RI Equisetopsida and Lycopodiopsida.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contents Part III. the LAST FIFTY THOUSAND YEARS
STATE OF MICHIGAN Insects ................................................................... 60 DEPARTMENT OF CONSERVATION Worms And Others ................................................ 61 P. J. Hoffmaster, Director The Pleasant Peninsulas .............................................62 Man and his Towns ......................................................69 THEY NEED NOT VANISH A DISCUSSION OF THE NATURAL RESOURCES In Conclusion .................................................................71 OF MICHIGAN Part III. THE LAST FIFTY THOUSAND YEARS "THE GOOD EARTH" Edited by HELEN M. MARTIN ir, sunlight, water, and soil are essential for the Acontinuance of life—plant, animal, and human life, from contributions by on the earth. Of these four basic requirements, the soil Shirley W. Allen, Geo. C. S. Benson, University of is most directly subject to the care and management of Michigan man. However, the soil has frequently been the object of man's most careless use and abuse. It is, therefore, Stannard B. Bergquist, L. R. Schoenmann, H. C. most fitting that the eminent soil scientist, A. F. Beeskaw, J. H. Kraemer, W. F. Morofsky, J. A. Porter, E. Gustafson, should begin his book on soils and soil C. Sackrider, Michigan State College management with: G. S. Mclntire, H. M. Martin, O. F. Poindexter, C. F. "During his existence upon the earth, man has depended upon Welch, Department of Conservation the soil, either directly or indirectly, for the production of the materials used by him for food and clothing and, in part, for the M. G. Adams, Stream Control Commission production of those used for fuel and shelter as well. Grains, Frank DuMond, Public Museum, Grand Rapids fruits, and vegetables that serve him as food grow directly on the soil. Cotton and flax yield materials that are made into Lynn Heatley, High School, Midland. -
Gene Expression Data Support the Hypothesis That Isoetes Rootlets Are True Roots and Not Modifed Leaves Alexander J
www.nature.com/scientificreports OPEN Gene expression data support the hypothesis that Isoetes rootlets are true roots and not modifed leaves Alexander J. Hetherington1,2, David M. Emms1, Steven Kelly1 & Liam Dolan1,3* Rhizomorphic lycopsids are the land plant group that includes the frst giant trees to grow on Earth and extant species in the genus Isoetes. Two mutually exclusive hypotheses account for the evolution of terminal rooting axes called rootlets among the rhizomorphic lycopsids. One hypothesis states that rootlets are true roots, like roots in other lycopsids. The other states that rootlets are modifed leaves. Here we test predictions of each hypothesis by investigating gene expression in the leaves and rootlets of Isoetes echinospora. We assembled the de novo transcriptome of axenically cultured I. echinospora. Gene expression signatures of I. echinospora rootlets and leaves were diferent. Furthermore, gene expression signatures of I. echinospora rootlets were similar to gene expression signatures of true roots of Selaginella moellendorfi and Arabidopsis thaliana. RSL genes which positively regulate cell diferentiation in roots were either exclusively or preferentially expressed in the I. echinospora rootlets, S. moellendorfi roots and A. thaliana roots compared to the leaves of each respective species. Taken together, gene expression data from the de-novo transcriptome of I. echinospora are consistent with the hypothesis that Isoetes rootlets are true roots and not modifed leaves. Te frst giant (> 50 m) trees to grow on Earth, the arborescent clubmosses, were tethered to the ground by rooting structures termed stigmarian systems whose homology has been debated for more than 150 years1–9. Stigmarian rooting systems consisted of two components, a central axis (rhizomorph) on which developed large numbers of fne axes (rootlets). -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Lake Quillwort Isoetes Lacustris
