Williamsonia Stewardiana, (Open Canopy Growth Form) E.G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Botany (Effective from 2018 Admissions)
C. M. S. COLLEGE KOTTAYAM KERALA SYLLABUS FOR UNDERGRADUATE PROGRAMME IN BOTANY (EFFECTIVE FROM 2018 ADMISSIONS) RECOMMENDED BY: BOARD OF STUDIES, BOTANY C. M. S. COLLEGE, KOTTAYAM B Sc BotanySyllabus 2018 Admissiononwards B. Sc. BOTANY PROGRAMME PROGRAMME DESIGN The UG programme in Botany must include (a) Common Courses*, (b) Core Courses (c) Complementary Courses (d) Open Course (e) Choice based Course and (f) Projectwork. No course shall carry more than 5 credits. The student shall select one Open course in Semester V offered by different departments in the same institution. The number of courses for the programme should contain 12 compulsory core courses,1 open course,1 elective course from the frontier area of the core courses, 6 core practical courses, 1project work, 8 complementary courses and 2 complementary practical courses. There should be 10 common courses,or otherwise specified, which includes the first and second language of study. PROGRAMME STRUCTURE: SUMMARY OF COURSES AND CREDITS No.of Total Sl. No. Coursetype courses credits 1 Common course I-English 6 22 2 Common course II– Additionallanguage 4 16 3 Core + Practical 12 + 6 46 4 ComplementaryI+ Practical 4 + 2 14 5 ComplementaryII+ Practical 4 + 2 14 6 Opencourse 1 3 7 Programme elective 1 3 8 Project work 1 2 Total 43 120 Totalcredits 120 Programme duration 6 Semesters Minimum attendance required 75% *Course: a segment of subject matter to be covered in a semester. Each course is designed variously under lectures /tutorials /laboratory or fieldwork /seminar /project /practical training /assignments /evalution etc., to meet effective teaching and learning needs. -
Life and Time of Indian Williamsonia
Life and time of Indian Williamsonia )ayasri Banerji Banerji, J 1992. Life and time of Indian Williamsonia. Palaeobotanist 40 : 245-259. The Williamsonia plant, belonging to the order Bennettitales, consists of stem-Bucklandia Presl, leaf Ptilophyllum Morris, male flower- Weltrichia Braun and female flower- Williamsonia Carruthers. This plant was perhaps a small, much branched woody tree of xerophytic environment. It co-existed alongwith extremely variable and rich flora including highly diversified plant groups from algae to gymnosperms. In India, it appeared during the marine Jurassic, proliferated and widely distributed in the Lower Cretaceous and disappeared from the vegetational scenario of Upper Cretaceous Period with the advent of angiosperms. Key-words-Bennettitales, Williamsonia, Jurassic-Cretaceous (India). jayasri Baner}i, Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226007, India. ri~T ~ 'lfmftq- fili'<1QQ«lf.:lQi "" om~~ "l?li'O'$i'OI<1fl \f>'f it ~ filf<1QQ«lf.:lQi qtfr if ~ ~ 3!<'flT-3!<'flT 'lTIif it ~ "lTif t W'I'T CAT-~ m, ~ ~ ~it ~fu;m;;mrr~1 ~qtm~~ <ffir ll~<'ilf4>~<'1'i"li'tfGr, "''!'''l ~~?l~Ti:t>Qi <ilf.1 'I"lT filf<1QQ«lf.:lQi ~ ~ ~ f;;ru-if.~ ~ 61'1'~dOl'h\'i if m <'IT<'1T ~ Wc:r, 3!fuq,iffiliOlT3if it ~ ¥i "IT' ~ it il'1f4ff1"1ld, it if qtfr ~ 'it, q;r tt ~ ~tl W'I'T~~'-I'<"1if~~3lT, 3Tahmm'-l'<"1if~~~-~'d"f~<f"lT'3'1f'<mm~ ~ ~ ~ ~ if qtm if if t1T"f -flT"f lIT lfllT' LIFE OF WILLIAMSONIA PLANT B. dichotoma Sharma. In B. indica Seward, the secondary wood is more compact than recent cycads In the Upper Mesozoic Era, a new group of and cycadeoids. -
JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups. -
Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R
