The Cycadofilicales, They Formed the Dominant Fossil Plants During Palaeozoic Age

Total Page:16

File Type:pdf, Size:1020Kb

The Cycadofilicales, They Formed the Dominant Fossil Plants During Palaeozoic Age UNIT-2 Cycadeoideales Introduction to Cycadeoideales: The Cycadofilicales, they formed the dominant fossil plants during Palaeozoic age. The Cycadofilicales have of course definite affinities with the cycads on one side and ferns on the other, but they had no cones either in the male or in the female part of the plants, so some workers think that the Cycadofilicales form a separate group quite distinct from gymnosperms. In the Mesozoic times, however, we came across fossils plants which had cones and were definitely related to gymnosperms. So in Mesozoic the Cycadofilicales were replaced by true gymnosperms which formed strobili, and the seeds had a naked dicotyledonous embryo in them. The ovule or the seed was never enclosed in closed carpel. The Mesozoic gymnosperms can be placed into two separate groups: 1. Cycadeoidale (Bennettitales) and 2. Cycadales. Pant (1957) has placed the cycadeiods in a distinct class, the Cycadeoideopsida of the division Cycadophyta. The Cycadeoideales (Bennettitales) first appeared in the Permian they reached their highest range during the Jurassic period, after which they disappeared altogether. The second group Cycadales had a world-wide distribution during the Mesozoic period Majority of them had altogether disappeared; only a few types have been left which are confined to special parts of the East. The present day cycads are only the remnants of very large dyeing out group, i.e., they are sometimes described as living fossils, because they are on their way to extinction. The Cycadeoideales (Bennettitales) were very much like the cycads in their general appearance, and as the Mesozoic had these two prominent groups of gymnosperms, so that period sometimes described as age of cycads. These Cycadeoideales are closely related to the Cycadofilicales on one side and to cycads on the other but they have their own characteristic features which distinguish them from all other gymnosperms except the Gnetales. The important feature which separates the Cycadeoideales from other gymnosperms is the presence of bisporangiate strobili. BSC I YEAR BOTANY-II Page 1 UNIT-2 The plants of this group were diversified in their habit. Some types had short columnar stems like most of the living cycads. The short columnar stem was usually un-branched and at the apex of the plant there was a terminal crown of leaves which in most cases pinnate. Some other forms had branched stems with multiple crown. In present day cycads we know that young leaves and megasporophylls are covered up by unicellular hairy outgrowths known as ramenta. In Cycadeoideales (Bennettitales) these ramenta were not unicellular; they were scale like, flattened and were several cells in breadth. Like cycads the plants had well organized strobili or cones, but in cycads they are monosporangiate whereas in Cycadeoideales they were usually bisporangiate and they were either terminal or axiarlly in position. Majority of Cycadeoideales (Bennettitales) seem to have flowered only once in their life and after flowering the plant died out as we find in some of present day angiosperms. Classification of Cycadeoideales: According to Sporne (1965), the order Cycadeoideales (Bennettitales) has been divided into three families. They are: 1. Cycadeoideaceae. 2.Williamsoniaceae, and 3. Wielandiellaceae. Here Cycadeoidea (Bennettites) of Cycadeoideaceae and Williamsonia of Williamsoinaceae have been discussed in detail. Systematic Position of Cycadeoideales: Gymnosperms Class. Cycadopsida Order. Cycadeoideales Family. Cycadeoideaceae BSC I YEAR BOTANY-II Page 2 UNIT-2 Genus. Cycadeoidea Bennettites, by American workers have been described as Cycadeoidea. Features of Cycadeoideales: (A) Morphological features: In Cycadeoidea the stem was un-branched with a single crown of pinnate leaves at the tops, but some species had branched stem with a multiple crown. In some the stem was tuberous. In all cases the stem was covered up by persistent leaf bases as we find in Cycas. BSC I YEAR BOTANY-II Page 3 UNIT-2 BSC I YEAR BOTANY-II Page 4 UNIT-2 Bennettitales: Meaning of Bennettitales: This group of fossil plants flourished well during the Triassic to Lower Cretaceous periods of Mesozoic era. As the Carboniferous period is called the “Ages of Ferns “, the Mesozoic era is called the „Ages of Cycads‟. It is due to the fact that Cycadeoideales co-existed with Cycadales during Mesozoic era from Jurassic up to Cretaceous period, and hence this period is called Age of Cycads. Bennettitales are found either in the form of compressions or petrifactions. Due to Cycad-like form of their fronds and the presence of short stems covered with an armour of presistent leaf bases Bennettitales (Cycadeoideales) have been treated under Cycadophyta by some workers. However, the two groups are quite distinct from each other and maintain their independent identity. 