Presentación De Powerpoint

Total Page:16

File Type:pdf, Size:1020Kb

Presentación De Powerpoint DIVISION TRACHAEOPHYTA: Subdivisión Pteridophytina Línea Lycopodiophytina: plantas con micrófilos y esporangios laterales Devónico-Actual Primeras plantas terrestres - Primeras plantas vasculares Espermatofitas Equisetopsidas Euphyllophytas Polypodiopsidas Traqueófitas Trimerophytopsidas († ) (Plantas vasculares) LycopsidasLycopodiopsidas Lycopodiophytina Licophytas Zosterophyllopsidas († ) Polysporangiophyta Rhyniopsidas († ) Estomatophyta Aglaophyton († ) Protraqueófitas († ) Embriófitas Homeophyton († ) (Plantas terrestres) Bryopsida Briófitas Marchantiopsida StreptobiontaStreptophyta Coleochaetales Charales Clase Lycopodiopsida: Las primeras Lycopodiopsidas Silúrico sup.-Devónico medio Drepanophycales † Protolepidodendrales † División Trachaeophyta : Subdivisión Pteridophytina Origen del micrófilo: Teoría de la enación micrófilos “espinas” enaciones Zosterophyllum † Asteroxylon † Drepanophycus † Lycopodiopsida: Drepanophycales Origen del micrófilo: Teoría telomática micrófilos divididos en el ápice Protolepidodendron † Lycopodiopsida: Protolepidodendrales Clase Lycopodiopsida: Lycopodiopsidas arborescentes - Carbonífero - Lepidodendrales † División Trachaeophyta: Subdivisión Pteridophytina Traqueófitas: Lycopodiopsida ligula haz vascular paricnos Lepidodendron † Sigillaria † Lepidodendrales † Lycopodiopsidas: Semilla? “semilla” expansión del megasporofilo reducción del número de esporas a una conos unisexuales conos bisexuales Traqueófitas: Lycopodiopsida Lepidostrobus † Lepidocarpon † Lepidodendron † Lepidodendrales † Traqueófitas: Lycopodiopsida Sigillaria † Pleuromeia † Nathorstiana † Lepidodendrales † Paleozoicas-Mesozoicas Lycopodiopsidas actuales - Isoetales : con crecimiento secundario - Lycopodiales -Selaginellales herbáceas División Trachaeophyta Lycopodiopsidas actuales Microfilos con lígula Stylites (Andes de Perú) microsporangios Delta N. Huapi megasorangios Isoetes Isoetales: Heterosporados Lycopodiopsidas actuales Lycopodiales Selaginellales Isosporados esporangios adaxiales Heterosporados Lycopodiales - Selaginellales Lycopodiopsidas actuales protostela Norte Hojas dimorfas Selaginella Selaginellales: heterosporados Lycopodiopsidas actuales Esporangios en estróbilos terminales NO esporofilo Lycopodium trofófilo clavatum Lycopodiales: Lycopodiaceae Lycopodiopsidas actuales Esporangios no reunidos en estróbilos NO NE NO BA Huperzia saururus “cola de quirquincho” Esporofilos y trofófilos semejantes Lycopodiales: Huperziaceae Línea Lycopodiophytina: plantas con micrófilos y esporangios laterales - Devónico-Actual Lycopsidas heterosporadas lígula crecimiento secundario Primeras plantas terrestres - Primeras plantas vasculares Espermatofitas megáfilos Equisetopsidas Euphyllophytas Polypodiopsidas Traqueófitas Trimerophytopsidas († ) (Plantas vasculares) LycopodiopsidasLycopsidas LicophytasLycopodiophytina Zosterophyllopsidas († ) Polysporangiophyta Rhyniopsidas († ) micrófilos Estomatophyta Aglaophyton († ) Protraqueófitas († ) Embriófitas Homeophyton († ) (Plantas terrestres) Bryopsida Briófitas Marchantiopsida StreptobiontaStreptophyta Coleochaetales Charales Fliogenia de las Plantas Vasculares MONILOPHYTAS sifonostela Judd et al. 2002 – Pryer et al. 2004 Bibliografia: Scagel, R., R. Bandoni, G. Rouse, W. Schofield y R. Stein.1983. El Reino Vegetal: los grupos de plantas y sus relaciones evolutivas. Omega, Barcelona, 659 pp. Smith, A. R., K. M. Pryer, et al. (2006). "A classification for extant ferns." Taxon 55(3): 705-731 Taylor, T. N. 1981. Paleobotany. An Introduction to Fossil Plant Biology. McGraw-Hill, New York. Taylor, T. N., Kerp, H. Hass H. (2005). Leaf history biology of early land plants deciphering the gametophyto phase. Proc. Natl. Acad. Sci. USA 102(16): 5892-5897. Boelcke, O. 1992. Plantas vasculares de la Argentina nativas y exóticas. Editorial Hemisferio Sur, Buenos Aires, 2º edición, 334 pp. (Texto general). Boelcke, O. y A. ViziniS. Plantas vasculares de la Argentina nativas y exóticas. Editorial Hemisferio Sur, Buenos Aires. Ilustraciones. 1986, volumen I; 1987 (Iconografía). Lycopodiopsidas: 1.- Qué teorías explican el origen del micrófilo? Desarrolle brevemente indicando los taxones que justifican cada una. 2.- Con qué Clase de plantas fósiles relaciona a las Lycopodiopsidas? Justifique al menos con un carácter. 3.- Ubique sistemáticamente las Licopodiopsidas (Reino-Subreino-División-Subdivisión). Cite 2 características que permitan diferenciarlas de las restantes pteridófitas. 4.- A qué Orden de plantas fósiles corresponden los representantes arborescentes de la Clase Lycopodiopsida? Cite 2 caracteres que relacionen este orden con el género actual Isoetes. 5.- Señale las características/ morfogéneros relacionadas con Lepidodendron: tallos articulados – cambium – micrófilos –megáfilos – paricnos – Annularia – Stigmaria – isosporados – Lepidocarpon – lígula - cicatrices foliares hexagonales – Mesozoico 6.- Ordene los siguientes taxones en orden decreciente con respecto a su hábito: Sigillaria – Nathorstiana – Pleuromeia – Lepidodendron – Isoetes - Stylites 7.- Cuáles son los Ordenes de Lycopodiopsidas actuales. Cite un carácter común y una diferencia entre ellos. 8.- Señale los caracteres correspondientes al género Selaginella: isosporado – esporangios adaxiales – lígula - esporangios peltados – protostela – hojas vegetativas dimorfas – megáfilos 9.- Los géneros Lycopodium y Huperzia se diferencian por: esporofilos agregados en conos/no agregados en conos – esporangios adaxiales/esporangios peltados- isosporado/heterosporado – esporofilos diferenciados/esporofilos y trofofilos semejantes. 10.- Diferencie por medio de una clave dicotómica los géneros Lepidodendron – Selaginella – Lycopodium - Huperzia. .
Recommended publications
  • RI Equisetopsida and Lycopodiopsida.Indd
    IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants.