Review of Palaeobotany and Palynology, 19 (1975): 221—232 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands PLEUROMEIA FROM THE LOWER TRIASSIC OF THE FAR EAST OF THE U.S.S.R. V. A. KRASSILOV and Yu. D. ZAKHAROV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 26, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A. and Zakharov, Yu. D., 1975. Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R. Rev. Palaeobot. Palynol., 19: 221-232. Pleuromeia obrutschewii Elias from Russian Island (Russkiy Ostrov, near Vladivostok) is hardly distinguishable from the European P. sternbergii (Muenster) Corda. The sporangia are adaxial, filling spoon-like depressions of the megasporophylls which have sterile tips. P. olenekensis sp. nov. from the Olenek River (northeastern Siberia) has larger sporangia and much larger megaspores with three-layered walls. The outer layer (ectexosporium) is reticulate. It is assumed that in other species this layer is lacking due to imperfect preservation. Mature megasporophylls, when shed, have a buoy-like shape and are often deposited together with cephalopod shells. This suggests a special mecha- nism of propagation by means of megasporophylls dispersed by water currents. The cosmopolitan distribution of Pleuromeia points to weakened climatic zonation in the Early Triassic. INTRODUCTION Pleuromeia is famous for its spectacular habitus, its alleged phylogenic role as a link between the arborescent lycopods and the reduced Isoetes, and its geological history which is unusually short for a plant genus (Early- Middle Triassic). -
Major Evolutionary Trends in the Angiosperm Fossil Record
Colloquium Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record David Dilcher* Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800 Angiosperm paleobotany has widened its horizons, incorporated Nature and Origin of Primitive Angiosperms,’’ there is no new techniques, developed new databases, and accepted new substantive use of the fossil record to address this question. questions that can now focus on the evolution of the group. The The theories and hypothesis presented by Stebbins are based fossil record of early flowering plants is now playing an active role on the comparative morphology and anatomy of living angio- in addressing questions of angiosperm phylogeny, angiosperm sperms considered primitive at that time rather than the fossil origins, and angiosperm radiations. Three basic nodes of angio- record of early angiosperms. sperm radiations are identified: (i) the closed carpel and showy However, at the same time, the early 1970s, special attention radially symmetrical flower, (ii) the bilateral flower, and (iii) fleshy was being focused on the fine features of the morphology of fruits and nutritious nuts and seeds. These are all coevolutionary angiosperm leaf venation and the cuticular anatomy of living and events and spread out through time during angiosperm evolution. fossil angiosperms (2, 6–8). Most of the early angiosperms from The proposal is made that the genetics of the angiosperms pres- the Cretaceous and early Tertiary were being found to be extinct sured the evolution of the group toward reproductive systems that or only distantly related to living genera (Fig. 3). Grades and favored outcrossing. This resulted in the strongest selection in the clades of relationships were being founded on the basis of careful angiosperms being directed toward the flower, fruits, and seeds. -
Altered Fluvial Patterns in North China Indicate Rapid Climate Change