2. Origin of Bennettitales: Palaeobotanists believe that Bennettitales originated from Pteridospermales. But presence of stalked ovules in Bennettitalean members is a strong evidence against such a theory. Some workers have, however, shown resemblance between the fronds of Pteridospermales and the stalked ovules and inter-seminal scales of Bennettitales. But it is hard to imagine that stalked ovules and inter-seminal scales are homologous with the fronds. Discovery of a fossil plant, Westersheimia, from the Triassic of Austria, is again a step towards the possible Pteridospermean ancestry of Bennettitales. This BSC I YEAR BOTANY-II Page 5 UNIT-2 genus occurs along with Bennetticarpus, the seed-bearing organs of Bennettitales. In Bennetticarpus wettsteinii and Westersheimia the ovules and inter-seminal scales were present on the ultimate segments of a pinnate structure. But it is still not clear how the entire group of Bennettitales evolved from Pteridospermales. Some peculiar characteristics present in Bennettitales and not in any other group of gymnosperms, include: (i) Bisporangiate strobili, (ii) Synangium-bearing fused microsporophyll‟s, (iii) Close occurrence of ovules and inter-seminal scales, and (iv) Production of stalked ovules. Distinguishing Features of Bennettitales: 1. These extinct Mesozoic plants were present were present on the earth from Triassic to Cretaceous. 2. Bennettitales were so abundant during Mesozoic era that this period is known as „Age of Cycads‟. 3. The members of this group are found either as compressions or petrifactions. 4. The stems were stout or slender and had a wide pith. 5. The stem grew very slowly and had manoxylic wood. 6. Resembling living Cycads, the Bennettitalean leaves were mostly pinnately compound, and only occasionally simple. 7. Venation was open, and only rarely closed. 8. Syndetocheilic type of stomata were present. 9. The wall of the epidermal cells was sinuous. 10. The reproductive organs were organised in the form of hermaphrodite (e.g. Cycadeoidea) or unisexual (e.g. Wielandiella) “flowers”, which in turn were protected by many bracts. BSC I YEAR BOTANY-II Page 6 UNIT-2 11. The „flowers‟ developed in the axil of leaves. 12. Male reproductive organs were borne in a whorl. They were free or fused, entire or pinnately compound. 13. Microsporangia were present abaxially in the form of synangia. 14. Microsporophyll‟s sometimes surrounded megasporophylls forming hermaphrodite “flowers”. 15. Ovules were numerous and stalked and borne on a conical, cylindrical or dome-shaped receptacle. 16. Many inter-seminal bracts were present on the ovule containing receptacle. 17. The scales or bracts were united at end to form shield through which micropyle protrudes. 18. Seeds were dicotyledonous. Gnetales Taxonomic Arrangements of Gnetales: Foster and Gifford (1959) described Gnetales as “a small group of gymnosperm-like plants” while Maheshwari and Vasil (1961) Mentioned that ” the order Gnetales, formerly included three genera, Ephedra, Welwitschia and Gnetum which were considered to be highest evolved among the gymnosperms and believed to show an approach to the angiosperms”. But mainly due to the presence of naked ovules and also because of the absence of true sty le and stigma in Ephedra, Welwitschia and Gnetum, these members can only be treated under gymnosperms and not under angiosperms. General Characteristics of Gnetales: Gnetales, believed by some botanists to be the ancestors of flowering plants or angiosperms, are the highly evolved members of gymnosperms and show following characteristics: 1. These are woody plants, of which some species are trees (Gnetum gnemon), many are lianes or shrubs and a few. are stumpy turnip-like (e.g. Welwitschia mirabilis). 2. Leaves are simple elliptical or strap-shaped or sometimes reduced to minute scales. They are generally opposite or whorled. BSC I YEAR BOTANY-II Page 7 UNIT-2 3. Vessels are present in the secondary wood. 4. „Flowers‟ are unisexual, usually dioecious and only rarely monoecious as in some species of Gnetum. 5. „Flowers‟ are arranged in compound strobili or „inflorescences‟. 6. The male flowers are surrounded by a perianth. Each male flower contains an antherophore with one to eight synangia. 7. A single erect orthotropous ovule is present in each female flower. 8. Nucellus of the ovule remains surrounded by two or three envelopes. The micropyle of each ovule remains projected in the form of a long bristle- like tube. 10. At the time of fertilization the pollen tube contains two male nuclei. 11. A unicellular primary suspensor is present in the embryo. 12. Two cotyledons are present in the embryo. Ginkgoales Meaning of Ginkgoales:
