<<

Submitted : April 30 th , 2020 – Accepted : July 1 6th , 2020 – Posted online : July 2 3th , 2020

To link and cite this article:

doi: 10.5710/AMGH.16.07.2020.3356

1 NEW MIDDLE POLLEN TAXA OF THE SAN RAFAEL BASIN,

2 MENDOZA PROVINCE, ARGENTINA

3 NUEVOS TAXONES DE POLEN TRIÁSICO MEDIO DE LA CUENCA SAN

4 RAFAEL, PROVINCIA DE MENDOZA, ARGENTINA

5

6 PEDRO R. GUTIÉRREZ1, ANA MARÍA ZAVATTIERI2

7 1Sección Paleopalinología, Área Paleontología, Museo Argentino de Ciencias Naturales

8 “B. Rivadavia”, CONICET, Av. Ángel Gallardo 470, C1405DJR Ciudad Autónoma de

9 Buenos Aires, Argentina. [email protected]

10 2Unidad de Paleopalinología, Departamento de Paleontología, Instituto Argentino de

11 Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET-Mendoza,

12 Av. A. Ruíz Leal s/n, Parque General San Martín, M5502IRA Mendoza, Argentina.

13 [email protected]

14

15 40 pag. (26 text + 14 references); 9 figs.; 2 tables

16

17 Proposed header: GUTIÉRREZ & ZAVATTIERI: PALYNOFLORAS FROM THE

18 , ARGENTINA.

19

20 Short Description: New pollen taxa are described from the Ladinian Quebrada de los

21 Fósiles Formation, Puesto Viejo Group, San Rafael Basin, Argentina.

22

23 Corresponding author: Pedro Raúl Gutiérrez. [email protected].

1

24

25 Abstract. New pollen grains are described from diverse palynological assemblages

26 recorded from the Quebrada de los Fósiles Formation, lower unit of the Puesto Viejo

27 Group, San Rafael Basin (Mendoza, Argentina), southwestern Gondwana. Two new

28 pollen genera, Mendozapollenites and Crackipollenites are proposed, and three new

29 species, Mendozapollenites variabilis, Angustisulcites hexagonalis and Crackipollenites

30 polygonata and Crackipollenites sp. A, as well as, a monosaccate pollen indeterminate

31 (Form A) are fully described and illustrated. The microflora contains high proportions of

32 sphenopsid and lycopsid together with true ferns and bryophyte spores as minor

33 components; non-taeniate pteridosperm bisaccate pollen grains, taeniate monosaccate and

34 bisaccate pollen together with scarce monosulcate and inaperturate grains, among other

35 less frequent gymnosperm pollen and the co-occurrence of chlorococcalean algae and

36 fungal spores. The sedimentation of the Quebrada de los Fósiles Formation took place

37 during Middle Triassic Ladinian age, confirmed by recent radiometric data carried out

38 from both base and top effusive levels (ignimbrites) of the main profile of the unit. Thus,

39 this is the first unequivocal and unique microflora recorded at present for the Ladinian in

40 South America.

41 Key words: Palynology. Pollen grains. Systematics. Ladinian. Argentina. Southwestern

42 Gondwana.

43 Resumen. NUEVOS TAXONES DE POLEN TRIÁSICO MEDIO DE LA CUENCA

44 SAN RAFAEL, PROVINCIA DE MENDOZA, ARGENTINA. Se describen nuevos

45 granos de polen de diversas asociaciones palinológicas registradas de la Formación

46 Quebrada de los Fósiles, unidad inferior del Grupo Puesto Viejo, cuenca de San Rafael

2

47 (Mendoza, Argentina), suroeste de Gondwana. Se proponen dos nuevos géneros,

48 Mendozapollenites y Crackipollenites, se describen e ilustran las nuevas especies,

49 Mendozapollenites variabilis, Angustisulcites hexagonalis, Crackipollenites polygonata y

50 C. sp. A, y también un grano de polen monosacado indeterminado (Forma A). La

51 microflora contiene altas proporciones de esporas de esfenópsidas y licópsidas, junto con

52 esporas de helechos verdaderos y de briófitas, como componentes menores; granos de

53 polen bisacados no taeniados de pteridospermas, y granos de polen monosacados y

54 bisaccados taeniados, junto con escasos granos monosulcados e inaperturados entre otros

55 granos de pollen de gimnospermas menos frecuentes, y la co-ocurrencia de algas

56 clorococales y esporas de hongos. La sedimentación de la Formación Quebrada de los

57 Fósiles tuvo lugar durante el Triásico Medio (Ladiniano), confirmado por dataciones

58 radiométricas recientes realizadas en los niveles de ignimbritas de la base y del techo del

59 perfil tipo de la unidad. Por lo tanto, esta es la primera e inequívoca palinoflora registrada

60 hasta ahora para el Ladiniano en América del Sur.

61 Palabras clave. Palinología. Granos de polen. Sistemática. Ladiniano. Argentina.

62 Suroeste de Gondwana.

3

63

64 THE TRIASSIC CONTINENTAL DEPOSITS IN THE SAN RAFAEL BASIN (also referred as San

65 Rafael depocenter by Ottone et al., 2018 or San Rafael Block by Cariglino et al., 2019

66 and Monti & Franzese, 2016), southwest of Mendoza Province, central-west Argentina

67 (Fig. 1), are represented by the Puesto Viejo Group (Stipanicic et al., 2007). It consists of

68 ca. 1000 m thick alluvial to fluvial sedimentary sequences intercalated with

69 volcanoclastic rocks, tuffs, basalts, andesite intrusives and rhyolitic ignimbrites

70 accumulated from the early Middle to early Late Triassic interval. The Puesto Viejo

71 Group includes the lower Quebrada de los Fósiles Formation and the upper Río Seco de

72 la Quebrada Formation (Stipanicic et al., 2007). The contact between the basal unit and

73 the volcanic basement of Middle –Lower Triassic Choiyoi Group is an erosional

74 unconformity (González Díaz, 1972). The upper unit is overlain unconformably by the

75 Miocene Aisol Formation (González Díaz, 1972). The complete stratigraphy and origin

76 of the units of the San Rafael Basin have been summarized by Domeier et al. (2011),

77 Ottone et al. (2014) and Monti & Franzese (2016, 2019). The basal part of the Quebrada

78 de los Fósiles Formation consists of coarse epiclastic strata related to proximal alluvial

79 fan systems, sometimes covered by pyroclastic flows. Finer grained levels of the upper

80 section of the Quebrada de los Fósiles Formation represent meandering fluvial systems of

81 low to high sinuosity that were also interrupted by the emplacement of pyroclastic flows

82 (Spalletti, 1994; Monti & Franzese, 2016, 2019). The upper unit, the Río Seco de la

83 Quebrada Formation, is constituted by deposits of braided to meandering low-sinuosity

84 fluvial systems, and towards the top, by coarse-grained strata interpreted to represent the

85 distal sections of alluvial fans intercalated by lava flows (Monti & Franzese, 2016, 2019).

4

86 At its type section, the Quebrada de los Fósiles Formation initiates and culminates

87 with pyroclastic flow (ignimbrite) deposits. The uppermost rhyolitic ignimbrite level

88 marks the boundary with the overlying Río Seco de la Quebrada Formation. Ottone et al.

89 (2014) performed SHRIMP U–Pb radiometric dating from juvenile magmatic zircons of

90 the upper ignimbrite deposit which provided an age constraint of 235.8±2 Ma. Domeier et

91 al. (2011) carried out 40Ar/39Ar isotopic dating on volcanoclastic and ignimbritic rocks

92 from the basal levels of the Quebrada de los Fósiles Formation which yielded an age of

93 ~245 Ma. Recently, the basal ignimbrite has been dated using LA-ICPMS U–Pb

94 indicating a late age (Monti in Sato et al., 2015). Thus, the Quebrada de los

95 Fósiles Formation as a whole, was deposited from the Middle (late Anisian) to early Late

96 () Triassic, being mostly constrained to the Ladinian (Cohen et al., 2018) (Fig. 2).

97 Monti (2015) and Monti & Franzese (2016, 2019) gave full details of the litho-

98 sedimentological description of both units integrating the Puesto Viejo Group and defined

99 five depositional systems: 1) debris-flow deposits, 2) channel-fill deposits, 3) floodplain

100 deposits, 4) pyroclastic deposits, and 5) volcanic intrusives and effusives. For detailed

101 lithofacies analysis of the Quebrada de los Fósiles Formation, we refer to these

102 mentioned contributions.

103 The Quebrada de los Fósiles flora recorded at the type locality of the unit was initially

104 referred as “Pleuromeia flora” composed only of scarce remains of and

105 sphenophytes (Morel & Artabe, 1994; Coturel et al., 2016). Recently, Cariglino et al.

106 (2018) described a new, more diverse macrofloral assemblage of Ptilozamites,

107 Pleuromeia, Lepacyclotes, Equisetites and Neocalamites from the Quebrada de los

108 Fósiles Formation at its type locality. This unique and exceptional novel assemblage

5

109 of the lower unit of the Puesto Viejo Group includes typical Northern Hemisphere

110 Ptilozamites and Lepacyclotes genera—recorded for the first time in Gondwana—

111 together with Pleuromeia as a typical Middle Triassic assemblage recorded in the

112 Quebrada de los Fósiles Formation (Cariglino et al., 2018).

113 Ottone & García (1991) systematically described for the first time the palynoflora

114 from the type locality of Quebrada de los Fósiles Formation. Vázquez (2013) described a

115 microflora assemblage from the Quebrada de los Fósiles Formation at the Río Seco de la

116 Quebrada creek (see more details in Ottone et al., 2014: 193). During several field

117 seasons from 2010 to 2018, new palynological assemblages were recovered from the

118 Quebrada de los Fósiles Formation at both creeks which are being studied. Zavattieri et

119 al. (in press) have recently described and illustrated diverse freshwater green algal

120 microfossils and dispersed fungal spores among rich terrestrial palynofloras recovered in

121 the recent years from the upper part of the Quebrada de los Fósiles Formation, Puesto

122 Viejo Group.

123 The microfloras were recovered from three sectors of the type section of the Quebrada

124 de los Fósiles Formation, cropping out at the homonymous creek (Figs. 1, 2): a) thin

125 tabular tuffaceous shales with abundant organic matter (AMZ2 section of the integrated

126 type profile; Figs. 1, 2); b) tuffaceous shales and limestones with light gray to whitish

127 shales having fine and densely distributed casts indicating development of incipient

128 paleosols (AMZ1 section of the integrated type profile; Figs. 1, 2), and c) tabular deposits

129 of laminated siltstones interbedded with light yellow-orange biolaminated calcareous

130 layers (GzD section of the integrated type profile, Figs. 1, 2). In the Quebrada del Río

131 Seco section (Fig. 3), the palynological samples were recovered from grey bentonitic

6

132 clays, dark-brown to black carbonaceous shales (coal levels) with frequent organic plant

133 debris and from grey thin lamination siltstones with frequent organic plant debris.