Natural Heritage Lake Quillwort & Endangered Species Isoetes lacustris L. Program www.mass.gov/nhesp State Status: Endangered Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: Lake Quillwort is a perennial, aquatic, nonflowering member of the Quillwort family (Isoetaceae). This inconspicuous species lives submerged in ponds as a rosette of linear leaves (somewhat resembling chives), and reproduces via spores. AIDS TO IDENTIFICATION: The rosette of Lake Quillwort is composed of sharply pointed leaves, 0.7 to 2 mm wide and mostly 5 to 10 cm (2–4 in.) long, occasionally reaching 20 cm. The leaves are dark green, firm, fleshy, and brittle, emerging from a very short, thick stem that is anchored in the substrate by a subterranean corm. The leaf bases of quillworts are swollen, flattened, and concave; the rosette is arranged tightly like the bracts of an artichoke. Within the swollen Lake Quillwort is an aquatic species with a rosette of leaves that leaf bases are sporangia, sacs that house the male have swollen bases; within the leaf bases are sporangia with gametophyte-bearing microspores and the female microspores and megaspores. Photo by Robbin Moran. megaspores. A sheath, or velum, covers the sporangia; in Lake Quillwort, the velum covers up to half of the sporangia. The megaspore of Lake Quillwort, which SIMILAR SPECIES: Quillwort species are very requires a microscope to view, is mostly covered with similar in appearance and identification requires sharp, wavy crests, with a band (the girdle) encircling examination of the ornamentation of mature megaspores the spore that lacks ridges and is covered with tiny under a microscope. -
<I>Equisetum Giganteum</I>
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-24-2009 Ecophysiology and Biomechanics of Equisetum Giganteum in South America Chad Eric Husby Florida International University, [email protected] DOI: 10.25148/etd.FI10022522 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Recommended Citation Husby, Chad Eric, "Ecophysiology and Biomechanics of Equisetum Giganteum in South America" (2009). FIU Electronic Theses and Dissertations. 200. https://digitalcommons.fiu.edu/etd/200 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida ECOPHYSIOLOGY AND BIOMECHANICS OF EQUISETUM GIGANTEUM IN SOUTH AMERICA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Chad Eric Husby 2009 To: Dean Kenneth Furton choose the name of dean of your college/school College of Arts and Sciences choose the name of your college/school This dissertation, written by Chad Eric Husby, and entitled Ecophysiology and Biomechanics of Equisetum Giganteum in South America, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Bradley C. Bennett _______________________________________ Jack B. Fisher _______________________________________ David W. Lee _______________________________________ Leonel Da Silveira Lobo O'Reilly Sternberg _______________________________________ Steven F. Oberbauer, Major Professor Date of Defense: March 24, 2009 The dissertation of Chad Eric Husby is approved. -
Notes on Some Species of Diphasiastrum
Preslia, Praha, 47: 232 - 240, 1975 Notes on some species of Diphasiastrum Poznamky k n~kterym druhum rodu Dipha11iaatrum Josef Holub HOLUB J. (1975): Notes on some species of Diphasiastrum. - Preslia, Praha, 47: 232- 240. Taxonomic and nomenclatural problems of some species of Diphasiastrum HOLUB are discussed. A special attention is pa.id to the interspecies D. / X / issleri and D. / x / zei leri. Original plants of D. / x / issleri correspond to the combination D. alpinum - D. complanatum. Plants corresponding to the combination D. alpinum - D. tristachyum have been collected in the ~umava Mts. Some taxa described from the subarctic regions of Europe and North America are shown to belong most probably to the neglected interspecies D. / x / zeileri. Botanical I nstitute, Czechoslovak Academy of Sciences, 25~ 43 Prithonice, Czecho.,lovakia. INTRODUCTION This is a second part of my study of the new genus Diphasiastrum (HOLUB 1975), which could not be published in this journal in its entirety. Notes on taxonomy and nomenclature are selected from materials gathered originally for my "Catalogue of Czechoslovak vascular plants". With regard to the character of that work the present observations summarize the results of my own studies and suggests problems to be studied in the future. OBSERVATIONS f!.iphasiastrum alpinum (L.) HOLUB Two varieties have been described in this species (both under the name Lycopodium alpi nttm L.): var. thellungii HERTER from Switzerland and var. planiramulosum TAKEDA from Japan. Both these taxa, especially the first one, require a taxonomic revision; the possibility cannot be exclu<led that they are conspecific with D. / x / issleri. -