    [Show full text]
  • Gene Expression Data Support the Hypothesis That Isoetes Rootlets Are True Roots and Not Modifed Leaves Alexander J
    www.nature.com/scientificreports OPEN Gene expression data support the hypothesis that Isoetes rootlets are true roots and not modifed leaves Alexander J. Hetherington1,2, David M. Emms1, Steven Kelly1 & Liam Dolan1,3* Rhizomorphic lycopsids are the land plant group that includes the frst giant trees to grow on Earth and extant species in the genus Isoetes. Two mutually exclusive hypotheses account for the evolution of terminal rooting axes called rootlets among the rhizomorphic lycopsids. One hypothesis states that rootlets are true roots, like roots in other lycopsids. The other states that rootlets are modifed leaves. Here we test predictions of each hypothesis by investigating gene expression in the leaves and rootlets of Isoetes echinospora. We assembled the de novo transcriptome of axenically cultured I. echinospora. Gene expression signatures of I. echinospora rootlets and leaves were diferent. Furthermore, gene expression signatures of I. echinospora rootlets were similar to gene expression signatures of true roots of Selaginella moellendorfi and Arabidopsis thaliana. RSL genes which positively regulate cell diferentiation in roots were either exclusively or preferentially expressed in the I. echinospora rootlets, S. moellendorfi roots and A. thaliana roots compared to the leaves of each respective species. Taken together, gene expression data from the de-novo transcriptome of I. echinospora are consistent with the hypothesis that Isoetes rootlets are true roots and not modifed leaves. Te frst giant (> 50 m) trees to grow on Earth, the arborescent clubmosses, were tethered to the ground by rooting structures termed stigmarian systems whose homology has been debated for more than 150 years1–9. Stigmarian rooting systems consisted of two components, a central axis (rhizomorph) on which developed large numbers of fne axes (rootlets).
    [Show full text]
  • Introduction to Botany. Lecture 29
    Kingdom Vegetabilia: plants Introduction to Botany. Lecture 29 Alexey Shipunov Minot State University November 12th, 2010 Shipunov BIOL 154.29 Kingdom Vegetabilia: plants Outline 1 Kingdom Vegetabilia: plants Bryophyta: mosses Pteridophyta: ferns and allies Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Life cycle of mosses (picture from the board) Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Three main groups (subphyla) Hepaticae—liverworts. Three classes, most primitive are Haplomitriopsida. Body has dorsal and ventral parts, sporogon bag-like, without columella, spores with elaters. Bryophytina—true mosses. Six classes, most important are Sphagnopsida (peat mosses), Polytrichopsida (haircap mosses) and Bryopsida. Body radial, sporogon long, with columella, spores without elaters. Anthocerotophytina—hornworts. One class. Body flattened, sporogon long, green, with columella and stomata, spores with elaters. Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Haplomitrium gibbsiae, primitive liverwort Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Elaters of liverworts (Lepidozia sp.) Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Sphagnum sp. (Bryophyta, Sphagnopsida) with sporogons Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Dawsonia
    [Show full text]
  • Pennsylvanian Exposures in the White Breast Recreation Area, Marion County, Iowa ______
    Iowa Geological & Water Survey - GSI PENNSYLVANIAN EXPOSURES IN THE WHITE BREAST RECREATION AREA, MARION COUNTY, IOWA ___________________________________________________ John P. Pope, Adrian E. Goettemoeller, and Raymond R. Anderson Geological Society of Iowa Sponsored by the Department of Natural Resources Iowa Geological and Water Survey ______________________________________ April 20, 2013 Guidebook 91 i Guidebook 91 Cover photo shows the field trip stop area, Pennsylvanian exposure on the south-facing shore of the White Breast Recreation area at Lake Red Rock. ii Iowa Geological & Water Survey - GSI PENNSYLVANIAN EXPOSURES IN THE WHITE BREAST RECREATION AREA, MARION COUNTY, IOWA John P. Pope Northwest Missouri State University Dept. Geography/Geology 800 University Drive Maryville, MO 64468-6001 [email protected] Adrian E. Goettemoeller 712 York Court Plattsmouth, NE 68048 [email protected] Raymond R. Anderson Iowa Dept. Natural Resources Geological Survey Bureau Iowa City, IA 52242-1319 [email protected] with contributions by Greg A. Ludvigson Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66047-3724 [email protected] April 20, 2013 Geological Society of Iowa Guidebook 91 Geological Society of Iowa Sponsored by the Department of Natural Resources Iowa Geological and Water Survey Additional Copies of this Guidebook or other GSI Guidebooks May be Ordered from the IGWS Publication page at https://programs.iowadnr.gov/igspubs/listPubs.aspx iii Guidebook 91 iv Iowa Geological & Water Survey - GSI TABLE OF CONTENTS Pennsylvanian Exposures in the White Breast Recreation Area, Marion County, Iowa Introduction to the Field Trip Raymond R. Anderson ................................................................................................................ 1 References ........................................................................................................................... 1 Overview of Lake Red Rock and the White Breast Recreation Area Raymond R.