134 Institutional abbreviations. IANIGLA, CCT-CONICET, Argentine Institute of

135 Nivology, Glaciology and Environmental Sciences, Technological Scientific Center-

136 National Scientific and Technical Research Council-Argentina, Mendoza, Argentina;

137 MACN, Argentine Museum of Natural Sciences “Bernardino Rivadavia”, Ciudad

138 Autónoma de Buenos Aires, Argentina; MPLP, Paleopalinoteca-Paleopalynological

139 Laboratory; BAPal, the Palynological Collection of the Argentine Museum of Natural

140 Sciences “Bernardino Rivadavia”.

141 MATERIALS AND METHODS

142 The palynological materials described herein have been recovered from 22 levels of

143 the type locality of the Quebrada de los Fósiles Formation exposed at the homonymous

144 creek and from 17 levels of the Río Seco de la Quebrada Creek. Most of the studied

145 levels in the two sections contain abundant and diverse spores, pollen grains, freshwater

146 algae and fungi.

147 Standard palynological extraction techniques were performed at the

148 Paleopalynological Laboratory of IANIGLA, CCT-CONICET and involved standard

149 treatments with HCl-HF acids. Some organic residues were subjected to further oxidation

150 using concentrated nitric acid (HNO3) (>2–10 minutes as required). Other oxidized

151 samples were stained with safranin for light microscopy observation and

152 microphotography. The organic residues were briefly washed (45 seconds) in 5%

153 ammonium hydroxide to remove the oxidation products, then sieved using a 10 µm mesh

154 and finally mounted with glycerine jelly (Volkheimer & Melendi, 1976). The specimens

7

155 were examined and photographed with a Nikon H550S transmitted light microscope

156 equipped with a DS-U2-Fil-U2 digital camera at the Paleopalynology Laboratory

157 (MACN), as well as by an Olympus BX 50 light microscope (LM), equipped with an

158 Olympus digital camera at the Paleopalinology Unit, IANIGLA, CCT-CONICET. The

159 studied slides with the prefix MPLP are housed at the Mendoza Paleopalinoteca-

160 Paleopalynological Laboratory (IANIGLA) and identified by the catalogue numbers

161 5877, 9076–9082, 9085, 10374–10377, 10379, 11051–11056, 11064. Other slides with

162 prefix BAPal are housed at the Palynological Collection of the MACN and identified by

163 6612–6614. Specimens are located on each slide with England Finder coordinates

164 (E.F.co.). Residues for Scanning Electron Microscope (SEM) were mounted on

165 aluminium stubs and coated with a gold-palladium alloy. A Phillips XL30 TMP electron

166 microscope at the MACN, Buenos Aires, was used for detailed examination and

167 microphotography of selected specimens, identified by the number of the stub (T) and the

168 photogram number (f). Dimensions for all specimens are expressed as “minimum (mean)

169 maximum”.

170 SYSTEMATIC PALEONTOLOGY

171 Anteturma POLLENITES Potonié, 1931

172 Turma SACCITES Erdtman, 1947

173 Subturma MONOSACCITES Chitaley, 1951 emend. R. Potonié & Kremp, 1954

174 Mendozapollenites gen. nov.

175 Type species. Mendozapollenites variabilis sp. nov., Ladinian of San Rafael Basin,

176 Mendoza Province, Argentina.

8

177 Derivation of name. The name alludes to the Mendoza Province (Argentina) where the

178 San Rafael Basin is located.

179 Diagnosis. Pollen grain monosaccate, taeniate, subcircular to oval in polar view, both in

180 transversal and longitudinal axis. Insertion of sacci sub-equatorial on both faces of the

181 central body. Proximal insertion of sacci slightly marked; on the distal face, a narrow

182 tapering cappula, whose edges converge towards the ends. Near the of the sacci,

183 striae are present parallel to the sides of the cappula and generally associated with

184 transverse folds. Saccus intrareticulate, with well-defined limb. Central body variable in

185 shape. Cappa exhibiting straight to curved taeniae, irregularly arranged, mainly in the

186 longitudinal direction of the grain, parallel to each other or even crossed between them.

187 Geographic occurrence. Quebrada de los Fósiles and Río Seco de la Quebrada creeks,

188 San Rafael Basin, Mendoza Province, Argentina.

189 Stratigraphic provenance. Upper section of the Quebrada de los Fósiles Formation,

190 Ladinian, Puesto Viejo Group.

191 Remarks and comparison. Mendozapollenites gen. nov. is characterized by the

192 arrangement of its structures: sub-equatorial saccus attachment on both sides, very

193 narrow cappula developed on distal face of the central body and in a transverse direction;

194 central body bearing straight, curved and irregularly arranged taeniae and an equatorial

195 limbus of the saccus.

196 Misrapollenites Anand-Prakash, 1970 is the most morphologically similar genus

197 (attachment of the saccus and presence of the limbus) but the central body has no taeniae

198 on its distal surface, the cappula has a greater development and the saccus do not exhibit

199 the parallel taeniae next to the margin of the cappula. The same type of the attachment is

9

200 also presented by Korbapollenites Tiwari, 1964, Primuspollenites Tiwari, 1964,

201 Fimbriaesporites Leschik, 1959, Direticuloidospora Tiwari, 1964, Rhizomaspora

202 Wilson, 1962 and Ibisporites Tiwari, 1968, although they lack an equatorial limb on the

203 sacci. Korbapollenites, Primuspollenites, Fimbriaesporites and Direticuloidospora have

204 central bodies with reticulate striae with varied polygonal patterns, while Rhizomaspora

205 has ribs on the proximal face of the central body and lacks limbus. Otherwise, Ibisporites

206 has a smooth central body.

207 Mendozapollenites variabilis sp. nov.

208 Figures 4.1−4.6, 5.1−5.8, 6.1−6.7

209 Derivation of name. The name alludes to the variable shape of the central body of the

210 pollen grain.

211 Type material. Holotype. MPLP 5877(C) C44(1) (Fig. 4.1). Paratypes. MPLP 10348(G)

212 J44(0) (Fig. 4.2), MPLP 5877(C) H40(0) (Fig. 4.3), MPLP 5877(E) S52(4) (Fig. 4.4),

213 MPLP 5877(C) F53(1) (Fig. 4.5), BAPal 6612(7) D26(1) (Fig. 4.6), MPLP 5877(C)

214 U38(0) (Fig. 5.1), MPLP 5877(C) F51(0) (Fig. 5.2), MPLP 5877(E) G48(0) (Fig. 5.3),

215 BAPal 6612 (7) P45(4) (Fig. 5.4), MPLP 10352(E) K53(0) (Fig. 5.6), MPLP 10348(G)

216 W39(4) (Fig. 5.8), BAPal MEB 6612 (TM) f011 (Fig. 6.1), BAPal MEB 6612(TM) f029

217 (Fig. 6.2), BAPal MEB 6612(TM) f036 (Fig. 6.3), BAPal MEB 6612(TP) f050 (Fig. 6.4),

218 BAPal MEB 6612 (T1) f042 (Fig. 6.5), BAPal MEB 6612(TQ) f013 (Fig. 6.7), BAPal

219 MEB 10374(TJ) f011 (Fig. 6.6).

220 Referred material. MPLP 10348(G) R38(0) (Fig. 5.5), BAPal 6614(8) E43(0) (Fig. 5.7),

221 BAPal 6612(3) Z46(2), BAPal 6612(6) N52(0), BAPal 6612(7) Q51(3), BAPal MEB

222 6612(TP) f032, BAPal 6614(1) N60(0), BAPal 6614(3) B43(4), MPLP 5877(A) R43(0),

10

223 MPLP 5877(C) M39(3), MPLP 5877(C) P44(4), MPLP 5877(D) W50(2), MPLP 5877(E)

224 P34(3), MPLP 5877(F) C44(4), MPLP 10351(M) M54(2), MPLP 10362(I) L56(1),

225 MPLP 11054(B) V31(3), MPLP MEB 10374(TJ) f040.

226 Diagnosis. Pollen grain monosaccate, taeniate. In polar view it exhibits a subcircular to

227 oval shape. Insertion of sacci subequatorial on both faces of the central body; proximal

228 insertion slightly marked; on the distal face a narrow and tapering cappula is developed

229 along the corpus length, not reaching to the corpus margin. Near of the saccus, one or two

230 grooves parallel to the cappula borders are present, generally associated to the folds.

231 Intexine medium to thick. Central body of central to eccentrical position in polar view,

232 variable in shape and size and it has been associated to compressed folding of irregular

233 position. The shape of the central body varies from polygonal, sub-circular to oval, with

234 the major axis parallel or perpendicular to the cappula. Cappa taeniate with up to 10

235 straight to curved taeniae, irregularly disposed but mainly developed in the longitudinal

236 axis of the grain; they are partially parallel to each other or crossed between them in

237 variable angles.

238 Geographic occurrence. Quebrada de los Fósiles and Río Seco de la Quebrada creeks,

239 San Rafael Basin, Mendoza Province, Argentina.

240 Stratigraphic occurrence. Upper section of the Quebrada de los Fósiles Formation,

241 Ladinian, Puesto Viejo Group.

242 Description. The pollen grains are monosaccate, taeniate, subcircular to oval in shape,

243 both in transverse and longitudinal axis. The insertion of saccus is subequatorial, slightly

244 discernible on the proximal face, occasionally associated to exinal folds. On the distal

245 face, the insertion is bilaterally subequatorial, defining a narrow tapered cappula

11

246 (generally 3.2 µm wide), developed along the length of the corpus, but not reaching the

247 margin of the corpus, with exception of breaking. Between roots of the sacci and the

248 taeniae, the exoexine presents parallel folds of the cappula. The central body is polygonal

249 (pentagonal, hexagonal, rhomboidal, trapezoidal) to irregular in shape, irregular folds can

250 be present generally in central position of the body. On the cappa, one and ten straight to

251 curve taeniae are observed; they can cross in variable angles (from very sharp to straight),

252 but not forming reticulate pattern. Most of the taeniae are perpendicular to the cappula.

