Gene Expression Data Support the Hypothesis That Isoetes Rootlets Are True Roots and Not Modifed Leaves Alexander J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RI Equisetopsida and Lycopodiopsida.Indd
IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants. -
American Fern Journal
AMERICAN FERN JOURNAL QUARTERLY JOURNAL OF THE AMERICAN FERN SOCIETY Isoetes duriei New to Lebanon LYTTON J. MUSSELMAN and MOHAMMAD S. AL- ZEIN, Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529-0266, USA. American Fern Journal 99(4):333–334 (2009) SHORTER NOTES Isoetes duriei New to Lebanon.—In a recent paper, we (Bolin et al., Turkish Journal of Botany 32:447–457. 2008) discussed the taxonomy and distribution of the quillworts (species of the genus Isoetes, Lycophyta) in Western Asia. In this supplementary note, we record the presence of three quillworts new to Lebanon –one a widespread Mediterranean species, one known from only a single site in Turkey and two in Syria, and an undescribed new species. With this report, the number of documented species in Lebanon has increased from one to three. Voucher specimens will be deposited at BEI, E, and ODU. In his flora, Mouterde (Nouvelle Flora du Liban et de la Syria. Beirut: Editions de L’Imprimerie Catholique. 1966) included two species of Isoetes from Syria and Lebanon– Isoetes olympica A. Braun known from only a few sites on Jebel Al Arab (historically known as Jebel Druze) in extreme southeastern Syria, and what Mouterde called I. histrix Bory forma subinermis Durieu from the Akkar region of northern Lebanon. He separated the two species chiefly on the basis of velum coverage—I. olympica with an incomplete velum and I. histrix forma subinermis has complete velum coverage. Musselman (Fern Gaz. 16(6, 7 & 8):324–3 29. 2002) noted the impending demise of the Jebel Al Arab populations due to habitat destruction. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Bridging a Biogeographic 'Gap': Microfossil Evidence for the Quillwort Isoetes on the Cumberland Plain West of Sydney Durin
295 Bridging a biogeographic ‘gap’: microfossil evidence for the quillwort Isoetes on the Cumberland Plain west of Sydney during the early Colonial period Mike MacphailA and Mary CaseyB A Consultant Palynological Services, 13 Walu Place Aranda, ACT 2614, AUSTRALIA [email protected] B Casey & Lowe Pty Ltd., 420 Marrickville Rd, Marrickville, NSW 2204, AUSTRALIA Abstract: Fossil spores preserved on historical archaeological sites at Parramatta and Richmond indicate that two or more species of the quillwort genus Isoetes (family Isoetaceae) were growing along rivers on the Cumberland Plain, west of Sydney, during the late 18th and early 19th centuries. Perispore ornamentation indicates the parent plants were related to Isoetes drummondii A.Braun and Isoetes muelleri A.Braun: A possible third species produced microspores that are similar to, but much larger than, the spores produced by modern Isoetes muelleri. Apart from one dubious record, Isoetes has not been found in the Sydney flora or on the New South Wales Central Coast and Central Tablelands botanical subdivisions, but does occur in the Central Western Slopes, and botanical subdivisions to the north of Sydney (North Coast, Northern Tablelands) and south (Southern Tablelands, South-Western Slopes, South-Western Plains), as well as in other States. Our data indicate the present day disjunct distribution of Isoetes in New South Wales is most likely to be due to European settlement. The ability of quillworts to survive moderate levels of disturbance during the early Colonial period raises the possibility that remnant populations may still survive in protected areas on the Cumberland Plain. Cunninghamia (2005) 9(2): 295–306 Introduction Wales occurs on the Southern Highlands, approximately 200 km southwest of Sydney (Carolin & Tindale 1994, Organic-rich sediments, including buried topsoil and Wilson 2000). -
Pennsylvanian Exposures in the White Breast Recreation Area, Marion County, Iowa ______