www.nature.com/scientificreports OPEN Altered fuvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction Zhicai Zhu1, Yongqing Liu1*, Hongwei Kuang 1*, Michael J. Benton 2, Andrew J. Newell3, Huan Xu4, Wei An5, Shu’an Ji1, Shichao Xu6, Nan Peng1 & Qingguo Zhai1 The causes of the severest crisis in the history of life around the Permian-Triassic boundary (PTB) remain controversial. Here we report that the latest Permian alluvial plains in Shanxi, North China, went through a rapid transition from meandering rivers to braided rivers and aeolian systems. Soil carbonate carbon isotope (δ13C), oxygen isotope (δ18O), and geochemical signatures of weathering intensity reveal a consistent pattern of deteriorating environments (cool, arid, and anoxic conditions) and climate fuctuations across the PTB. The synchronous ecological collapse is confrmed by a dramatic reduction or disappearance of dominant plants, tetrapods and invertebrates and a bloom of microbially- induced sedimentary structures. A similar rapid switch in fuvial style is seen worldwide (e.g. Karoo Basin, Russia, Australia) in terrestrial boundary sequences, all of which may be considered against a background of global marine regression. The synchronous global expansion of alluvial fans and high- energy braided streams is a response to abrupt climate change associated with aridity, hypoxia, acid rain, and mass wasting. Where neighbouring uplands were not uplifting or basins subsiding, alluvial fans are absent, but in these areas the climate change is evidenced by the disruption of pedogenesis. Te severest ecological crisis in Earth history, the Permian-Triassic mass extinction (PTME), occurred 252 Ma and killed over 90% of marine species and about 70% of continental vertebrate families1,2. -
Curriculum Vitae
CURRICULUM VITAE ORCID ID: 0000-0003-0186-6546 Gar W. Rothwell Edwin and Ruth Kennedy Distinguished Professor Emeritus Department of Environmental and Plant Biology Porter Hall 401E T: 740 593 1129 Ohio University F: 740 593 1130 Athens, OH 45701 E: [email protected] also Courtesy Professor Department of Botany and PlantPathology Oregon State University T: 541 737- 5252 Corvallis, OR 97331 E: [email protected] Education Ph.D.,1973 University of Alberta (Botany) M.S., 1969 University of Illinois, Chicago (Biology) B.A., 1966 Central Washington University (Biology) Academic Awards and Honors 2018 International Organisation of Palaeobotany lifetime Honorary Membership 2014 Fellow of the Paleontological Society 2009 Distinguished Fellow of the Botanical Society of America 2004 Ohio University Distinguished Professor 2002 Michael A. Cichan Award, Botanical Society of America 1999-2004 Ohio University Presidential Research Scholar in Biomedical and Life Sciences 1993 Edgar T. Wherry Award, Botanical Society of America 1991-1992 Outstanding Graduate Faculty Award, Ohio University 1982-1983 Chairman, Paleobotanical Section, Botanical Society of America 1972-1973 University of Alberta Dissertation Fellow 1971 Paleobotanical (Isabel Cookson) Award, Botanical Society of America Positions Held 2011-present Courtesy Professor of Botany and Plant Pathology, Oregon State University 2008-2009 Visiting Senior Researcher, University of Alberta 2004-present Edwin and Ruth Kennedy Distinguished Professor of Environmental and Plant Biology, Ohio -
The Siberian Traps and the End-Permian Mass Extinction: a Critical Review (Andy Saunders & Marc Reichow, P
In this issue: The Siberian Traps and the End-Permian mass extinction: A critical review (Andy Saunders & Marc Reichow, p. 20-37) Chinese Science Bulletin © 2009 SCIENCE IN CHINA PRESS Springer NEWS & VIEWS Editor’s note Andy Saunders is currently Professor of Geochemistry in the Department of Geology at the University of Leicester, UK. He received a BSc in Geology (1972) from the University of Sheffield, an MSc in Mineral Chemistry (1973) and PhD in Geology (1976) from the University of Birmingham. He worked as a post-doctoral researcher at Birmingham before taking up a lectureship at Bedford College, University of London, in 1979, and moved to Leicester in 1984. He was made Reader in 1988, and Professor in 1997. He held a visiting Fellowship at the University of Wellington, New Zealand, in 1986. Andy is a renowned igneous petrologist and