Recommended publications
  • Botany (Effective from 2018 Admissions)
    C. M. S. COLLEGE KOTTAYAM KERALA SYLLABUS FOR UNDERGRADUATE PROGRAMME IN BOTANY (EFFECTIVE FROM 2018 ADMISSIONS) RECOMMENDED BY: BOARD OF STUDIES, BOTANY C. M. S. COLLEGE, KOTTAYAM B Sc BotanySyllabus 2018 Admissiononwards B. Sc. BOTANY PROGRAMME PROGRAMME DESIGN The UG programme in Botany must include (a) Common Courses*, (b) Core Courses (c) Complementary Courses (d) Open Course (e) Choice based Course and (f) Projectwork. No course shall carry more than 5 credits. The student shall select one Open course in Semester V offered by different departments in the same institution. The number of courses for the programme should contain 12 compulsory core courses,1 open course,1 elective course from the frontier area of the core courses, 6 core practical courses, 1project work, 8 complementary courses and 2 complementary practical courses. There should be 10 common courses,or otherwise specified, which includes the first and second language of study. PROGRAMME STRUCTURE: SUMMARY OF COURSES AND CREDITS No.of Total Sl. No. Coursetype courses credits 1 Common course I-English 6 22 2 Common course II– Additionallanguage 4 16 3 Core + Practical 12 + 6 46 4 ComplementaryI+ Practical 4 + 2 14 5 ComplementaryII+ Practical 4 + 2 14 6 Opencourse 1 3 7 Programme elective 1 3 8 Project work 1 2 Total 43 120 Totalcredits 120 Programme duration 6 Semesters Minimum attendance required 75% *Course: a segment of subject matter to be covered in a semester. Each course is designed variously under lectures /tutorials /laboratory or fieldwork /seminar /project /practical training /assignments /evalution etc., to meet effective teaching and learning needs.
    [Show full text]
  • The Lower Cretaceous Flora of the Gates Formation from Western Canada
    The Lower Cretaceous Flora of the Gates Formation from Western Canada A Shesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Geological Sciences Univ. of Saska., Saskatoon?SI(, Canada S7N 3E2 b~ Zhihui Wan @ Copyright Zhihui Mian, 1996. Al1 rights reserved. National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KlA ON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Libraxy of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/nlm, de reproduction sur papier ou sur foxmat électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. College of Graduate Studies and Research SUMMARY OF DISSERTATION Submitted in partial fulfillment of the requirernents for the DEGREE OF DOCTOR OF PHILOSOPHY ZHIRUI WAN Depart ment of Geological Sciences University of Saskatchewan Examining Commit tee: Dr.
    [Show full text]
  • Seed Plant Phylogeny: Demise of the Anthophyte Hypothesis? Michael J
    bb10c06.qxd 02/29/2000 04:18 Page R106 R106 Dispatch Seed plant phylogeny: Demise of the anthophyte hypothesis? Michael J. Donoghue* and James A. Doyle† Recent molecular phylogenetic studies indicate, The first suggestions that Gnetales are related to surprisingly, that Gnetales are related to conifers, or angiosperms were based on several obvious morphological even derived from them, and that no other extant seed similarities — vessels in the wood, net-veined leaves in plants are closely related to angiosperms. Are these Gnetum, and reproductive organs made up of simple, results believable? Is this a clash between molecules unisexual, flower-like structures, which some considered and morphology? evolutionary precursors of the flowers of wind-pollinated Amentiferae, but others viewed as being reduced from Addresses: *Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138, USA. †Section of Evolution and more complex flowers in the common ancestor of Ecology, University of California, Davis, California 95616, USA. angiosperms, Gnetales and Mesozoic Bennettitales [1]. E-mail: [email protected] These ideas went into eclipse with evidence that simple [email protected] flowers really are a derived, rather than primitive, feature Current Biology 2000, 10:R106–R109 of the Amentiferae, and that vessels arose independently in angiosperms and Gnetales. Vessels in angiosperms 0960-9822/00/$ – see front matter seem derived from tracheids with scalariform pits, whereas © 2000 Elsevier Science Ltd. All rights reserved. in Gnetales they resemble tracheids with circular bor- dered pits, as in conifers. Gnetales are also like conifers in These are exciting times for those interested in plant lacking scalariform pitting in the primary xylem, and in evolution.