253 The limb is generally visible, 1 to 8 µm in width, conferring a rigid aspect to the grain.

254 Dimensions (390 specimens). In polar view: overall equatorial diameter, 70(116.4)211 x

255 63(111.8)175 µm; width of the corpus, 34(73.4)149 µm; corpus length, 30(79.6)144 µm;

256 ratio overall equatorial diameter major axis/minor axis, 0.6(1.1)1.8, ratio width of the

257 corpus/corpus length, 0.3(1.0)3.5; cappula width, 1(3.2)16 µm; width of limb: 1(3.8)8

258 µm. Number of taeniae, 1(4)10.

259 Remarks and comparisons. Mendozapollenites variabilis sp. nov. it is characterized by

260 its body of variable shape (pentagonal, hexagonal, rhomboidal, trapezoidal to irregular)

261 and the presence of 1 to 10 taeniae (straight to curve) on the proximal face, which cross

262 in various ways but without exhibiting a reticulated pattern. Densipollenites sp. A

263 described and illustrated by Jain (1968, p. 16, pl. 2, fig. 34) shows similar morphology to

264 M. variabilis sp. nov., due to the presence of two curved taeniae on the central body and

265 the presence of the cappula, both features were not included in the original description.

266 Cf. Parasaccites densicorpus Lele, 1975 described and illustrated by Nagamadhu &

267 Bilwa (2012: 92, fig. 22) presents a central body of similar morphology, dimensions and

268 general aspect of the grain allowing comparison with M. variabilis sp. nov. However, the

12

269 regular preservational state of cf. P. densicorpus and the poor quality of its illustration do

270 not permit more accurate comparison between both forms.

271 In the palynological literature of the Permian-Triassic of Gondwana we have found a

272 set of very similar monosaccate grains, which could be compared with M. variabilis sp.

273 nov. but may or may not be considered co-specific. This material has been illustrated

274 and/or described and referred, mainly to the genus Densipollenites Bharadwaj, 1962, and

275 seems to present, although not clearly visible, stretch marks on the proximal face of the

276 central body and/or an insertion bilateral-distal of the saccus (defining a narrow cappula).

277 However, the diagnostic characteristics of Mendozapollenites variabilis sp. nov. were not

278 originally described for Densipollenites and as a result, it is not possible to advance more

279 than in a superficial comparison. Among some of these forms we can mention some of

280 the specimens referred to D. indicus Bharadwaj (1962: 87, pl. 6, figs. 103–104; Tiwari,

281 1964: 187, pl. 5, fig. 95; Maheshwari, 1966: 270–271, pl. 5, fig. 41; Segroves, 1969: 187,

282 pl. 3, fig. B; Tiwari & Tripathi, 1992, pl. 4, fig. 2; Vijaya et al., 2012, pl. 1, figs. A–B;

283 Murthy & Sarate, 2016, pl. 1, fig. 6), D. invisus Bharadwaj & Salujha (1963: 198, pl. 5,

284 figs. 74–75; Tripathi, 2001, pl. I, fig. 6; Vijaya et al., 2012, fig. 5T; Murthy et al., 2013,

285 pl. I, fig. 22; Meena et al., 2013, pl. 1, fig. 1; Mishra & Joshi, 2015, fig. 3H; Mahesh et

286 al., 2016, fig. 7F; Singh et al., 2017, fig. 7.10); D. pullus Segroves (1969: 187–188, pl. k,

287 figs. A–B; pl. 5, figs. B–C), D. oviformis Shwartsman in Inossova et al., 1976 (Pittau et

288 al., 2002, fig. 7.11) and D. magnicorpus Bharadwaj, 1962 (Kumar et al., 2012, pl. 1, fig.

289 6).

290 INCERTAE SEDIS

291 Genus Indeterminate

13

292 Monosaccate indeterminate Form A

293 Figure 6.8–6.11

294 Referred material. BAPal 6612(3) O47(0) (Fig. 6.8), BAPal 6612(3) J32(1) (Fig. 6.9),

295 MPLP 10362(E) U34(2), (Fig. 6.10), BAPal 6612(3) B50(0) (Fig. 6.11).

296 Geographic occurrence. Quebrada de los Fósiles and Río Seco de la Quebrada creeks,

297 San Rafael Basin, Mendoza Province, Argentina.

298 Stratigraphic occurrence. Upper section of the Quebrada de los Fósiles Formation,

299 Ladinian, Puesto Viejo Group.

300 Description. Monosaccate pollen grain of bilateral symmetry, equatorial outline oval to

301 elliptical in polar and equatorial views. In polar view, the exine layers are separated in the

302 equatorial-proximal and distal zones; the endexine conforms to the central body of oval to

303 elliptical contour. The ektexine is fused to the endexine in the greater part of the proximal

304 face, having radial folds on the proximal surface of the central body. The sacci are

305 narrow, and present their greatest development at the ends of the grain. A monolete mark

306 is present in the proximal face, associated to fold that do not reach to the margin of the

307 body. It has no opening in the distal area. The lateral-distal tenuitas are not clearly

308 observed.

309 Dimensions (8 specimens). Overall length, 105(121.9)170 µm, overall width, 32(37.8)45

310 µm.

311 Remarks and comparisons. The pollen grains characterized as Form A include

312 monosacate specimens of bilateral symmetry, with a proximal monolete mark, the saccus

313 attached equatorially on the proximal face and totally encompassing the distal face of the

14

314 central body. No comparable genus has been found in the literature. The few specimens

315 recovered of this type do not allow to propose a new taxon.

316 Subturma DISACCITES Cookson, 1947

317 Infraturma STRIATITI Pant, 1954

318 Genus Angustisulcites Freudenthal, 1964

319 Type species. Angustisulcites klausii Freudenthal, 1964. Lower Triassic of Netherlands.

320 Angustisulcites hexagonalis sp. nov.

321 Figures 7.1–7.7

322 Derivation of name. The name alludes to the shape of the central body.

323 Type material. Holotype: MPLP 10348(G) Y33(0) (Fig. 7.5). Paratypes: MPLP

324 10348(D) X53(1) (Fig. 7.1), MPLP 10348(C) Y52(1) (Fig. 7.3), MPLP 10376 (E) B55(0)

325 (Fig. 7.7).

326 Referred material. MPLP 10348(G) P44(1) (Fig. 7.2), MPLP 10348(C) X37(2) (Fig.

327 7.4), MPLP 10348(D) J37(0) (Fig. 7.6).

328 Diagnosis. Pollen grain bisaccate, taeniate. Central body of thick exine, transversaly sub-

329 hexagonal to oval in shape. Asymmetric trilete mark, with two rays extending to the

330 equator and the third in transverse sense and less developed. Sacci larger than the central

331 body, slightly distally inclined, and laterally they are juxtaposed. Narrow cappula of

332 straight sides, concave or convex having sporadic nexinal associated folds.

333 Geographic occurrence. Quebrada de los Fósiles and Río Seco de la Quebrada creeks,

334 Mendoza Province, Argentina.

335 Stratigraphic occurrence. Upper section of the Quebrada de los Fósiles Formation,

336 Ladinian, Puesto Viejo Group.

15

337 Description. The pollen grains are bisaccate, taeniate. The central body has a thick wall,

338 and is transversely oval, rhomboidal to sub-hexagonal in shape (two lateral sides shorter

339 than the other four). The trilete mark is asymmetric, with two rays that extend until

340 reaching the proximities of the body’s equator, while the third one is developed in a

341 transverse direction and extends between 1/3 and one radius of the central body. The

342 sacci are larger than the central body, slightly distally inclined and laterally close to each

343 other. The cappula is narrow, biconvex to rectangular with exinal folds associated to the

344 margins.

345 Dimensions (125 specimens). Measures in polar view. Overall length, 50(81.4)120 µm,

346 width of the sacci, 40(64.4)92 µm; length of the sacci, 9(23.6)50 µm (proximal face),

347 21(38.8)75 µm (distal face); corpus length, 27(41.9)60 µm; corpus width, 36(56.0)74 µm;

348 ratio corpus length/width, 0.5(0.8)1.0; cappula width, 1(4.1)28 µm; width of the distal

349 folds, 2(9.3)23 µm.

350 Remarks and comparisons. Angustisulcites hexagonalis sp. nov. differs from the

351 remaining Angustisulcites species (see Visscher, 1966) by the transversely oval to

352 rhomboid shape of the central body, its thick wall and its haploxylonoid to slightly

353 diploxylonoid contour.

354 Turma HILATES Dettmann, 1963

355 Subturma AZONOHILATES Ramanujam & Varma, 1981

356 Genus Crackipollenites gen. nov.

357 Type species. Crackipollenites polygonalis sp. nov. Ladinian of San Rafael Basin,

358 Mendoza Province, Argentina.

16

359 Derivation of name. The name refers to the characteristic polygonal cracked surface of

360 the pollen grain (of the Latin “crack” = cracked).

361 Diagnosis. Pollen grain heteropolar with subcircular to elliptical outline in polar view;

362 irregular area of the opening (hilum) on one of the poles. Hilum not always distinctive, in

363 part covered by secondary folds and/or by breaking. Wall minutely and evenly punctate,

364 ca. 1−2 µm thick; negatively reticulate, divided into large irregular polygonal areas.

365 Comparisons. Crackipollenites gen. nov. is characterized by the presence of an irregular

366 hilum, an exine not divided into visible layers and by its surface with an irregular

367 negative reticulum (polygonal grooves that divide positive polygonal areas of different

368 sizes and shapes). The most similar genera are Sciadopityspollenites Raatz ex Potonié,

369 1958 and Haberkornia Scheuring, 1978. The first one is distinguished by its verrucose

370 ornamentation, while Haberkornia has short trilete mark instead of the hilum.

371 Balmeiopsis Archangelsky, 1979 has a superficial resemblance however, it has the exine

372 separated into two layers and a finely granulated surface.

373 Crackipollenites polygonalis sp. nov.

374 Figures 7.8–7.12, 8.1–8.8, 9.1–9.6

375 Synonymy.

376 1991. Inaperturopollenites sp. 1; Zavattieri: 220, pl. VI, figs. 10-11.

377 Derivation of name. The name alludes to the “polygonal cracked” appearance of the

378 surface.