    [Show full text]
  • Bibliography of Isoetes
    BIBLIOGRAPHY OF ISOETES ALLEN, B.M. 1975. A note on the distribution of Isoetes in the Cadiz Province, Spain. Fern Gaz. (U.K.) 11 (2-3): 163-164 (1975). ALONSO, PAZ, E. 1989. Notas sobre plantas nuevas o interesantes para la flora Uruguaya: 1. (Notes on new or interesting plants for the Uruguayan flora: 1.) Comun. Bot. Mus. Hist. Nat. Montevideo 5 (91): 1-4 (1989) - Isoetes pp.2-3 ALSTON, A.H.G. 1982. Isoetaceae: 1. In Steenis, C.G.G.J. van, Holttum, R. E., eds. Flora Malesiana, series 2. Pteridophytes, volume 1. The Hague, Martinus Nijhoff, Dr. W. Junk Publ. 62-64 (1982)- illus., chrom. nos., key. ANDREIS, C., RODONDI, G. 1987. Alcune stazioni di Isoetes echinospora Dur. nel Bresciano e osservazioni al SEM delle spore delle Isoetes della flora Italica. Natura Bresciana no.23: 119-130 (1986 publ. 1987) - illus., maps. 4, ANTHONY, N.C., & E.A. SCHELPE, 1985. Two new taxa and a new combination in southern African Pteridophyta. Bothalia, 15 (3 & 4): 554-555 (1985) ARREGUIN-SANCHEZ, M., 1986. Nuevos registros y taxa interesantes de pteridofitas del Valle de Mexico. (Isoetaceae, Psilotaceae y Selaginellaceae) Phytologia 59 (7): 451-453 (1986) ASH, S., & K.B. PIGG. 1991. A new Jurassic Isoetites (Isoetales) from the Wallowa Terrane in Hells Canyon Oregon and Idaho. Amer. J. Bot. 78: 1636-1642. BAJPAI, U., & H.K. MAHESHWARI,1985. EM studies on the megaspores of Isoetes coromandelina. Phytomorphology, 34 (1-4): 226-231 (1984 publ. 1985) - illus. BALDWIN, W.K.W. 1933. The organization of the young sporophyte of Isoetes engelmanni, A.
    [Show full text]
  • Introduction to Botany. Lecture 35
    Questions and answers Spermatophyta, seed plants Introduction to Botany. Lecture 35 Alexey Shipunov Minot State University November 28, 2011 Shipunov BIOL 154.35 Questions and answers Spermatophyta, seed plants Outline 1 Questions and answers 2 Spermatophyta, seed plants Classes of seed plants Conifers Gnetophytes Shipunov BIOL 154.35 Questions and answers Spermatophyta, seed plants Outline 1 Questions and answers 2 Spermatophyta, seed plants Classes of seed plants Conifers Gnetophytes Shipunov BIOL 154.35 Leaves-emergencies Leaves of lycopods Questions and answers Spermatophyta, seed plants Previous final question: the answer What are microphylls? Shipunov BIOL 154.35 Questions and answers Spermatophyta, seed plants Previous final question: the answer What are microphylls? Leaves-emergencies Leaves of lycopods Shipunov BIOL 154.35 Questions and answers Spermatophyta, seed plants Pteridophyta classes 1 2 3 4 5 6 7 8 9 10 Lycopodiopsida 1 0 0 1 0 0 1 1 0 0 Equisetopsida 0 1 0 1 0 1 0 1 0 1 Psilotopsida 0 1 1 0 0 0 0 0 0 1 Ophioglossopsida 0 1 0 0 0 0 1 0 0 0 Marattiopsida 0 1 1 0 0 1 0 1 1 0 Pteridopsida 1 1 0 0 1 1 0 1 1 0 1 Big (> 1,000 species); 2 Megaphyllous; 3 Synangia; 4 Strobilus; 5 Leptosporangia; 6 Terrestrial gametophyte; 7 Biflagellate sperm; 8 Roots; 9 Fronds; 10 Reduced leaves (enatia and scales). Characters are not necessary relevant to all members of class. Shipunov BIOL 154.35 Classes of seed plants Questions and answers Conifers Spermatophyta, seed plants Gnetophytes Spermatophyta, seed plants Classes of seed plants Shipunov BIOL 154.35 Classes of seed plants Questions and answers Conifers Spermatophyta, seed plants Gnetophytes Spermatophyta: seed plants ≈ 600 species of non-angiosperms and ≈ 250; 000 species of angiosperms Sporic life cycle with sporophyte predominance and seed Gametophyte is reduced to cells inside ovule or inside pollen grain.