geochemist. He has published over 130 original research papers in leading international journals such as Nature, Science, Geology, Earth and Planetary Science Letters, Journal of Geophysical Research, Journal of Petrology, Contributions to Petrology and Mineralogy, Geochimica et Cosmochimica Acta, Chemical Geology etc. For most of his research career, Andy has investigated the formation of igneous rocks, particularly basalts. Initially, the topic of interest was active and ‘fossil’ back-arc basins in South America and the Scotia Arc, and then island arc and continental arc magmatism. After a brief sojourn into ocean islands, he began working on large igneous provinces, addressing both their formation and environmental impact. This work has taken him to Madagascar, the Solomon Islands, Russia and China, and has involved ocean drilling in the North Atlantic Ocean. -
Pbv61n2 387.Pdf
The Palaeobotanist 61(2012): 387-405 0031-0174/2012 $2.00 Sporophyll morphology and reconstruction of the heterosporous lycopod Tomiostrobus radiatus Neuburg emend. from the Lower Triassic of Siberia (Russia) SERGE V. NAUGOLNYKH Laboratory of Paleofloristics, Geological Institute, Russian Academy of Sciences, Pyzhevsky per 7, Moscow, 119017, Russia. Corresponding author: [email protected] (Received 5 July, 2011; revised version accepted 18 July, 2012) ABSTRACT Naugolnykh SV 2012. Sporophyll morphology and reconstruction of the heterosporous lycopod Tomiostrobus radiatus Neuburg emend. from the Lower Triassic of Siberia (Russia). The Palaeobotanist 61(2): 387-405. The paper deals with the taxon Tomiostrobus radiatus Neuburg emend., a heterosporous isoetopsid lycopod from the Babiy Kamen Locality of Lower Triassic of Siberia (Russia). Morphological diversity of the T. radiatus sporophylls is described in detail. Interpretation of structure and function of the sporophylls, and analysis of their morphological peculiarities are given. Arguments for attributing the lycopod T. radiatus to the Isoetaceae family have been provided. The reconstruction of T. radiatus is proposed. Origin and evolution of the families Isoetaceae and Pleuromeiaceae are also discussed. Key-words—Triassic, Siberia, lycopods, Tomiostrobus, Isoetaceae, Isoetes. chtk.kqi.kZ vkd`frfoKku rFkk lkbcsfj;k ¼#l½ ds fuEu r`rh;d ls izkIr fo"kechtk.kq ykbdksikWM VkWfevksLVªkscl jsfM,Vl U;wcxZ besaM uoe ds o`n~f/k iz#i dh iqulZajpuk ltZ oh ukSxkWYuh[k lkjka'k ;g 'kks/k&i= lkbcsfj;k -
Macrofossil Evidence for Pleuromeialean Lycophytes from the Triassic of Antarc- Tica
KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Macrofossil Evidence For Pleuromeialean Lycophytes From the Triassic of Antarctica by Benjamin Bomfleur, Michael Krings, Edith L. Taylor, and Thomas N. Taylor 2010 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Bomfleur, B., Krings, M., Taylor, E., and Taylor, T. 2010. Macrofossil Evidence for Pleuromeialean Lycophytes From the Triassic of Antarc- tica. Acta Palaeontologica Polonica 56(1): 195-203. Published version: http://dx.doi.org/10.4202/app.2010.0022 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Macrofossil evidence for pleuromeialean lycophytes from the Triassic of Antarctica BENJAMIN BOMFLEUR, MICHAEL KRINGS, EDITH L. TAYLOR, and THOMAS N. TAYLOR Bomfleur, B., Krings, M., Taylor, E.L., and Taylor, T.N. 2011. Macrofossil evidence for pleuromeialean lycophytes from the Triassic of Antarctica. Acta Palaeontologica Polonica 56 (1): 195–203. Triassic microfloras from Antarctica contain abundant lycophyte spores. However, macrofossils of this group of plants are missing, and thus the precise affinities of the spore producers remain unknown. Macrofossil remains of a pleuro− meialean lycophyte, including an incomplete strobilus, isolated sporophylls and sporangia, as well as abundant mega− spores, occur on a single rock sample from the central Transantarctic Mountains. Also occurring on the same surface is Mesenteriophyllum serratum, a strap−shaped leaf morphotype of uncertain affinity previously known only from the Kyrgyz Republic and the Taimyr Peninsula. -