379 Type material. Holotype: MPLP 5877(C) F49(0) (Fig. 8.1). Paratypes: BAPal 6612(8)

380 Y53(3) (Fig. 7.8), MPLP 5877(D) U47(4) (Fig. 8.2), MPLP 5877(F) M35(1) (Fig. 8.3),

17

381 MPLP 5877(F) W36(2) (Fig. 8.4), BAPal MEB 6612(TN) f025 (Fig. 9.3), BAPal MEB

382 6612(TN) 045 (Fig. 9.5).

383 Referred material. BAPal 6612(8) F27(4) (Fig. 7.9), BAPal 6612(3) K48(2) (Fig. 7.10),

384 BAPal 6613(2) D37(2) (Fig. 7.11), BAPal 6614(1) U48(0) (Fig. 7.12), MPLP 10379(E)

385 G35(4) (Fig. 8.5), MPLP 5877(C) R39(1) (Fig. 8.6), MPLP 11056(G) N43(0) (Fig. 8.7),

386 BAPal 6614(1) R56(3) (Fig. 8.8), BAPal 6614(2) V50(4) (Fig. 9.1), MPLP 10348(D)

387 K48(0) (Fig. 9.2), BAPal 6613(2) Y56(2) (Fig. 9.4), BAPal 6612(3) M37(1) (Fig. 9.6),

388 BAPal 6612(7) Y32(1), BAPal 6612(8) X39(3), BAPal 6614(2) W43(1), MPLP 5877(C)

389 L45(0), MPLP 5877(D) G39(3), MPLP 9085(F) J38(1), MPLP 9085(F) W45(0), MPLP

390 10362(A) W43(3), MPLP 10375(1) Y42(4), MPLP 10376(E) W52(3), MPLP 10376(E)

391 Q52(1).

392 Diagnosis. Pollen grain originally large, spheroidal, with wall divided into variable shape

393 and dimensions of polygonal sections, producing a negative reticulate pattern on the

394 surface of the grain. Flat-topped polygonal sections separated by interconnected shallow

395 “cracks” that have a “v” shape in cross-section.

396 Geographic occurrence. Quebrada de los Fósiles and Río Seco de la Quebrada creeks,

397 Mendoza Province, Argentina.

398 Stratigraphic occurrence. Upper section of the Quebrada de los Fósiles Formation,

399 Ladinian, Puesto Viejo Group.

400 Description. The pollen grains are hilate, spheroidal in shape, circular to subcircular in

401 equatorial contour (relationship between the major and the minor diameters, usually 1.3).

402 They present frequent folding parallel to the equator. On one face, a hilum of a size

403 equivalent to 2/3 of the grain diameter is observed, bordered by irregular folds. The exine

18

404 is 1 µm thick, covered by elements of polygonal contour and flat tops (from 3.3 to 4.8 µm

405 in average diameter, high 0.7 µm), separated from each other by narrow “grooves” of 0.5

406 µm in approximate similar width and forming a polygonal design that give the

407 appearance of negative reticulum. The elements of the sculpture have irregular sizes and

408 shapes, and appearing less marked until they disappear towards the center of the hilum.

409 By the projection of the sculptural elements, the equatorial contour is slightly dentate.

410 Dimensions (136 specimens). Larger equatorial diameter, 55(79.7)130 µm; minor

411 equatorial diameter, 39(61.3)100 µm; ratio equatorial diameter larger:minor 1(1.3)2.2;

412 polygonal section: larger diameter 2(4.8)9 µm, smaller diameter 1(3.3)6 µm; height,

413 0.5(0.7)1.0 µm.

414 Remarks. Due to the large dimensions and probably the weak construction of the wall by

415 the polygonal cracks, the specimens are frequently broken or folded.

416 Comparisons. Inaperturopollenites sp. 1 recorded in the Cerro de Las Cabras Formation

417 (Zavattieri, 1991, p. 220, pl. VI, figs. 10–11) is herein assigned to Crackipollenites

418 polygonalis gen et sp. nov. because it presents the diagnostic characteristic features, as

419 the presence of the hilum, shape and size of the specimens and the same type and size of

420 the exine ornamentation.

421 Crackipollenites sp. A

422 Figure 9.7–9.11

423 Referred material. MPLP 10348(D) V52(0) (Fig. 9.7), BAPal MEB 6612(TQ) f16 (Fig.

424 9.8), MPLP 11054(D) B42(3) (Fig. 9.9), MPLP 10379(E) V36(0) (Fig. 9.10), MPLP

425 10348(C) X33(3) (Fig. 9.11), MPLP 10348(G) 33,3/103,0, MPLP 10350(G) M37(1),

19

426 MPLP 10352(B) C36(4), MPLP 10374(C) M40(0), MPLP 10376(A) G41(4), MPLP

427 11052(C) O46(0), MPLP 11071(A) S35(2), BAPal 6613(4) F29(4).

428 Geographic occurrence. Quebrada de los Fósiles and Río Seco de la Quebrada creeks,

429 San Rafael Basin, Mendoza Province, Argentina.

430 Stratigraphic occurrence. Upper section of the Quebrada de los Fósiles Formation,

431 Ladinian, Puesto Viejo Group.

432 Description. The pollen grains are hilate, spheroidal in shape, circular to subcircular

433 equatorial contour (ratio between major and minor diameters generally 2.9), with frequent

434 folds disposed parallel to the contour. A hilum is present on one face of the grain; it has a

435 size equivalent to the 2/3 of the grain diameter and bordered by irregular folding. The

436 exine is 2 µm thick, covered by elements of polygonal contour and flat tops (8 to 13 µm

437 of larger diameter by 2 to 5 µm of smaller diameter, and height of 0.5 to 1.5 µm),

438 separated from each other by narrow grooves (0.5 µm wide approximate) of irregular and

439 broken pattern that give the appearance of negative reticulum. The elements of the

440 sculpture have variable sizes and predominantly rectangular shapes; they appear less

441 marked until they disappear towards the center of the hilum. Due to the projection of the

442 sculptural elements, the margin of the grain appears slightly dentate.

443 Dimensions (8 specimens). Larger equatorial diameter, 50(65.5)80 µm; minor equatorial

444 diameter, 39(52.7)60 µm; ratio equatorial diameter larger:minor 1(1.2)1.5; polygonal

445 section: larger diameter 3(8)13 µm; smaller diameter, 2(3)5 µm; height, 0.5–1,5 µm.

446 Remarks and comparison. Crackipollenites sp. A differs from C. polygonata sp. nov. in

447 the rectangular shape of the ornamentation, which gives the appearance of aligned

448 polygonal plates, and by smaller size.

20

449 COMPOSITION OF THE QUEBRADA DE LOS FÓSILES MICROFLORA

450 The palynological assemblage from the type locality of the Quebrada de Los Fósiles

451 Formation were recovered from the floodplain facies of a meandering fluvial system that

452 laterally intergrades with episodic shallow lacustrine and palustrine deposits associated to

453 incipient development of paleosols and carbonate levels. On the other hand, in the

454 Quebrada del Río Seco section, the palynological assemblages were recovered from the

455 subaqueous subenvironment facies, such as swamp, marginal lacustrine bodies, stagnant

456 pools, moist soils and peats (Spalletti, 1994; Zavattieri et al., 2003; Monti & Franzese

457 2016) (Figs. 2–3).

458 The vegetation, as reflected by the palynoflora recorded in the Quebrada de los Fósiles

459 Formation, is dominated by monolete and trilete spores, taeniate and non-taeniate pollen

460 grains, algae and fungi (Tabs. 1–2). The spores are dominant components in AMZ1 and

461 AMZ2 sections of the Quebrada de los Fósiles Creek and in the section of the Río Seco

462 de la Quebrada Creek (Tabs. 1–2). The dispersed spores include representatives of

463 lycophytes (mainly Aratrisporites Leschik, 1955; Densoisporites Weyland & Krieger,

464 1953 emend. Dettmann, 1963; Lundbladispora Balme, 1963), sphenophytes

465 (Calamospora Schopf et al., 1944), true ferns (mainly Apiculatisporis Potonié & Kremp,

466 1956; Verrucosisporites Ibrahim, 1933; Leschikisporis Potonié, 1958), bryophyte

467 (Retusotriletes Naumova, 1953; Stereisporites Pflug in Thomson & Pflug, 1953)

468 (Zavattieri et al., in press). AMZ1 and GzD levels report and

469 equisetalean plant remains, and high representations of their dispersed

470 reflecting local vegetation of lowland environments (floodplains, riparian lakes and/or

471 ponds).

21

472 The shallow ephemeral lacustrine systems and small water bodies developed in the

473 stratotype of the Quebrada de los Fósiles Formation as well as in the Quebrada del Río

474 Seco sections are evidenced by variable proportions of aquatic (fresh and/or brackish)

475 algae (0–97.8%, see Zavattieri et al., in press). Green algae are mainly represented by the

476 Zygnematales (Lecaniella Cookson & Eisenack, 1962; Maculatasporites Tiwari, 1964,

477 Mehlisphaeridium Segroves, 1967; and Ovoidites Potonié ex Thomson & Pflug, 1953),

478 scarce colonies of chlorophyte algae (Botryococcus Kützing, 1849), and other organic-

479 walled incertae sedis microfossils (Leiosphaeridia Eisenack, 1958) (Zavattieri et al., in

480 press).

481 Fungal spores are quite rare in the palynological spectrum of the Quebrada de los

482 Fósiles Formation represented mainly by the genera Portalites Hemer & Nygreen, 1967

483 and Microsporonites Jain, 1968. Their higher proportions in the studied sections are

484 recorded within peats and/or coal levels of the Río Seco de la Quebrada section

485 (Zavattieri et al., in press).

486 The pollen grain assemblages of the Quebrada de los Fósiles Formation in the studied

487 sections include , and pteridosperms, particularly peltasperms and corystosperms,

488 and rare monosulcate pollen of ginkgoaleans, cycadaleans and/or bennettitaleans. The

489 conifers and pteridosperms are dominated by non-taeniate bisaccate pollen (partly

490 Alisporites Daugherty, 1941/Falcisporites Leschik, 1956; Platysaccus Naumova ex

491 Ishchenko, 1952; Minutosaccus Mädler, 1964/Protodiploxypinus Samoilovich, 1953; and

492 Klausipollenites Jansonius, 1962) and they are well represented in the Río Seco de la

493 Quebrada Creek section (Tab. 2). Pollen grains of the mentioned groups might have

22

494 derived from upland vegetation (drier parts of the floodplains, and surrounding areas) that

495 supplied allochthonous elements to the sites of deposition.