Iowa Geological & Water Survey - GSI PENNSYLVANIAN EXPOSURES IN THE WHITE BREAST RECREATION AREA, MARION COUNTY, IOWA ___________________________________________________ John P. Pope, Adrian E. Goettemoeller, and Raymond R. Anderson Geological Society of Iowa Sponsored by the Department of Natural Resources Iowa Geological and Water Survey ______________________________________ April 20, 2013 Guidebook 91 i Guidebook 91 Cover photo shows the field trip stop area, Pennsylvanian exposure on the south-facing shore of the White Breast Recreation area at Lake Red Rock. ii Iowa Geological & Water Survey - GSI PENNSYLVANIAN EXPOSURES IN THE WHITE BREAST RECREATION AREA, MARION COUNTY, IOWA John P. Pope Northwest Missouri State University Dept. Geography/Geology 800 University Drive Maryville, MO 64468-6001 [email protected] Adrian E. Goettemoeller 712 York Court Plattsmouth, NE 68048 [email protected] Raymond R. Anderson Iowa Dept. Natural Resources Geological Survey Bureau Iowa City, IA 52242-1319 [email protected] with contributions by Greg A. Ludvigson Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66047-3724 [email protected] April 20, 2013 Geological Society of Iowa Guidebook 91 Geological Society of Iowa Sponsored by the Department of Natural Resources Iowa Geological and Water Survey Additional Copies of this Guidebook or other GSI Guidebooks May be Ordered from the IGWS Publication page at https://programs.iowadnr.gov/igspubs/listPubs.aspx iii Guidebook 91 iv Iowa Geological & Water Survey - GSI TABLE OF CONTENTS Pennsylvanian Exposures in the White Breast Recreation Area, Marion County, Iowa Introduction to the Field Trip Raymond R. Anderson ................................................................................................................ 1 References ........................................................................................................................... 1 Overview of Lake Red Rock and the White Breast Recreation Area Raymond R. -
Lake Quillwort Isoetes Lacustris
Natural Heritage Lake Quillwort & Endangered Species Isoetes lacustris L. Program www.mass.gov/nhesp State Status: Endangered Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: Lake Quillwort is a perennial, aquatic, nonflowering member of the Quillwort family (Isoetaceae). This inconspicuous species lives submerged in ponds as a rosette of linear leaves (somewhat resembling chives), and reproduces via spores. AIDS TO IDENTIFICATION: The rosette of Lake Quillwort is composed of sharply pointed leaves, 0.7 to 2 mm wide and mostly 5 to 10 cm (2–4 in.) long, occasionally reaching 20 cm. The leaves are dark green, firm, fleshy, and brittle, emerging from a very short, thick stem that is anchored in the substrate by a subterranean corm. The leaf bases of quillworts are swollen, flattened, and concave; the rosette is arranged tightly like the bracts of an artichoke. Within the swollen Lake Quillwort is an aquatic species with a rosette of leaves that leaf bases are sporangia, sacs that house the male have swollen bases; within the leaf bases are sporangia with gametophyte-bearing microspores and the female microspores and megaspores. Photo by Robbin Moran. megaspores. A sheath, or velum, covers the sporangia; in Lake Quillwort, the velum covers up to half of the sporangia. The megaspore of Lake Quillwort, which SIMILAR SPECIES: Quillwort species are very requires a microscope to view, is mostly covered with similar in appearance and identification requires sharp, wavy crests, with a band (the girdle) encircling examination of the ornamentation of mature megaspores the spore that lacks ridges and is covered with tiny under a microscope. -
BOOM's QUILLWORT Scientific Name: Isoetes Boomii N. Luebke Other