    [Show full text]
  • Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R
    Review of Palaeobotany and Palynology, 19 (1975): 221—232 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands PLEUROMEIA FROM THE LOWER TRIASSIC OF THE FAR EAST OF THE U.S.S.R. V. A. KRASSILOV and Yu. D. ZAKHAROV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 26, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A. and Zakharov, Yu. D., 1975. Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R. Rev. Palaeobot. Palynol., 19: 221-232. Pleuromeia obrutschewii Elias from Russian Island (Russkiy Ostrov, near Vladivostok) is hardly distinguishable from the European P. sternbergii (Muenster) Corda. The sporangia are adaxial, filling spoon-like depressions of the megasporophylls which have sterile tips. P. olenekensis sp. nov. from the Olenek River (northeastern Siberia) has larger sporangia and much larger megaspores with three-layered walls. The outer layer (ectexosporium) is reticulate. It is assumed that in other species this layer is lacking due to imperfect preservation. Mature megasporophylls, when shed, have a buoy-like shape and are often deposited together with cephalopod shells. This suggests a special mecha- nism of propagation by means of megasporophylls dispersed by water currents. The cosmopolitan distribution of Pleuromeia points to weakened climatic zonation in the Early Triassic. INTRODUCTION Pleuromeia is famous for its spectacular habitus, its alleged phylogenic role as a link between the arborescent lycopods and the reduced Isoetes, and its geological history which is unusually short for a plant genus (Early- Middle Triassic).
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • Altered Fluvial Patterns in North China Indicate Rapid Climate Change
    www.nature.com/scientificreports OPEN Altered fuvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction Zhicai Zhu1, Yongqing Liu1*, Hongwei Kuang 1*, Michael J. Benton 2, Andrew J. Newell3, Huan Xu4, Wei An5, Shu’an Ji1, Shichao Xu6, Nan Peng1 & Qingguo Zhai1 The causes of the severest crisis in the history of life around the Permian-Triassic boundary (PTB) remain controversial. Here we report that the latest Permian alluvial plains in Shanxi, North China, went through a rapid transition from meandering rivers to braided rivers and aeolian systems. Soil carbonate carbon isotope (δ13C), oxygen isotope (δ18O), and geochemical signatures of weathering intensity reveal a consistent pattern of deteriorating environments (cool, arid, and anoxic conditions) and climate fuctuations across the PTB. The synchronous ecological collapse is confrmed by a dramatic reduction or disappearance of dominant plants, tetrapods and invertebrates and a bloom of microbially- induced sedimentary structures. A similar rapid switch in fuvial style is seen worldwide (e.g. Karoo Basin, Russia, Australia) in terrestrial boundary sequences, all of which may be considered against a background of global marine regression. The synchronous global expansion of alluvial fans and high- energy braided streams is a response to abrupt climate change associated with aridity, hypoxia, acid rain, and mass wasting. Where neighbouring uplands were not uplifting or basins subsiding, alluvial fans are absent, but in these areas the climate change is evidenced by the disruption of pedogenesis. Te severest ecological crisis in Earth history, the Permian-Triassic mass extinction (PTME), occurred 252 Ma and killed over 90% of marine species and about 70% of continental vertebrate families1,2.