    [Show full text]
  • Life and Time of Indian Williamsonia
    Life and time of Indian Williamsonia )ayasri Banerji Banerji, J 1992. Life and time of Indian Williamsonia. Palaeobotanist 40 : 245-259. The Williamsonia plant, belonging to the order Bennettitales, consists of stem-Bucklandia Presl, leaf­ Ptilophyllum Morris, male flower- Weltrichia Braun and female flower- Williamsonia Carruthers. This plant was perhaps a small, much branched woody tree of xerophytic environment. It co-existed alongwith extremely variable and rich flora including highly diversified plant groups from algae to gymnosperms. In India, it appeared during the marine Jurassic, proliferated and widely distributed in the Lower Cretaceous and disappeared from the vegetational scenario of Upper Cretaceous Period with the advent of angiosperms. Key-words-Bennettitales, Williamsonia, Jurassic-Cretaceous (India). jayasri Baner}i, Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226007, India. ri~T ~ 'lfmftq- fili'<1QQ«lf.:lQi "" om~~ "l?li'O'$i'OI<1fl \f>'f it ~ filf<1QQ«lf.:lQi qtfr if ~ ~ 3!<'flT-3!<'flT 'lTIif it ~ "lTif t W'I'T CAT-~ m, ~ ~ ~it ~fu;m;;mrr~1 ~qtm~~ <ffir ll~<'ilf4>~<'1'i"li'tfGr, "''!'''l ~~?l~Ti:t>Qi <ilf.1 'I"lT filf<1QQ«lf.:lQi ~ ~ ~ f;;ru-if.~ ~ 61'1'~dOl'h\'i if m <'IT<'1T ~ Wc:r, 3!fuq,iffiliOlT3if it ~ ¥i "IT' ~ it il'1f4ff1"1ld, it if qtfr ~ 'it, q;r tt ~ ~tl W'I'T~~'-I'<"1if~~3lT, 3Tahmm'-l'<"1if~~~-~'d"f~<f"lT'3'1f'<mm~ ~ ~ ~ ~ if qtm if if t1T"f -flT"f lIT lfllT' LIFE OF WILLIAMSONIA PLANT B. dichotoma Sharma. In B. indica Seward, the secondary wood is more compact than recent cycads In the Upper Mesozoic Era, a new group of and cycadeoids.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • Major Evolutionary Trends in the Angiosperm Fossil Record
    Colloquium Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record David Dilcher* Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800 Angiosperm paleobotany has widened its horizons, incorporated Nature and Origin of Primitive Angiosperms,’’ there is no new techniques, developed new databases, and accepted new substantive use of the fossil record to address this question. questions that can now focus on the evolution of the group. The The theories and hypothesis presented by Stebbins are based fossil record of early flowering plants is now playing an active role on the comparative morphology and anatomy of living angio- in addressing questions of angiosperm phylogeny, angiosperm sperms considered primitive at that time rather than the fossil origins, and angiosperm radiations. Three basic nodes of angio- record of early angiosperms. sperm radiations are identified: (i) the closed carpel and showy However, at the same time, the early 1970s, special attention radially symmetrical flower, (ii) the bilateral flower, and (iii) fleshy was being focused on the fine features of the morphology of fruits and nutritious nuts and seeds. These are all coevolutionary angiosperm leaf venation and the cuticular anatomy of living and events and spread out through time during angiosperm evolution. fossil angiosperms (2, 6–8). Most of the early angiosperms from The proposal is made that the genetics of the angiosperms pres- the Cretaceous and early Tertiary were being found to be extinct sured the evolution of the group toward reproductive systems that or only distantly related to living genera (Fig. 3). Grades and favored outcrossing. This resulted in the strongest selection in the clades of relationships were being founded on the basis of careful angiosperms being directed toward the flower, fruits, and seeds.