Huperzine a from Huperzia Species—An Ethnopharmacolgical Review Xiaoqiang Ma A,B, Changheng Tan A, Dayuan Zhu A, David R
Huperzine A from Huperzia species—An ethnopharmacolgical review Xiaoqiang Ma a,b, Changheng Tan a, Dayuan Zhu a, David R. Gang b, Peigen Xiao c,∗ a State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, PR China b Department of Plant Sciences and BIO5 Institute, The University of Arizona, 303 Forbes Building, Tucson, AZ 85721-0036, USA c Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100094, PR China Abstract Huperzine A (HupA), isolated originally from a traditional Chinese medicine Qiang Ceng Ta, whole plant of Huperzia serrata (Thunb. ex Murray) Trev., a member of the Huperziaceae family, has attracted intense attention since its marked anticholinesterase activity was discovered by Chinese scientists. Several members of the Huperziaceae (Huperzia and Phlegmariurus species) have been used as medicines in China for contusions, strains, swellings, schizophrenia, myasthenia gravis and organophosphate poisoning. HupA has been marketed in China as a new drug for Alzheimer’s disease (AD) treatment and its derivative ZT-1 is being developed as anti-AD new drug candidate both in China and in Europe. A review of the chemistry, bioactivities, toxicology, clinical trials and natural resources of HupA source plants is presented. Keywords: Huperzine A; ZT-1; Alzheimer’s disease; Huperzia serrata; Huperziaceae; Drug discovery; Bioactivities; Clinical trials; Traditional Chinese -
(Lycopodiaceae) in the State of Veracruz, Mexico
Mongabay.com Open Access Journal - Tropical Conservation Science Vol.8 (1): 114-137, 2015 Research article Distribution and conservation status of Phlegmariurus (Lycopodiaceae) in the state of Veracruz, Mexico Samaria Armenta-Montero1, César I. Carvajal-Hernández1, Edward A. Ellis1 and Thorsten Krömer1* 1Centro de Investigaciones Tropicales, Universidad Veracruzana, Casco de la Ex Hacienda Lucas Martín, Privada de Araucarias S/N. Col. Periodistas, C.P. 91019, Xalapa, Veracruz, Mexico *Corresponding author. Email: [email protected] Abstract The fern and lycophyte flora of Mexico contains 13 species in the genus Phlegmariurus (Lycopodiaceae; club moss family), of which nine are found in the state of Veracruz (P. cuernavacensis, P. dichotomus, P. linifolius, P. myrsinites, P. orizabae, P. pithyoides, P. pringlei, P. reflexus , P. taxifolius). They are located primarily in undisturbed areas of humid montane, pine-oak and tropical humid forests, which are all ecosystems threatened by deforestation and fragmentation. The objective of this study was to evaluate and understand the distribution and conservation status of species of this genus in the state of Veracruz, Mexico. Using Maxent, probability distributions were modeled based on 173 herbarium specimens (25% from recent collections by the authors and/or collaborators), considering factors such as climate, elevation and vegetation cover. Additionally, anthropogenic impacts on the original habitat of each species were analyzed in order to assign threatened categories based on IUCN classifications at regional levels. Results show that potential distributions are located in the montane regions of the central and southern parts of the state. All nine Phlegmariurus species in Veracruz were found to be in some category of risk, with P. -
Chians in Nova Scotia,. by J. \V. DAWSON, LL.D., F.R.S
440 Dawson-New Oarboniferous Batmchians of Nova Scotia. ART. XLVIII.-On a Recent Di~covery of Oarbo?Jifero1.l.s Batra chians in Nova Scotia,. by J. \V. DAWSON, LL.D., F.R.S. 1. General Remarks. THE erect Sigillarire enclosed in the f!andstone overlying coal-group 15 of Section XV, Division 4 of the SOIl.th Joggins section, are perhaps the most remarkable repositories ever dis covered of the remains of Paleozoic land animals. As I have shown in discussing their character in my memoirs on the South Joggins Coal FOl'mation,* and my "Acadian Geology," some of these trees became em bedded in sandy deposits, and being rendered hollow by decay of their inner bark and the crumbling of their woody axes, remained for a long time as open holes or pits, gradually filling with vegetable debris and the wash of rains