Terra Nostra 2018, 1; Mte13
IMPRINT TERRA NOSTRA – Schriften der GeoUnion Alfred-Wegener-Stiftung Publisher Verlag GeoUnion Alfred-Wegener-Stiftung c/o Universität Potsdam, Institut für Erd- und Umweltwissenschaften Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany Tel.: +49 (0)331-977-5789, Fax: +49 (0)331-977-5700 E-Mail: [email protected] Editorial office Dr. Christof Ellger Schriftleitung GeoUnion Alfred-Wegener-Stiftung c/o Universität Potsdam, Institut für Erd- und Umweltwissenschaften Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany Tel.: +49 (0)331-977-5789, Fax: +49 (0)331-977-5700 E-Mail: [email protected] Vol. 2018/1 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota (MTE13) Heft 2018/1 Abstracts Editors Thomas Martin, Rico Schellhorn & Julia A. Schultz Herausgeber Steinmann-Institut für Geologie, Mineralogie und Paläontologie Rheinische Friedrich-Wilhelms-Universität Bonn Nussallee 8, 53115 Bonn, Germany Editorial staff Rico Schellhorn & Julia A. Schultz Redaktion Steinmann-Institut für Geologie, Mineralogie und Paläontologie Rheinische Friedrich-Wilhelms-Universität Bonn Nussallee 8, 53115 Bonn, Germany Printed by www.viaprinto.de Druck Copyright and responsibility for the scientific content of the contributions lie with the authors. Copyright und Verantwortung für den wissenschaftlichen Inhalt der Beiträge liegen bei den Autoren. ISSN 0946-8978 GeoUnion Alfred-Wegener-Stiftung – Potsdam, Juni 2018 MTE13 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota Rheinische Friedrich-Wilhelms-Universität Bonn, -
Lycophytes-1St-Semester
Structural Botany Class Lycopsida Archana Dutta Study material for M.Sc Botany First semester Assistant Professor(Guest Faculty) Dept. of Botany, MLT College, Saharsa [email protected] Mob No. - 9065558829 5th May, 2020 _______________________________________________________________________ ___ Members of the Lycopsida have true stems, leaves and (usually) roots. Their sporangia are borne on the adaxial surface of (or in the axils of) sporophylls, and they may or may not resemble the vegetative leaves. In the Alycopods@branch gaps are present in the stele, but no leaf gaps occur in the xylem. Therefore, when the stele has parenchyma at the center, it is a medullated protostele. The leaves (with only one or two exceptions) have a single vascular strand and appear to have arisen phylogenetically from superficial emergences or enations. The extant orders of Lycopsida are: Lycopodiales, Selaginellales, and Isoetales. Fossil orders sometimes include the Protolepidodendrales, Lepidodendrales, and Pleuromeiales. However, in this course the Protolepidodendrales are included in the Lycopodiales, and both the Lepidodendrales and Pleuromeiales are included in the Isoetales. A comprehensive evaluation of lycophytes was published in the Annals of the Missouri Botanical Garden in 1992 (Vol. 79: 447-736), and the included papers still reflect current knowledge of the group. Order Lycopodiales Lycopodiales are homosporous, herbaceous, eligulate, isophyllous, and they have true roots. Traditionally, approximately 400 species of two extant genera have been recognized and assigned to the family Lycopodiaceae. More recently, however, (Lycopodium ) has been subdivided such that seven or more genera and three families are now recognized. Classifications are as follows (from Wagner and Beitel, 1992). For the purposes of (examinations in) this course we will recognize only three genera (Lycopodium, Huperzia and Diphasiastrum).