    [Show full text]
  • The Carboniferous Evolution of Nova Scotia
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 The Carboniferous evolution of Nova Scotia J. H. CALDER Nova Scotia Department of Natural Resources, PO Box 698, Halifax, Nova Scotia, Canada B3J 2T9 Abstract: Nova Scotia during the Carboniferous lay at the heart of palaeoequatorial Euramerica in a broadly intermontane palaeoequatorial setting, the Maritimes-West-European province; to the west rose the orographic barrier imposed by the Appalachian Mountains, and to the south and east the Mauritanide-Hercynide belt. The geological affinity of Nova Scotia to Europe, reflected in elements of the Carboniferous flora and fauna, was mirrored in the evolution of geological thought even before the epochal visits of Sir Charles Lyell. The Maritimes Basin of eastern Canada, born of the Acadian-Caledonian orogeny that witnessed the suture of Iapetus in the Devonian, and shaped thereafter by the inexorable closing of Gondwana and Laurasia, comprises a near complete stratal sequence as great as 12 km thick which spans the Middle Devonian to the Lower Permian. Across the southern Maritimes Basin, in northern Nova Scotia, deep depocentres developed en echelon adjacent to a transform platelet boundary between terranes of Avalon and Gondwanan affinity. The subsequent history of the basins can be summarized as distension and rifting attended by bimodal volcanism waning through the Dinantian, with marked transpression in the Namurian and subsequent persistence of transcurrent movement linking Variscan deformation with Mauritainide-Appalachian convergence and Alleghenian thrusting. This Mid- Carboniferous event is pivotal in the Carboniferous evolution of Nova Scotia. Rapid subsidence adjacent to transcurrent faults in the early Westphalian was succeeded by thermal sag in the later Westphalian and ultimately by basin inversion and unroofing after the early Permian as equatorial Pangaea finally assembled and subsequently rifted again in the Triassic.
    [Show full text]
  • Retallack 2021 Coal Balls
    Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro­ genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea­ sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.
    [Show full text]
  • The Joggins Fossil Cliffs UNESCO World Heritage Site: a Review of Recent Research
    The Joggins Fossil Cliffs UNESCO World Heritage site: a review of recent research Melissa Grey¹,²* and Zoe V. Finkel² 1. Joggins Fossil Institute, 100 Main St. Joggins, Nova Scotia B0L 1A0, Canada 2. Environmental Science Program, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada *Corresponding author: <[email protected]> Date received: 28 July 2010 ¶ Date accepted 25 May 2011 ABSTRACT The Joggins Fossil Cliffs UNESCO World Heritage Site is a Carboniferous coastal section along the shores of the Cumberland Basin, an extension of Chignecto Bay, itself an arm of the Bay of Fundy, with excellent preservation of biota preserved in their environmental context. The Cliffs provide insight into the Late Carboniferous (Pennsylvanian) world, the most important interval in Earth’s past for the formation of coal. The site has had a long history of scientific research and, while there have been well over 100 publications in over 150 years of research at the Cliffs, discoveries continue and critical questions remain. Recent research (post-1950) falls under one of three categories: general geol- ogy; paleobiology; and paleoenvironmental reconstruction, and provides a context for future work at the site. While recent research has made large strides in our understanding of the Late Carboniferous, many questions remain to be studied and resolved, and interest in addressing these issues is clearly not waning. Within the World Heritage Site, we suggest that the uppermost formations (Springhill Mines and Ragged Reef), paleosols, floral and trace fossil tax- onomy, and microevolutionary patterns are among the most promising areas for future study. RÉSUMÉ Le site du patrimoine mondial de l’UNESCO des falaises fossilifères de Joggins est situé sur une partie du littoral qui date du Carbonifère, sur les rives du bassin de Cumberland, qui est une prolongation de la baie de Chignecto, elle-même un bras de la baie de Fundy.
    [Show full text]