and land floods. They thus became places of habitation for land snails and millepedes, and pit-falls into which the smaller batrachians, prowling for prey among the undergrowth of the coal forest, fell and were unable to extri cate themselves. In this way the successive layers of deposit became stored with skeletons of batrachians which they have retained in an admirable st.ate of preservation. Onlrone sandstone at the Joggins is known to contain these reptiliferous trees, though erect Sigillarire are known at. more than sixty different levels, and many of these erect stumps have been broken up in the hope of making such discoveries. In the past summer, however, shells of Pupa vetustu were found bv Mr. -
Scouring-Rush Horsetail Scientific Name: Equisetum Hyemale Order
Common Name: Scouring-rush Horsetail Scientific Name: Equisetum hyemale Order: Equisetales Family: Equisetaceae Wetland Plant Status: Facultative Ecology & Description Scouring-rush horsetail is an evergreen, perennial plant that completes a growing season in two years. At maturity, scouring-rush horsetail usually averages 3 feet in height but can be range anywhere from 2 to 5 feet. It can survive in a variety of environments. One single plant can spread 6 feet in diameter. It has cylindrical stems that averages a third of an inch in diameter. Noticeably spotted are the jointed unions that are located down the plant. The stems are hollow and don’t branch off into additional stems. Also, scouring- rush horsetail has rough ridges that run longitudinal along the stem. Although not covered in leaves, tiny leaves are joined together around the stem which then forms a black or green band, or sheath at each individual joint on the stem. This plant has an enormous root system that can reach 6 feet deep and propagates in two ways: rhizomes and spores. Incredibly, due to the fact that this plant is not full of leaves, it is forced to photosynthesize through the stem rather than leaves. Habitat Scouring-rush horsetail is highly tolerant of tough conditions. It can survive and thrive in full sun or part shade and can successfully grow in a variety of soil types. It can also grow in moderate to wet soils, and can survive in up to 4 inches of water. Distribution Scouring-rush horsetail can be found throughout the United States, Eurasia, and Canada. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
Ecophysiology of Four Co-Occurring Lycophyte Species: an Investigation of Functional Convergence
Research Article Ecophysiology of four co-occurring lycophyte species: an investigation of functional convergence Jacqlynn Zier, Bryce Belanger, Genevieve Trahan and James E. Watkins* Department of Biology, Colgate University, Hamilton, NY 13346, USA Received: 22 June 2015; Accepted: 7 November 2015; Published: 24 November 2015 Associate Editor: Tim J. Brodribb Citation: Zier J, Belanger B, Trahan G, Watkins JE. 2015. Ecophysiology of four co-occurring lycophyte species: an investigation of functional convergence. AoB PLANTS 7: plv137; doi:10.1093/aobpla/plv137 Abstract. Lycophytes are the most early divergent extant lineage of vascular land plants. The group has a broad global distribution ranging from tundra to tropical forests and can make up an important component of temperate northeast US forests. We know very little about the in situ ecophysiology of this group and apparently no study has eval- uated if lycophytes conform to functional patterns expected by the leaf economics spectrum hypothesis. To determine factors influencing photosynthetic capacity (Amax), we analysed several physiological traits related to photosynthesis to include stomatal, nutrient, vascular traits, and patterns of biomass distribution in four coexisting temperate lycophyte species: Lycopodium clavatum, Spinulum annotinum, Diphasiastrum digitatum and Dendrolycopodium dendroi- deum. We found no difference in maximum photosynthetic rates across species, yet wide variation in other traits. We also found that Amax was not related to leaf nitrogen concentration and is more tied to stomatal conductance, suggestive of a fundamentally different sets of constraints on photosynthesis in these lycophyte taxa compared with ferns and seed plants. These findings complement the hydropassive model of stomatal control in lycophytes and may reflect canaliza- tion of function in this group.