Common Name: BOOM’S QUILLWORT Scientific Name: Isoetes boomii N. Luebke Other Commonly Used Names: none Previously Used Scientific Names: none Family: Isoetaceae (quillwort) Rarity Ranks: G1/S1 State Legal Status: Special Concern Federal Legal Status: none Federal Wetland Status: none Description: Perennial herb, forming clumps in flowing water. Rootstock (corm) nearly round, with two lobes. Leaves numerous (over 50) and up to 18 inches (45 cm) long, bright green fading to pale at the base, flexible, and tapering to a pointed tip. Spores are produced in a sporangium, a small, brown-streaked chamber in the leaf base, with a translucent membrane (velum) covering approximately 30% of the chamber opening. Dozens of tiny female spores (megaspores), approximately 0.6 mm across, may be seen with 10 - 20x magnification; these are white with brown streaks and covered with a densely congested pattern of narrow, inter- connecting ridges. Light gray, dust-sized male spores (microspores) are produced on separate leaves but are indistinguishable without much higher magnification. Similar Species: Quillworts are distinguished from flowering, wetland plants by their spongy leaves with conspicuous cross-walls and by the presence of sporangia in the flared base of the leaves. Southern quillwort (Isoetes flaccida) occurs in habitats similar to Boom’s quillwort’s and also has long, flexible leaves; however, its velum completely covers the spore cavity, which is colorless, not streaked with brown, and the megaspores are white with a bumpy surface. Georgia quillwort (I. georgiana) is similar but with wider velum coverage and a coarser megaspore ornamentation pattern (see full species account elsewhere on this website). -
Bibliography of Isoetes
BIBLIOGRAPHY OF ISOETES ALLEN, B.M. 1975. A note on the distribution of Isoetes in the Cadiz Province, Spain. Fern Gaz. (U.K.) 11 (2-3): 163-164 (1975). ALONSO, PAZ, E. 1989. Notas sobre plantas nuevas o interesantes para la flora Uruguaya: 1. (Notes on new or interesting plants for the Uruguayan flora: 1.) Comun. Bot. Mus. Hist. Nat. Montevideo 5 (91): 1-4 (1989) - Isoetes pp.2-3 ALSTON, A.H.G. 1982. Isoetaceae: 1. In Steenis, C.G.G.J. van, Holttum, R. E., eds. Flora Malesiana, series 2. Pteridophytes, volume 1. The Hague, Martinus Nijhoff, Dr. W. Junk Publ. 62-64 (1982)- illus., chrom. nos., key. ANDREIS, C., RODONDI, G. 1987. Alcune stazioni di Isoetes echinospora Dur. nel Bresciano e osservazioni al SEM delle spore delle Isoetes della flora Italica. Natura Bresciana no.23: 119-130 (1986 publ. 1987) - illus., maps. 4, ANTHONY, N.C., & E.A. SCHELPE, 1985. Two new taxa and a new combination in southern African Pteridophyta. Bothalia, 15 (3 & 4): 554-555 (1985) ARREGUIN-SANCHEZ, M., 1986. Nuevos registros y taxa interesantes de pteridofitas del Valle de Mexico. (Isoetaceae, Psilotaceae y Selaginellaceae) Phytologia 59 (7): 451-453 (1986) ASH, S., & K.B. PIGG. 1991. A new Jurassic Isoetites (Isoetales) from the Wallowa Terrane in Hells Canyon Oregon and Idaho. Amer. J. Bot. 78: 1636-1642. BAJPAI, U., & H.K. MAHESHWARI,1985. EM studies on the megaspores of Isoetes coromandelina. Phytomorphology, 34 (1-4): 226-231 (1984 publ. 1985) - illus. BALDWIN, W.K.W. 1933. The organization of the young sporophyte of Isoetes engelmanni, A. -
Check List 17 (1): 63–67
17 1 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 17 (1): 63–67 https://doi.org/10.15560/17.1.63 The southernmost distribution range of Isoetes panamensis Maxon & C.V. Morton (Lycopodiopsida, Isoetaceae) in the relicts of the Cerrado in southern Brazil Jovani B. S. Pereira1*, Marcelo Brotto2, Paulo H. Labiak3 1 Instituto de Botânica, São Paulo, SP, Brazil 2 Museu Botânico Municipal de Curitiba, Curitiba, PR, Brazil 3 Depto. de Botânica, Universidade Federal do Paraná, Curitiba, PR, Brazil * Corresponding author, [email protected] Abstract Establishing the geographical distribution limits of species may provide not only data to understand their range of adaptation to conservation proposals but also records of the dynamics in the vegetation across the time. Here we report the southernmost limit of the occurrence of Isoetes panamensis Maxon & C.V. Morton within a relict of the Cerrado in Paraná, Brazil. This find highlights the importance of fieldwork in relicts of the Cerrado to enhance the knowledge about the flora of Paraná and the vegetational dynamic of the Cerrado in the past. Keywords Aquatic plants, dry diagonal, lycophytes, new record, niche conservation, savannah Academic editor: Carlos Lehn | Received 16 November 2020 | Accepted 21 December 2020 | Published 12 January 2021 Citation: Pereira JBS, Brotto M, Labiak PH (2021) The southernmost distribution range of Isoetes panamensis Maxon & C.V. Morton (Lycopodiopsida, Isoetaceae) in the relicts of the Cerrado in southern Brazil. Check List 17 (1): 63–67. https://doi.org/10.15560/17.1.63 Introduction The Cerrado, the Brazilian savannah, is the second larg- promoted the occurrence of relicts of Cerrado in areas est biome in the Neotropics and a key region to under- nowadays dominated by humid tropical Amazonia and stand the evolution and distribution of Neotropical the Atlantic Rain Forest. -