496 The pollen grains described here belong to miospore groups with low representation in

497 the type locality of the Quebrada de los Fósiles Formation (see Tabs. 1–2). However, they

498 are forms that are easily identifiable by their morphology and constitute distinctive

499 components of the Quebrada de los Fósiles microflora. In this sense, among the taeniate

500 monosaccate pollen grains of this palynoflora (Tabs. 1–2), Mendozapollenites gen. nov.

501 constitutes the dominant component, accompanied by few grains of the genera

502 Striomonosaccites Bharadwaj, 1962 and Crustaesporites Leschik, 1956. On the other

503 hand, among the non-taeniate pollen grains, several species of the genera Accinctisporites

504 Leschik, 1955, Cladaitina Maheshwari & Meyen, 1975 and Sulcosaccispora Klaus, 1964

505 were identified.

506 The taeniate bisaccate pollen grains also appear in low proportions within the

507 composition of the palynofloras of the Quebrada de los Fósiles Formation (see Tabs. 1–

508 2). The genus appearing in quantities which are included in the counts are:

509 Protohaploxypinus Samoilovich, 1953; Striatopodocarpites Sedova, 1956;

510 Angustisulcites Freudenthal, 1964; Striatoabieites Sedova, 1956; Hamiapollenites

511 Wilson, 1962; and Lunatisporites Leschik, 1956. Angustisulcites is mainly represented by

512 A. hexagonalis. sp. nov.; A. gorpii Visscher, 1966; A. grandis (Freudenthal, 1964)

513 Visscher, 1966; and A. klausii (Freudenthal, 1964) Visscher, 1966.

514 Finally, hilate pollen grains appear in even smaller proportions (Tabs. 1–2) and are

515 represented by Crackipollenites polygonalis gen. et sp. nov. This is the only species of

516 those described in this work that has a previous record in the Triassic of Argentina,

23

517 referred previously as Inaperturopollenites sp. 1 by Zavattieri (1991) from the Cerro de

518 Las Cabras Formation, Cuyana Basin (Mendoza, Argentina).

519 FINAL COMMENTS

520 This work presents new palynological components of the microfloral assemblages

521 recovered from two sections of the Quebrada de los Fósiles Formation, lower unit of the

522 Puesto Viejo Group, San Rafael Basin, central-western Argentina. The microflora of the

523 unit is referred to Ladinian age based on recent radiometric dating and stratigraphical

524 interpretations.

525 The composition of the Quebrada de los Fósiles microflora can be clearly

526 differentiated from all other known late Middle to Upper Triassic palynological

527 assemblages of Argentina and Gondwanan strata which are characteristically dominated

528 by non-taeniate corystospermous and peltaspermous bisaccate pollen mainly assigned to

529 Falcisporites/Alisporites, Pteruchipollenites, Platysaccus, Minutosaccus,

530 Klausipollenites, Vitreisporites, among other gymnosperm pollen grains as well as

531 abundant and diverse dispersed spores of true ferns and sphenopsids. It also differs from

532 those of the uppermost Permian (Lopingian) microflora recorded in Argentina dominated

533 by glossopterids with sub-dominant conifers (Voltziales), Cordaitales, peltasperms and

534 corystosperm pollen grains, and which also have low proportion of spores related to true

535 ferns and shenophytes (Gutiérrez et al., 2017, 2018; Zavattieri et al., 2017, 2018).

536 Similarly, the flora from the Quebrada de los Fósiles Formation is unique when

537 compared to other Middle and Late Triassic assemblages in Argentina, in that it includes

538 Ptilozamites (commonly registered in the Northern Hemisphere), and abundant

539 pleuromeids and sphenophytes (Cariglino et al., 2018). Other typical plant elements of

24

540 the well-known Dicroidium flora (such as corystosperms and peltasperms) common to

541 the various Triassic floras from Argentina and other Gondwanan regions are absent

542 (Cariglino et al., 2018).

543 Among the pollen grains constituting the composition of the Quebrada de los Fósiles

544 microflora, a small set of forms hitherto unknown to the Triassic of Argentina are

545 described herein assigned to Mendozapollenites variabilis gen. nov. et sp. nov.,

546 Crackipollenites gen. nov. et sp. nov., monosacate indeteterminate Form A and

547 Angustisulcites hexagonalis sp. nov., associated with well-known species of the Triassic

548 of Gondwana such as Alisporites/Falcisporites, Platysaccus, Pteruchipollenites,

549 Minutosaccus/Protodiploxypinus, Klausipollenites, Lunatisporites, Accinctisporites,

550 Sulcosaccispora, Striomonosaccites and Crustaesporites. Unlike the palynofloras of the

551 late Middle and Late Triassic of Argentina (Zavattieri & Batten, 1996), the inaperturate,

552 polyplicate and monsulcate pollen grains appear in very low proportions in the microflora

553 of the Quebrada de los Fósiles Formation.

554 This unique and exceptional novel microfloral assemblages of the lower unit of the

555 Puesto Viejo Group are integrated by diverse terrestrial pollen grains and spores among

556 rich freshwater green algal microfossils and dispersed fungal spores (Zavattieri et al.,

557 2020). Most of these algae, fungi and terrestrial components constitute the first Triassic

558 records for the entire Gondwanan continent. The terrestrial and aquatic vegetation grew

559 associated with shallow water bodies in floodplain environments developed under warm

560 temperate, strongly seasonal climatic conditions when profuse volcanic activity

561 introduced large volumes of ash and greenhouse gases into the atmosphere. The volcanic

562 events developed during deposition of the Quebrada de los Fósiles Formation promoted

25

563 changes in the environmental conditions that influenced the development of the peculiar

564 composition of the vegetation and the algae community of the water bodies, creating

565 stressful conditions and the development of the plant communities within the ecosystem

566 (Spalletti et al., 2003; Cariglino et al., 2018).

567 ACKNOWLEDGMENTS

568 This research has been partially funded by the National Agency for Scientific and

569 Technological Promotion, Argentina (research grants ANPCYT-PICT 2016-0637 and

570 ANPCYT-PICT 2016-0431). Parts of the research that led to the revision of this material

571 were financially supported by the Consejo Nacional de Investigaciones Científicas y

572 Técnicas (CONICET), Argentina (PIP Nº 0705 PRG and PIP Nº 11220090100605

573 AMZ). We are deeply indebted to Dr. Mariana Monti for her assistance in the field

574 works, interpretation and information about the geology of the Puesto Viejo Group, as

575 well as to Dr. Bárbara Cariglino for her invaluable assistance in the field. Thanks to A.

576 Moschetti (IANIGLA-CCT-CONICET-Mendoza) for palynological laboratory

577 preparations of samples for light optical microscopy studies, as well as to F. Tricárico

578 who assisted with the scanning electron microscopy.

579 REFERENCES

580 Anand-Prakash (1970). A new Monosaccate pollen from the Barakar coals of India. The

581 Palaeobotanist, 19(3), 203–205.

582 Archangelsky, S. (1979). Balmeiopsis, nuevo nombre genérico para el palinomorfo

583 Inaperturopollenites limbatus Balme, 1957. Ameghiniana, 14(1–4), 122–126.

584 Balme, B. E. (1963). Plant Microfossils from the Lower Triassic of Western Australia.

585 Palaeontology, 6(1), 12–40.

26

586 Bharadwaj, D. C. (1962). The miospore genera in the coals of Raniganj Stage (Upper

587 Permian), India. The Palaeobotanist, 9(1–2), 68–106.

588 Bharadwaj, D. C., & Salujha, S. K. (1963). Sporological Study of Seam VIII in Raniganj

589 Coalfield, Bihar, India. Part I: Description of the sporae dispersae. The

590 Palaeobotanist, 12(2), 181–215.

591 Cariglino, B., Monti, M., & Zavattieri, A. M. (2018). A Middle Triassic macroflora from

592 southwestern Gondwana (Mendoza, Argentina) with typical Northern Hemisphere

593 elements: Biostratigraphic, palaeogeographic and palaeoenvironmental

594 implications. Review of Palaeobotany and Palynology, 257, 1–18.

595 Chitaley, S. D. (1951). Fossil microflora from the Mohgaon Kalan Beds of the Madhya

596 Pradesh, India. Proceedings of the National Institute of Sciences of India, 17(5),

597 373–381.

598 Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J. X. (2013; updated) The ICS

599 International Chronostratigraphic Chart. Episodes, 36, 199–204. URL:

600 http://www.stratigraphy.org/ICSchart/ChronostratChart2018-08.pdf.

601 Cookson, I. C. (1947). Plant microfossils from the lignites of Kerguelen Archipelago.

602 B.A.N.Z. Antarctic Research Expedition 1929-1931 Reports, Series A2(1), 127–142.

603 Cookson, I. C., & Eisenack, A. (1962). Some and Tertiary microfossils from

604 Western Australia. Proceedings of the Royal Society of Victoria, 75(2), 269–273.

605 Coturel, E. P., Morel, E. M., & Ganuza, D. G. (2016). Lycopodiopsids and equisetopsids

606 from the Triassic of Quebrada de los Fósiles Formation, San Rafael Basin,

607 Argentina. Geobios, 49(3), 167–176.

27

608 Daugherty, L. H. (1941). The Upper Triassic Flora of Arizona. Contribution to

609 Paleontology, Carnegie Institution of Washington, Publication 526, 1–108.

610 Dettmann, M. E. (1963). Upper Mesozoic microfloras from south-eastern Australia.

611 Proceedings of the Royal Society of Victoria Queensland, 77(1), 1–148.

612 Domeier, M., van der Voo, R., Tomezzoli, R. N., Tohver, E., Hendriks, B. W., Torsvik,

613 T. H., Vizán, H., & Domínguez, A. (2011). Support for an “A-type” Pangea

614 reconstruction from high-fidelity Late Permian and Early to Middle Triassic

615 paleomagnetic data from Argentina. Journal of Geophysical Research, 116,

616 B12114.

617 Eisenack, A. E. (1958). Tasmanites Newton 1875 und Leiosphaeridia n. g. als Gattungen

618 der Hystrichosphaeridea. Palaeontographica Abteilung A, 110(1–3), 1–19.

619 Erdtman, G. (1947). Suggestions for the classification of fossil and recent pollen grains

620 and spores. Svensk Botanisk Tidskrift, 41(1), 104–114.

621 Freudenthal, T. (1964). Palaeobatany of the mesophytic. I. Palynology of Lower Triassic

622 rocksalt, Hengelo, The Netherlands. Acta Botanica Neerlandica, 13(2), 209–236.