    [Show full text]
  • Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation
    i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.
    [Show full text]
  • Ancient Noeggerathialean Reveals the Seed Plant Sister Group Diversified Alongside the Primary Seed Plant Radiation
    Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation Jun Wanga,b,c,1, Jason Hiltond,e, Hermann W. Pfefferkornf, Shijun Wangg, Yi Zhangh, Jiri Beki, Josef Pšenickaˇ j, Leyla J. Seyfullahk, and David Dilcherl,m,1 aState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; bCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; cUniversity of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; dSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; eBirmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; fDepartment of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316; gState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China; hCollege of Paleontology, Shenyang Normal University, Key Laboratory for Evolution of Past Life in Northeast Asia, Ministry of Natural Resources, Shenyang 110034, China; iDepartment of Palaeobiology and Palaeoecology, Institute of Geology v.v.i., Academy of Sciences of the Czech Republic, 165 00 Praha 6, Czech Republic; jCentre of Palaeobiodiversity, West Bohemian Museum in Plzen, 301 36 Plzen, Czech Republic; kDepartment of Paleontology, Geozentrum, University of Vienna, 1090 Vienna, Austria; lIndiana Geological and Water Survey, Bloomington, IN 47404; and mDepartment of Geology and Atmospheric Science, Indiana University, Bloomington, IN 47405 Contributed by David Dilcher, September 10, 2020 (sent for review July 2, 2020; reviewed by Melanie Devore and Gregory J.
    [Show full text]
  • A Cycadean Trunk from Uryu District, Hokkaido, Japan
    Title A Cycadean Trunk from Uryu District, Hokkaido, Japan Author(s) Tanai, Toshimasa Citation Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and mineralogy, 10(3), 545-550 Issue Date 1960-03 Doc URL http://hdl.handle.net/2115/35919 Type bulletin (article) File Information 10(3)_545-550.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A CYCADEAN TRUNK geROM IVRW DXSTRXC Er, ffKOKKAXDO, ]APAN By Toshimasa TANAI Contyibution from the ])epartment of Geology and Mineralogy, Faeulty o£ Seience, Hokkaido University, No. 8e2 The fiyst occurrenee of a Cyeadeaii trunl< in Japan was reported by A. KRySUToFovlcff (1920) from the neighbourhood of Takikawa-machi, Sorachi distriet, Hokkaid6. Sinee then, several speeimens have been reported from various loealities from KyGsha to Saghalin. These Cycadear; trunks from Japan and Saghalin were found in the Late Cretaceeus, though most of the European and Ameriean fossi} trunks were fyom the Early Cretaceeus-Jurassic sediments. Fttrthermore, a remarl<able fea- ttu'e of the Japanese Cycadean tyuRks is the absenee o£ any fertile-shoots among the leaf-bases, while many of the European and American speei- mens generally exhibit on a single stem numerous fioweys borne at the ends of short lateral branehes which projeet hardly at all beyoBd the general level of the armour of persistent }eaf-bases. The present material was found from the terraee deposits along the Tachibetsu river near Numata-maehi, Uryti district, Hokkaid6 by A. NAI<AyAMA, who is }lving there ([['ext-fig. 1). It is evidently a bouider transported by river-flow from the upper course of the Tachibetsti river.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE ORCID ID: 0000-0003-0186-6546 Gar W. Rothwell Edwin and Ruth Kennedy Distinguished Professor Emeritus Department of Environmental and Plant Biology Porter Hall 401E T: 740 593 1129 Ohio University F: 740 593 1130 Athens, OH 45701 E: [email protected] also Courtesy Professor Department of Botany and PlantPathology Oregon State University T: 541 737- 5252 Corvallis, OR 97331 E: [email protected] Education Ph.D.,1973 University of Alberta (Botany) M.S., 1969 University of Illinois, Chicago (Biology) B.A., 1966 Central Washington University (Biology) Academic Awards and Honors 2018 International Organisation of Palaeobotany lifetime Honorary Membership 2014 Fellow of the