Isoetes Alpina
Isoetes alpina COMMON NAME Alpine quillwort FAMILY Isoetaceae AUTHORITY Isoetes alpina Kirk FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Lycophytes (clubmosses, selaginella, quillworts) CHROMOSOME NUMBER 2n = 22 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened L. Rotoroa, Nelson. Photographer: John Smith- 2004 | Not Threatened Dodsworth DISTRIBUTION Endemic. New Zealand: North and South Islands from the headwaters of the Waikato River and Lake Taupo south (near Whakamaru) south. Most common in the montane lakes, tarns and slow-flowing streams of the South Island. HABITAT Montane to alpine, aquatic (rarely subterrestrial) at the bottom of lakes, rivers and streams (rarely growing near shoreline where it may be partially exposed during low water levels). Often forming extensive colonies in fine sediments or coarse sand. FEATURES L. Rotoroa, Nelson. Photographer: John Smith- Dodsworth Aquatic, heterosporous, robust tufted herb arising from an erect corm. Roots long and stout, dichotomously branched. Leaves mostly sporophyllous, rather brittle, spirally (rarely flabellately) arranged, erect in tufts of up to 70, dark green, usually evenly septate, septae forming air chambers; lamina 50-250-500 (-750) mm long, linear to linear-filiform, tapered to an finely acute (rarely subacute to obtuse) apex, base swollen, up to 10 mm wide. Leaf appendages ligulate, ligule broadly triangular 1.0-1.4 mm long, located above the sporangium on the adaxial side. Sporangia adaxially located in pockets in leaf bases, large (up to 5 mm long) and conspicuous, oblong, heterosporous, Megaspores grey-white, mostly smooth, rarely minutely and obscurely tubercled; microspores minute, numerous. -
The Carboniferous Evolution of Nova Scotia
Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 The Carboniferous evolution of Nova Scotia J. H. CALDER Nova Scotia Department of Natural Resources, PO Box 698, Halifax, Nova Scotia, Canada B3J 2T9 Abstract: Nova Scotia during the Carboniferous lay at the heart of palaeoequatorial Euramerica in a broadly intermontane palaeoequatorial setting, the Maritimes-West-European province; to the west rose the orographic barrier imposed by the Appalachian Mountains, and to the south and east the Mauritanide-Hercynide belt. The geological affinity of Nova Scotia to Europe, reflected in elements of the Carboniferous flora and fauna, was mirrored in the evolution of geological thought even before the epochal visits of Sir Charles Lyell. The Maritimes Basin of eastern Canada, born of the Acadian-Caledonian orogeny that witnessed the suture of Iapetus in the Devonian, and shaped thereafter by the inexorable closing of Gondwana and Laurasia, comprises a near complete stratal sequence as great as 12 km thick which spans the Middle Devonian to the Lower Permian. Across the southern Maritimes Basin, in northern Nova Scotia, deep depocentres developed en echelon adjacent to a transform platelet boundary between terranes of Avalon and Gondwanan affinity. The subsequent history of the basins can be summarized as distension and rifting attended by bimodal volcanism waning through the Dinantian, with marked transpression in the Namurian and subsequent persistence of transcurrent movement linking Variscan deformation with Mauritainide-Appalachian convergence and Alleghenian thrusting. This Mid- Carboniferous event is pivotal in the Carboniferous evolution of Nova Scotia. Rapid subsidence adjacent to transcurrent faults in the early Westphalian was succeeded by thermal sag in the later Westphalian and ultimately by basin inversion and unroofing after the early Permian as equatorial Pangaea finally assembled and subsequently rifted again in the Triassic. -
Retallack 2021 Coal Balls
Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.