623 González Díaz, E. F. (1972). Descripción geológica de la Hoja 27d, San Rafael, provincia

624 de Mendoza. Carta Geológico-Económica de la República Argentina. Escala

625 1:200.000. Boletín 132, 143 p., Servicio Nacional Minero Geológico.

626 Gutiérrez, P. R., Zavattieri, A. M., & Ezpeleta, M. (2017). Palynology of the La Veteada

627 Formation (Lopingian) at its type locality, Famatina range, La Rioja Province,

628 Argentina. Spores. Ameghiniana, 54(4), 441–464.

629 Gutiérrez, P. R., Zavattieri, A. M., & Noetinger, S. (2018). The Lopingian palynological

630 Guttulapollenites hannonicus–Cladaitina veteadensis assemblage zone of

28

631 Argentina, stratigraphical implications for Gondwana. Journal of South American

632 Earth Sciences, 88, 673–692.

633 Hemer, D. O., & Nygreen, P. W. (1967). Algae, acritarchs and other microfossils incertae

634 sedis from the Lower of Saudi Arabia. Micropaleontology, 13(2),

635 183–194.

636 Ibrahim, A. C. (1933). Sporenformen des Agirhorizontes des Ruhrreviers. (Dissertation,

637 Technische Hochschule, Berlin). Privately Published by Konrad Triltsch,

638 Wurzburg.

639 Inossova, K. I., Krusina, A. K., & Shwartsman, E. G. (1976). Atlas des microspores et

640 pollen du Carbonifère inférieur et du Permien du Donetz. Nedra. [in Russian].

641 Ishchenko, A. M. (1952). Atlas of the microspores and pollen of the Middle

642 Carboniferous of the western part of the Donetz Basin. Izvestia Akademiia Nauk

643 Ukrainskoi SSR, Instituta Geologischeskikh Nauk. [in Russian].

644 Jain, R. K. (1968). Triassic pollen grains and spores from Minas Petróleo Beds of the

645 Cacheuta Formation (Upper Gondwana), Argentina. Palaeontographica B, 122(1–

646 2), 1–47.

647 Jansonius, J. (1962). Palynology of Permian and Triassic sediments, Peace River area,

648 western Canada. Palaeontographica B, 110(1–4), 35–98.

649 Klaus, W. (1964). Zur sporen stratigraphischen Einstufung von gipsfüherenden Schichten

650 Bohrungen. Erdöl-Zeitschr Bohr-und Fordertechn, 80(4), 119–132.

651 Kumar, M., Ghosh, A. K., Ram-Awatar, & Mehrotra, R. C. (2012). Palynomorphs of

652 Gondwanic affinities in the Oligo-Miocene sediments of Kargil Molasse Group,

653 Ladakh, India. The Palaeobotanist, 61(1), 165–176.

29

654 Kützing, F. T. (1849). Species Algarum. Brockhaus, Leipzig.

655 Lele, K. M. (1975). Studies in Talchir flora of India-10. Early and Late Talchir

656 microfloras from the West Bokaro Coalfield, Bihar. The Palaeobotanist, 22(3),

657 219–235.

658 Leschik, G. (1955). Die Keuperflora von Neuewelt bei Basel. II. Die Iso- und

659 Mikrosporen. Abhandlungen der schweizerischen Palaeontologischen Gesellschaft,

660 Band, 72, 1–70.

661 Leschik, G. (1956). Sporen aus dem Salzton des Zechsteins von Neuhof (bei Fulda).

662 Palaeontographica B, 100(4–6), 122–142.

663 Leschik, G. (1959). Sporen aus den “Karru-Sandsteinen" von Narronaub (Südwest-

664 Afrika). Senckenhergiana lethaea, 40(1–2), 1–72.

665 Mädler, K. (1964). Die geologische Verbreitung von Sporen und pollen in der Deutschen

666 Triassic. Beihefte zum geologischen Jahrbuch, 65, 1–147.

667 Mahesh, S., Murthy, S., Pauline, S. K., Saran, S., & Singh, V. P. (2016). Organic Matter

668 Characterization of Carbonaceous Shales from Raniganj Coalfields and its

669 Implications on Depositional Condition: A Palynofacies and Petrographic

670 Overview. Journal of the Geological Society of India, 87(2), 132–144.

671 Maheshwari, H. K. (1966). Studies in the Glossopteris flora of India-29. Miospore

672 assemblages from the Gondwana exposures along Bansloi River in Rajmahal Hills,

673 Bihar. The Palaeobotanist, 15(3), 258–280

674 Maheshwari, H. K., & Meyen, S. V. (1975). Cladostrobus and the systematics of

675 cordaitalean leaves. Lethaia, 8(2), 103–123.

30

676 Meena, K. L., Pillai, S. S. K., & Vethanayagam, S. M. (2013). Palynostratigraphic

677 Studies on Permian Succession from Ib-River Coalfield, Son-Mahanadi Basin,

678 Odisha, India. International Journal of Earth Sciences and Engineering, 6(2), 297–

679 305.

680 Mishra, S., & Joshi, H. (2015). Palynobiostratigraphy and floral biodiversity of Late

681 Permian sediments from Godavari Graben, Andhra Pradesh. International Journal

682 of Geology, Earth & Environmental Sciences, 5(3), 43–54.

683 Monti, M. (2015). Tectónica, volcanismo y sedimentación en la cuenca triásica del

684 Grupo Puesto Viejo (Triásico Medio-Superior), provincia de Mendoza. (Tesis

685 Doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La

686 Plata, La Plata). Available from http://sedici.unlp.edu.ar/handle/10915/44602.

687 Monti, M., & Franzese, J. R. (2016). Análisis tectonoestratigráfico del Grupo Puesto

688 Viejo (San Rafael, Argentina): evolución de un rift continental triásico. Latin

689 American Journal of Sedimentology, Basin Analysis, 23(1), 1–33.

690 Monti, M., & Franzese, J. R. (2019). Triassic continental oblique rifting controlled by

691 Paleozoic structural grain: The Puesto Viejo Basin, western Argentina. Journal of

692 South American Earth Sciences, 95, 102240.

693 Monti, M., Sato, A. M., & Franzese, J. R. (2018). Edad del rifting Triásico en la Cuenca

694 de 1464 Puesto Viejo (U-Pb 243,9 ± 2 Ma), San Rafael, Provincia de Mendoza. 16º

695 Reunión Argentina de Sedimentología, Rio Negro, Argentina. Resúmenes, p. 81.

696 Morel, E. M., & Artabe, A. E. (1994). La “Flora de Pleuromeia” en la Formación Puesto

697 Viejo (Triásico) de la Provincia de Mendoza, Argentina. Actas 6° Congreso

698 Argentino de Paleontología y Bioestratigrafía (p. 4). Trelew.

31

699 Murthy, S., & Sarate, O. S. (2016). Late Permian palynoassemblage from Chalburdi area,

700 Chandrapur District, Maharashtra. The Palaeobotanist, 65(1), 85–95.

701 Murthy, S., Vijaya, & Vethanayagam, S. M. (2013). Palynostratigraphy of Permian

702 succession in the Pench Valley Coalfield, Satpura Basin, Madhya Pradesh, India.

703 Journal of the Palaeontological Society of India, 58(2), 241–250.

704 Nagamadhu, C. J., & Bilwa, L. M. (2012). Palyno Biostratigraphy and Paleoclimatic

705 Depositional Conditions of Lower Barakar Formation Lower Gondwana Southern

706 Peninsula India. Journal of Science and Technology Maha Sarakham University,

707 31(1), 84–92.

708 Naumova, S. N. (1953). -pollen complexes of the Upper of the Russian

709 Platform and their stratigraphic significance. Trudy Instituta Geologicheskikh

710 Nauk, Akademii Nauk SSSR, 143 (Geologicheskaya Seriya 60). [in Russian].

711 Ottone, E. G., & García, G. B. (1991). A Lower Triassic miospore assemblage from the

712 Puesto Viejo Formation, Argentina. Review of Palaeobotany and Palynology, 68(3–

713 4), 217–232.

714 Ottone, E. G., Monti, M., Marsicano, C. A., de La Fuente, M. S., Naipauer, M.,

715 Armstrong, R., & Mancuso, A. C. (2014). A new Late Triassic age for the Puesto

716 Viejo Group (San Rafael depocenter, Argentina): SHRIMP U–Pb zircon dating and

717 biostratigraphic correlations across southern Gondwana. Journal of South American

718 Earth Sciences 56, 186–199.

719 Pant, D. B. (1954). Suggestions for the classification and nomenclature of fossil spores

720 and pollen grains. Botanical Review, 20(1), 33–60.

32

721 Pittau, P., Barca, S., Cocherie, A., Del Rio, M., Fanning, M., & Rossi, P. (2002). Le

722 bassin Permien de Guardia Pisano (sud-ouest de la Sardaigne, Italie):

723 palynostratigraphie, paléophytogéographie, corrélations et âge radiométrique des

724 produits volcaniques associés. Geobios, 35(5), 561–580.

725 Potonié, R. (1931). Zur Mikroskopie der Braunkohlen. Tertiare Blutenstaubformen:

726 Braunkohle, 30(16), 325–333.

727 Potonié, R. (1958). Synopsis der Sporae dispersae. II Teil: Sporites (Nachträge), Saccites,

728 Aletes, Preacolpate, Polyplicates, Monocolpates. Beihefte zum Geologischen

729 Jahrbuch, Beiheft, 31, 1–114.

730 Potonié, R., & Kremp, G. (1954). Die Gattungen der Palaozoichen Sporae Dispersae und

731 ihre Stratigraphie. Beihefte zum Geologischen Jahrbuch, Beiheft, 69, 111–194.

732 Potonié, R., & Kremp, G. (1956). Die Sporae dispersae des Ruhrkarbons, ihre

733 Morphographie und Stratigraphie mit Ausblicken auf Arten anderer Gebiete und

734 Zeitabschnitte; Teil III. Palaeontographica B, 100(1-2), 65–121.

735 Ramanujam, C. G. K., & Varma, Y. N. R. (1981). Hilate spores from the Upper

736 Gondwana deposits of Palar Basin, Tamil Nadu. The Palaeobotanist, 28–29, 308–

737 315.

738 Samoilovich, S. R. (1953). Pollen and spores from the Permian deposits of the Cherdyn'

739 and Aktyubinsk Near-Urals. Trudy Vsesoyuznogo naucho-issledovatel'skogo

740 Geologo-razvedochnogo Instytut (n.s.), 75, 5–91. [In Russian; English translation

741 in: Oklahoma Geological Survey, Circular, 56, 103 pp].