Paleontological Society 2009 Distinguished Fellow of the Botanical Society of America 2004 Ohio University Distinguished Professor 2002 Michael A. Cichan Award, Botanical Society of America 1999-2004 Ohio University Presidential Research Scholar in Biomedical and Life Sciences 1993 Edgar T. Wherry Award, Botanical Society of America 1991-1992 Outstanding Graduate Faculty Award, Ohio University 1982-1983 Chairman, Paleobotanical Section, Botanical Society of America 1972-1973 University of Alberta Dissertation Fellow 1971 Paleobotanical (Isabel Cookson) Award, Botanical Society of America Positions Held 2011-present Courtesy Professor of Botany and Plant Pathology, Oregon State University 2008-2009 Visiting Senior Researcher, University of Alberta 2004-present Edwin and Ruth Kennedy Distinguished Professor of Environmental and Plant Biology, Ohio
    [Show full text]
  • Williamsonia Stewardiana, (Open Canopy Growth Form) E.G
    Were Mesozoic Ginkgophytes Shrubby? Data on leaf morphology in the Mesozoic of North America shows a proportional increase of bifurcated, ginkgo-like leaves during the middle of the Jurassic. This ginkophyte acme is correlated with W. A. Green—Department of Geology—Yale University—P. O. Box 208109, Yale Station—New Haven, Connecticut 06520—[email protected] a decreased proportion of the leaf forms associated with herbaceous or shrubby pteridophytes, and with no substantial change in the proportion of leaf forms associated with canopy gymnosperms. The increase in ginkgo-like foliage at the same time as fern-like forms decreased in relative abundance suggests replacement of The conventional view sees all ginkgophytes as some part of the forest understory or early-successional habitats by early ginkgophytes. That is, early ginkgophytes may not have arborescent, by analogy with modern Ginkgo biloba: been competing for light or water in an established gymnosperm canopy. This suggests that most Mesozoic ginkgophytes were shrubs rather than being large trees like the surviving Ginkgo biloba. Such a result explains the absence of Mesozoid ginkgophyte wood and supports the argument that has already been made from sedimentological data, that to a much greater extent than do individuals of Ginkgo biloba now cultivated around the world, many ancestral ginkgophytes pursued early-successional strategies. 1: Competitive displacement alues) 2 v Records of Jurassic fossil occurrences in the Compendium Index of Mesozoic and Cenozoic Jurassic Records
    [Show full text]
  • Botany Syllabus Semester Pattern with Choice Based Credits System
    Shiksha Mandal’s Jankidevi Bajaj College of Science, Wardha. (Autonomous) NAAC (UGC) Reaccredited ‘A’ Institution (A Linguistic Minority College) COLLEGE WITH POTENTIAL FOR EXCELLENCE Star College Status by DBT Govt. of India M.Sc. Botany Syllabus Semester pattern with Choice Based Credits System (2017-2018) Department of Botany Jankidevi Bajaj College of Science, Wardha. JANKIDEVI BAJAJ COLLEGE OF SCIENCE, WARDHA Two Year Post Graduate Course (M. Sc.) SEMESTER PATTERN SYLLABUS (Proposed Under Autonomy) SUBJECT – BOTANY (Distribution of Units) Seme Paper Existing Syllabus Proposed Syllabus ster Uni Content of Unit Alloted Uni Content of Unit Alloted t Hours t Hours No No Seme Paper I I-IV Prokaryotes & 60 I-III Prokaryotes & Viruses, 48 ster I Viruses, Phycology, Mycology Phycology, and Plant Pathology Mycology and IV Microscopy & 12 Plant Pathology Centrifugation Paper II I-IV Bryophytes, 60 I-III Bryophytes, 48 Pteridophytes Pteridophytes IV Plant Microtechniques 12 Paper III I-IV Paleobotany, 60 I-III Paleobotany, 48 Gymnosperms Gymnosperms IV Instrumentation 12 (Spectrophotometery & Chromatography) Paper IV I-IV Cytology, 60 I-III Cytology, Genetics 48 Genetics IV Methods To Study Cell 12 / Tissue Structure Seme Paper V I-IV Plant Physiology, 60 I-III Plant Physiology, 48 ster II Biochemistry Biochemistry IV Analytical 12 Pharmacognosy Paper VI I-IV Plant 60 I-III Plant Development, 48 Development, Reproduction Reproduction IV Phytochemistry 12 Paper VII I-IV Cell, Molecular 60 I-III Cell, Molecular 48 Biology- I Biology- I IV Data
    [Show full text]