region during the early Permian. From the outset, the effort was interdisciplinary and grew, through the contributions of nearly 20 paleobotanists, 2. GEOLOGY palynologists, invertebrate and vertebrate paleontologists, Clay County is the only county in the Permo-Carboniferous and sedimentary geologists of several subdisciplines, to be outcrop belt of north central Texas that lacks marine rocks. quite comprehensive. Our reporting of results, however, has These alluvial sediments accumulated east of a broad been influenced by unexpected developments, including the coastal plain that bordered the Eastern Shelf of the Midland discovery of new plant-fossil assemblages in areas once Basin.
  • Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(S): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B

    Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(S): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B

    Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(s): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B. Schwendemann, Ignacio H. Escapa, Edith L. Taylor, Thomas N. Taylor, Stephen McLoughlin Source: International Journal of Plant Sciences, Vol. 175, No. 9 (November/December 2014), pp. 1062-1075 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/678087 . Accessed: 08/12/2014 09:32 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 130.242.24.193 on Mon, 8 Dec 2014 09:32:01 AM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 175(9):1062–1075. 2014. q 2014 by The University of Chicago. All rights reserved. 1058-5893/2014/17509-0008$15.00 DOI:10.1086/678087 HABIT AND ECOLOGY OF THE PETRIELLALES, AN UNUSUAL GROUP OF SEED PLANTS FROM THE TRIASSIC OF GONDWANA Benjamin Bomfleur,1,*,† Anne-Laure Decombeix,‡ Andrew B.