742 Sato, A. M., Llambías, E. J., Basei, M. A. S., & Castro, C. E. (2015). Three stages in the

743 Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the

33

744 relationships with the volcanogenic events in coeval basins. Journal of South

745 American Earth Sciences, 63(1), 48–69.

746 Sedova, M. A. (1956). [The definition of four genera of disaccate Striatitti]. Material of

747 PaIeontoIogii VSEGEI, 12, 246–249 [in Russian].

748 Scheuring, B. W. (1978). Mikrofloren aus den Meridekalken des Mte. San Giorgio

749 (Kanton Tessin). Schweizerische Palaeontologische Abhandlungen, 100, 1–93.

750 Schopf, J. M., Wilson, L. R., & Bentall, R. (1944). An Annotated Synopsis of Paleozoic

751 Fossil Spores and the Definition of Generic Groups. Illinois State Geological

752 Survey Report of Investigations, 91, 1–73.

753 Segroves, K. L. (1967). Cutinized microfossils of probable nonvascular origin from the

754 Permian of Western Australia. Micropaleontology, 13(3), 289–305.

755 Segroves, K. L. (1969). Saccate Plant Microfossils from the Permian of Western

756 Australia. Grana Palynologica, 9(1–3), 174–227.

757 Singh, K. J., Murthy, S., Saxena, A., & Shabbar, H. (2017). Permian macro- and

758 miofloral diversity, palynodating and palaeoclimate implications deduced from the

759 coal-bearing sequences of Singrauli coalfield, Son–Mahanadi Basin, central India.

760 Journal of Earth System Sciences, 126(1), 25–41.

761 Spalletti, L. A. (1994). Evolución de los ambientes fluviales en el Triásico de la Sierra

762 Pintada (Mendoza, Argentina): análisis sobre la influencia de controles intrínsecos

763 y extrínsecos al sistema depositacional. Revista de la Asociación Argentina de

764 Sedimentología, 1(2), 125–142.

765 Stipanicic, P. N., González Díaz, E. F., & Zavattieri, A. M. (2007). Grupo Puesto Viejo

766 nom. transl. por Formación Puesto Viejo González Díaz (1994, 1967): nuevas

34

767 interpretaciones paleontológicas, estratigráficas y cronológicas. Ameghiniana,

768 44(4), 759–761.

769 Thomson, P. W., & Pflug, H. (1953). Pollen und Sporen des mitteleuropäisehen Tertiärs.

770 Palaeontographica B, 94(1–4), 1–138.

771 Tiwari, R. S. (1964). New miospore genera in the coals of Barakar Stage (Lower

772 Gondwana) of India. The Palaeobotanist, 12(3), 250–259.

773 Tiwari, R. S. (1968). Palynological investigations of coal seams in the Ib-River Coalfield,

774 Orissa, India. The Palaeobotanist, 16(3), 222–242.

775 Tiwari, R. S., & Tripathi, A. (1992). Marker assemblage zones of spore and pollen

776 species through Gondwana Paleozoic and Mesozoic sequence in India. The

777 Palaeobotanist, 40(1991), 194–236.

778 Tripathi, A. (2001). Permian, and Early Cretaceous palynofloral assemblages

779 from subsurface sedimentary rocks in Chuperbhita Coalfield, Rajmahal Basin,

780 India. Review of Palaeobotany and Palynology, 113(4), 237–259.

781 Vázquez, M. S. (2013). Palinología de la Formación Quebrada de los Fósiles, Pérmico-

782 Triásico de San Rafael, provincia de Mendoza. (Tesis de Licenciatura, Facultad de

783 Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires).

784 (unpublished).

785 Vijaya, Tripathi, A., Roy, A., & Mitra, S. (2012). Palynostratigraphy and age correlation

786 of subsurface strata within the sub-basins in Singrauli Gondwana Basin, India.

787 Journal of Earth System Science, 121(4), 1071–1092.

35

788 Visscher, H. (1966). Palaeobotany of the Mesophytic, 3. Plant microfossils from the

789 Upper Bunter of Hengelo, The Netherlands. Acta Botanica Neerlandica, 15(2),

790 316–375.

791 Volkheimer, W., & Melendi, D. L. (1976). Palinomorfos como fósiles guía (3ª parte).

792 Técnicas de laboratorio palinológico. Revista Minera Geología y Mineralogía,

793 34(1–2), 19–30.

794 Wilson, L. R. (1962). Permian Plant microfossils from the Flowerpot formation Greer

795 country, Oklahoma. Oklahoma Geological Survey, Circular 49, 5–50.

796 Zavattieri, A. M. (1991). Granos de polen de la Formación Las Cabras (Triásico) en su

797 localidad tipo, Provincia de Mendoza, Argentina. Parte 2. Ameghiniana, 28(3–4),

798 205–224.

799 Zavattieri, A. M., & Batten, D. J. (1996). Miospores from Argentinian Triassic deposits

800 and their potential for intercontinental correlation. In J. Jansonius & D.C.

801 McGregor (Eds.). Palynology: Principles and Applications, vol. 2 (pp. 767–778).

802 American Association of Stratigraphic Palynologists Foundation.

803 Zavattieri, A. M., Sepúlveda, E., Morel, E. M., & Spalletti, L. A. (2003). Límite

804 Pérmico–Triásico para la base aflorante de la Formación Puesto Viejo, Mendoza

805 (Argentina), en base a su contenido palinológico. Ameghiniana, Suplemento

806 Resúmenes, 40(4R), 17R.

807 Zavattieri, A. M., Gutiérrez, P.R., & Ezpeleta, M. (2017). Syndesmorion stellatum

808 (Fijałkowska) Foster et Afonin chlorophycean algae and associated

809 microphytoplankton from lacustrine successions of the La Veteada Formation (late

36

810 Permian), Paganzo Basin, Argentina. Paleoenvironmental interpretations and

811 stratigraphic implications. Review of Palaeobotany and Palynology, 242, 1–20.

812 Zavattieri, A. M., Gutiérrez, P.R., & Ezpeleta, M. (2018). Gymnosperm pollen grains

813 from the La Veteada Formation (Lopingian), Paganzo Basin, Argentina.

814 Biostratigraphic and paleoecological considerations. Alcheringa, 42(2), 244–257.

815 Zavattieri, A. M., Gutiérrez, P. R., Monti, M. (in press). Middle Triassic freshwater green

816 algae and fungi of the Puesto Viejo Basin, central-western Argentina:

817 Palaeoenvironmental implications. Alcheringa, 44. Doi:

818 10.1080/03115518.2020.1749302.

37

819

820 Figure captions

821 Figure 1. Location maps (taken from Zavattieri et al., in press). A, Distribution of the

822 Triassic basins in central-western of Argentina, showing the location of the San Rafael

823 Basin. B, Outcrops of the Puesto Viejo Group in the San Rafael Basin. C, Geological

824 map of the Puesto Viejo Group in the study area. Locations of the palynological sampling

825 sections in the Quebrada de los Fósiles Creek: 1, GzD; 2, AMZ1; 3, AMZ2 (see Fig. 2);

826 4, location of the sampling in the section Río Seco de la Quebrada Creek; Qda. Quebrada;

827 Fm: Formation.

828 Figure 2. Integrated sedimentological section of the Quebrada de los Fósiles Formation

829 at the type locality (Agua de los Burros Creek; taken from Zavattieri et al., in press).

830 Characteristics of the sections studied from the type locality and the locations of the

831 studied palynological samples (see Fig. 1, Tab. 1). Stars show sample dating levels of the

832 basal and top effusive levels of the type section.

833 Figure 3. Sedimentological section of the Quebrada de los Fósiles Formation cropping

834 out at the Río Seco de la Quebrada Creek succession, indicating the characteristics of the

835 sequence and the location of the studied palynological samples (Fig. 1, Tab. 2; taken from

836 Zavattieri et al., in press).

837 Figure 4. 1−6, Mendozapollenites variabilis gen. et sp. nov. 1, MPLP 5877(C) C44(1),

838 holotype; 2, MPLP 10348(G) J44(0), paratype; 3, MPLP 5877(C) H40(0), paratype; 4,

839 MPLP 5877(E) S52(4), paratype; 5, MPLP 5877(C) F53(1), paratype; 6, BAPal 6612(7)

840 D26(1), paratype. Scale bar, 20 µm.

38

841 Figure 5. 1-8, Mendozapollenites variabilis gen. et sp. nov. 1, MPLP 5877(C) U38(0),

842 paratype; 2, MPLP 5877(C) F51(0), paratype; 3, MPLP 5877(E) G48(0), paratype; 4,

843 BAPal 6612(7) P45(4), paratype; 5, MPLP 10348(G) R38(0); 6, MPLP 10352(E) K53(0);

844 7, BAPal 6614(8) E43(0); 8, MPLP 10348(G) W39(4), paratype. Scale bar, 20 µm.

845 Figure 6. 1-7, Mendozapollenites variabilis gen. et sp. nov. 1, BAPal MEB 6612(TM)

846 f011, distal face; 2, BAPal MEB 6612(TM) f029, paratype, proximal face; 3, BAPal

847 MEB 6612(TM) f036, paratype, distal face; 4, BAPal MEB 6612(TP) f050, paratype,

848 distal face; 5, BAPal MEB 6612(T1) f042, paratype, distal face; 6, MPLP MEB

849 10374(TJ) f011, paratype, proximal face; 7, BAPal MEB 6612(TQ) f013, paratype,

850 proximal face. 8-11, Monosaccate indeterminate Form A. 8, BAPal 6612(3) O47(0); 9,

851 BAPal 6612(3) J32(1); 10, MPLP 10362(E) U34(2); 11, MPLP 6612(3) B50(0); Scale

852 bar, 20 µm.

853 Figure 7. 1-7, Angustisulcites hexagonalis sp. nov., 1, MPLP 10348(D) X53(1), paratype,

854 2, MPLP 10348(G) P44(1); 3, MPLP 10348(C) Y52(1) paratype, 4, MPLP 10348(C)

855 X37(2); 5, MPLP 10348(G) Y33(0), holotype; 6, MPLP 10348(D) J37(0); 7, MPLP

856 10376 (E) B55(0), paratype. 8-12. Crackipollenites polygonalis gen. et sp. nov., 8, BAPal

857 6612(8) Y53(3), paratype; 9, BAPal 6612(8) F27(4); 10, BAPal 6612(3) K48(2); 11,

858 BAPal 6613(2) D37(2); 12, BAPal 6614(1) U48(0). Scale bar, 20 µm.

859 Figure 8. 1-8. Crackipollenites polygonalis gen. et sp. nov., 1, MPLP 5877(C) F49(0),

860 holotype; 2, MPLP 5877(D) U47(4), paratype; 3, MPLP 5877(F) M35(1), paratype; 4,

861 MPLP 5877(F) W36(2), paratype; 5, MPLP 10379(E) G35(4); 6, MPLP 5877(C) R39(1);

862 7, MPLP 11056(G) N43(0); 8, BAPal 6614(1) R56(3). Scale bar X 20 µm.

39

863 Figure 9. 1-10. Crackipollenites polygonalis gen. et sp. nov., 1, BAPal 6614(2) V50(4);

864 2, MPLP 10348(D) K48(0); 3, BAPal MEB 6612(TN) f025, paratype; 4, BAPal 6613(2)

865 Y56(2); 5, BAPal MEB 6612(TN) 045, paratype; 6, BAPal 6612(3) M37(1). 7-11.

866 Crackipollenites sp. A, 7, MPLP 10348(D) V52(0); 8, BAPal MEB 6612(TQ) f016; 9,

867 MPLP 11054(D) B42(3); 10, MPLP 10379(E) V36(0); 11, MPLP 10348(C) X33(3).

868 Scale bar, 20 µm.

869 Table 1. Composition and distribution (in %) of miospore groups and the main saccate

870 pollen genera recorded in the Quebrada de los Fósiles Formation, Puesto Viejo Group in

871 the sections integrating the type section, at the Quebrada de los Fósiles Creek.

872 Table 2. Composition and distribution (in %) of miospore groups and the main saccate

873 pollen genera recorded in the Quebrada de los Fósiles Formation, Puesto Viejo Group at

874 Río Seco de la Quebrada Creek section.

40

TABLE 1. Composition and distribution (in %) of miospore groups and the main saccate pollen genera recorded in the Quebrada de Los Fósiles Formation, Puesto Viejo Group in the sections integrating the type section, at the Quebrada de los Fósiles Creek.

Quebrada de los Fósiles Creek section

GzD section AMZ1 section AMZ2 section

Samples (prefixes MPLP/*BAPal) 9077 9077 9078 9079 9080 9081 9082 9085 5877 11064 10362 *6612 *6613 *6614 11068 10363 11071 10366 11072 10372 11073 10373 9076 9076 FUNGI 0.2 0 0 0 1.0 0 0 0.5 1.2 1.0 0 0 0.2 0.2 0.2 0 0 0 0 0 0 0 ALGAE 96.4 83.3 94.6 93.0 97.9 96.3 93.5 41.8 1.2 5.6 2.5 0.5 0 0.2 1.3 77.0 2.5 2.2 27.1 1.0 4.9 10.3 INCERTAE SEDIS 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0.2 0 0 0.2 0 0 0 MONOLETE SPORES 0 4.5 1.0 0.8 0 0 1.3 23.8 2.1 85.4 58.6 59.1 69.9 64.4 97.7 17.5 91.0 81.5 29.6 89.3 61.0 73.2 TRILETE SPORES 2.0 3.8 2.2 1.5 0.5 1.5 1.7 14.8 12.0 5.2 28.4 31.4 21.6 25.3 0.6 3.2 3.3 15.3 2.8 9.2 24.7 13.2 MONOSACCATE NON-TAENIATE PG 0 1.5 0 0 0 0 0.2 3.3 35.9 0.2 2.2 3.6 2.0 2.5 0 0.2 0.2 0 2.2 0 0.8 0 Accinctisporites 0 1.5 0 0 0 0 0 0.5 3.5 0.2 0.5 0.8 0.2 0 0 0 0.2 0 2.0 0 0.8 0 Cladaitina 0 0 0 0 0 0 0.2 2.8 32.4 0 1.5 2.8 1.8 2.5 0 0 0 0 0.2 0 0 0 Sulcosaccispora 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 MONOSACCATE TAENIATE PG 0 1.5 0 0 0 0 0.2 6.0 10.3 0 2.2 0.5 0.8 1.5 0 0.2 0.2 0.2 0.8 0 0 0 Mendozapollenites 0 0 0 0 0 0 0 6.0 10.1 0 0.8 0.5 0.8 1.5 0 0.2 0.2 0.2 0.8 0 0 0 Crustaesporites 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Striomonosaccites 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 BISACCATE NON-TAENIATE PG 1.0 4.7 1.8 1.2 0.2 0.7 0 6.9 28.6 1.7 4.3 3.5 5.1 5.0 0.2 1.9 1.4 0.4 33.3 0.5 5.2 1.4 BISACCATE TAENIATE PG 0.4 2.0 0.2 3.5 0.4 1.3 0.5 1.5 7.0 0.5 0.2 1.2 0.4 0.2 0 0 0.4 0.2 2.7 0 0.9 0.4 Protohaploxypinus 0.2 1.5 0 3.0 0.2 1.3 0.5 1.5 4.8 0 0.2 0.5 0 0 0 0 0.2 0 2.5 0 0.5 0.2 Angustisulcites 0 0 0 0 0.2 0 0 0 0.2 0 0 0.2 0.2 0.2 0 0 0.2 0 0 0 0 0 Striatoabieites 0 0.5 0 0 0 0 0 0 1.0 0.5 0 0 0.2 0 0 0 0 0 0.2 0 0.2 0 Striatopodocarpites 0.2 0 0.2 0.5 0 0 0 0 1.0 0 0 0.5 0 0 0 0 0 0.2 0 0 0.2 0.2 Hamiapollenites 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lunatisporites 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 INAPERTURATE PG 0 0 0 0 0 0 2.8 0.9 0.2 0.2 0.8 0 0 0.5 0 0 1.0 0.2 1.3 0 2.5 0 HILATE PG 0 0 0.2 0 0 0 0 0 1.3 0.2 1.0 0 0 0.2 0 0 0 0 0 0 0 1.5 Crackipollenites 0 0 0 0 0 0 0 0 1.3 0.2 1.0 0 0 0.2 0 0 0 0 0 0 0 1.5 SULCATE PG 0 0.2 0 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 POLYPLICATE PG 0 0 0 0 0 0.2 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0 0 TOTAL 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

TABLE 2. Composition and distribution (in %) of miospore groups and the main saccate pollen genera recorded in the Quebrada de Los Fósiles Formation, Puesto Viejo Group at Río Seco de la Quebrada Creek section.

Río Seco de La Quebrada Creek section

Samples (prefix MPLP) 10348 10374 11051 10375 11052 10376 11053 10377 10350 6543 6544 11054 10351 10379 11055 10352 11056 FUNGI 0.3 0.8 4.3 0 0 0 1.0 0.5 0.3 0 0.3 0.3 1.3 0.5 0.5 0.3 1.3 ALGAE 1.5 7.8 26.0 1.3 8.8 2.5 1.0 1.0 5.8 4.5 65.3 0.8 3.5 4.3 9.0 6.3 3.3 INCERTAE SEDIS 0 0 3.3 0 0.3 0 0.3 0.3 0 0 1.0 0 0 0 1.5 0 0.3 MONOLETE SPORES 0 0.8 18.0 82.0 11.8 43.0 74.0 88.5 35.3 0.3 3.5 0.5 0.5 8.3 1.3 28.8 1.0 TRILETE SPORES 12.8 40.0 42.5 14.0 44.3 46.5 21.5 8.8 33.5 95.0 25.8 63.0 11.5 15.5 83.5 47.0 19.6 MONOSACCATE NON-TAENIATE PG 4,3 9,3 1.0 0,2 6,7 1,0 0 0.5 2,5 0,0 0 2,5 4,8 4,0 0.5 1,3 5,3 Accinctisporites 2.5 2.3 0 0 1.2 0.5 0 0 1.8 0 0 2.3 2.5 1,5 0 0.5 2.0 Cladaitina 0.3 0 0.3 0 0 0 0 0 0 0 0 0.2 0 0.3 0.3 0 0.3 Sulcosaccispora 1.5 7.0 0.7 0.2 5.5 0.5 0 0.5 0.7 0 0 0 2.3 2.2 0.2 0.8 3.0 MONOSACCATE TAENIATE PG 2,2 1,7 0 0,3 0,3 1,0 0 0 3,3 0,3 0 4,0 2,2 1,3 0,0 1,0 1,0 Mendozapollenites 1.5 1.7 0 0.3 0.3 1.0 0 0 3.0 0.3 0 3.3 1.5 1.0 0 1.0 0.5 Crusteasporites 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 Striomonosaccites 0.7 0 0 0 0 0 0 0 0.3 0 0 0.5 0.7 0.3 0 0 0.5 BISACCATE NON-TAENIATE PG 66.0 34.0 0.5 0.5 22.3 3.5 1.2 0.3 15.5 0 0 15.5 39.8 46.3 1.3 14.5 49.9 BISACCATE TAENIATE PG 8.8 4.0 0 0.3 0.8 1.5 0.6 0 2.0 0 0 10.6 10.5 5.0 0 0 7.8 Protohaploxypinus 3.7 3.5 0 0.3 0.8 1.0 0.3 0 1.1 0 0 3.5 8.5 4.0 0 0 5.5 Striatopodocarpites 2.5 0 0 0 0 0.2 0 0 0.3 0 0 2.8 1.3 0 0 0 0.7 Angustisulcites 0.3 0.5 0 0 0 0 0.3 0 0 0 0 3.3 0 0.5 0 0 0.3 Striatoabieites 2.0 0 0 0 0 0.3 0 0 0.3 0 0 1.0 0.7 0.5 0 0 1.0 Hamiapollenites 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 Lunatisporites 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 INAPERTURATE PG 2.5 0.5 4.5 0.8 4.3 0 0.3 0.3 0.5 0 4.3 2.5 23.8 10.8 2.0 1.0 9.4 HILATE PG 0.3 0.3 0 0 0 0 0.2 0 0.5 0 0 0.3 0 0.5 0.3 0 0.3 Crackipollenites 0.3 0.3 0 0 0 0 0.2 0 0.5 0 0 0.3 0 0.5 0.3 0 0.3 SULCATE PG 1.5 0.8 0 0.8 0.8 0.3 0 0 1.0 0 0 0.3 2.0 3.8 0.3 0 1.0 POLYPLICATE PG 0 0.3 0 0 0 0.8 0 0 0 0 0 0 0.3 0 0 0 0 TOTAL 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100