Comparison of Some Chemical Constituents of The

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Some Chemical Constituents of The COMPARISON OF SOME CHEMICAL CONSTITUENTS OF THE LYCOPODS by ELEANOR ELIZABETH McMULLAN B.Sc, University of British Columbia, 1963 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Biology and Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August, 1966 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely avail able for reference and study, I further agree that permission-for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. i i ABSTRACT A survey of some chemical constituents of the lycopods was carried out in order to determine whether the chemistry of these plants is cor• related with their taxonomy. One approach to this problem was to study the products of photosynthesis of species of Lycopodium. Selaginella and Isoetes. Radioactive C^0£ was to -hese plants and the distribution of radioactivity in sugars and amino acids was examined by means of paper chromatography. The distribution of radioactivity in sugars was characteristic for each genus, but the distribution of radioactivity in amino acids was not. In Selaginella 80% or more of the radioactivity was incorporated into trehalose while most of the rest of the radioactivity was found in sucrose. There was one exception to this: in S. kraussiana 40% of radioactivity was incorporated into trehalose while most of the rest was incorporated into an unidentified sugar. In Isoetes k% to 8% of the radioactivity was found in trehalose with most of the rest in sucrose. In Lycopodiurn 95% or more of the radioactivity was found in sucrose and none was found in trehalose. Radioactive trehalose was administered to species of these genera and it was shown that they are all able to metabolize trehalose to some degree. Species of Selaginella. Isoetes and Phylloglossum were examined to determine whether they contain alkaloids. Phylloglossum extracts contained compounds with the chromatographic properties of Lycopodiurn alkaloids, but Selaginella and Isoetes species did not contain detectable amounts of these compounds. TABLE OF CONTENTS Page INTRODUCTION 1 REVIEW OF SUBJECT 1 Morphology and Taxonomy 1 Chemistry 8 (i) General Considerations 8 (ii) Chemistry of the Lycopods 16 METHODS AND MATERIALS 31 1. Sources of Plant Material 31 2. Preparation of Aqueous Extracts 31 3. Preparation of Neutral Cation, and Anion Fractions of Plant Extracts 31 k. Preparation of Alkaloid Extracts 35 5. Methyl at ion of Sugars 35 6. Vapour Phase Chromatography 36 7. One Directional Paper Chromatography of Sugars for Qualita• tive Analysis 36 8. One Directional Paper Chromatography of Sugars for Prepara• tive Isolation 37 9. One Directional Paper Chromatography of Alkaloids 37 10. Two Directional Chromatography of Sugars and Amino Acids 37 11. Thin Layer Chromatography of Alkaloids 38 12. Column Chromatography of Sugars 39 13. Detection of Spots 39 14. Technique for Administering c'^0, 40 iv TABLE OF CONTENTS, cont'd. Page METHODS AND MATERIALS, cont'd. 15. Technique for Administering Trehalose-c'^ hi 16. Measurement of Radioactivity hi EXPERIMENTAL AND RESULTS hh 1. Vapour Phase Chromatography hh 2. Preliminary Survey of the Sugars of Lycopodiurn and Selaginella hh 3. Survey of the Distribution of Radioactivity in Sugars and Amino Acids of Lycopods Fed C'^O- hh h. Isolation of Radioactive Trehalose 48 1h 5. Administration of Trehalose-C to Plants 55 6. Examination of Selaginella, Isoetes and Phylloglossum for the Presence of Alkaloids 58 DISCUSSION 1. Use of Vapour Phase Chromatography for Quantitative Surveys of Sugars in Plants 60 2. Survey of the Metabolic Activity of Sugars and Amino Acids in Lycopods as Indicated by C1^ Incorporation 62 3. Survey of Lycopods for the Presence of Alkaloids 67 BIBLIOGRAPHY 69 SUMMARY 7h APPENDIX 76 LIST OF TABLES Table Page I Sources of Plant Material 32 II Preliminary Survey of Sugars in Lycopodiurn and Selaqinella 47 III Distribution of Radioactivity in the Neutral Aqueous Extract of Plants Fed 49 IV Distribution of Radioactivity in the Cation Fraction of Aqueous Extract of Plants Fed C^02 51 V Distribution of Radioactivity in Trehalose, Sucrose, Glucose and Fructose from Plants Administered Trehalose-Cl^ 57 vi LIST OF FIGURES Figure Page 1 Trehalose 17 2 Lycopodine 22 3 Lyconnotine 23 k Annotinine 23 5 Lycodine 2k 6 Selagine 2k 7 Cernuine, Lycocernuine, and Suggested Precursors 25 8 Biosynthesis of Annotinine Suggested by Leete 26 9 Biosynthesis of Quinolizidine Skeleton 27 10 Biosynthesis of Four Basic Skeletons of Lycopodiurn Alkaloids Suggested by Conroy 28 11 Biosynthesis of Annotinine Suggested by Ayer et al_. 30 12 Apparatus for Administering k\ 13 Vapour Phase Chromatography of Mixtures of Methylated Sucrose and Trehalose kS \k Radioautographs Showing Distribution of Radioactivity in Sugars in Representative Chromatograms 5k 15 1. Infra-red Spectrum of Crystals Obtained from Selaginella wallacei 2. Infra-red Spectrum of Trehalose 56 16 Chromatogram of Alkaloids from Extracts of 1 gm of Plant Material 59 17 Chromatogram of Alkaloids from Extracts of 1 gm of Plant Material 59 18 Chromatogram of Alkaloids from Extracts of 2 1/2 gm of Plant Material 61 VI I LIST OF FIGURES, cont'd. Figure Page 19 Representative Graph of C02 Concentration in Air Stream During C^0_ Feedings 64 20 Representative Graph of Radioactivity in Air Stream l During C ^02 Feedings 64 21 Dioxane Quenched Standards Efficiency versus Channels Ratio 77 i vi i i ACKNOWLEDGMENTS I am very grateful to Dr. G.H.N. Towers for his assistance and advice in the preparation of this thesis. I would also like to thank Dr. E.B. Tregunna for instruction in the use of radioisotopes, Dr. W.B. Schofield for his criticism of the section dealing with morphology, Dr. T.M.C. Taylor, Dr. V.J. Krajina, and Dr. W.B. Schofield for their assistance in identifying collections, and Dr. T. Bisalputra and Miss Nancy Corfman for the use of their photographic equipment. I wish to thank Mrs. Aida Tse for the infra-red spectra, and Mr. D.E. McMullan, Mr. L.K. Wade, Dr. R.C. Brooke, Mr. T. Flegel, Mr. L. Cordes, and Mr. G. Davis for their collections. 1 INTRODUCTION The extant members of the lycopods are remnants of a group of plants whose history extends back at least to the Devonian, some 50 million years before the conifers appeared and 300 million years before the angio- sperms (60). They have characteristics in common with each other and with fossilized members of the division which suggest that they have common ancestors. However, there are marked dissimilarities among some of them, implying that they have been evolving separately for a very long time. The five living genera are placed in three different orders reflecting these evolutionary lines. Some chemical constituents of these genera were surveyed in an attempt to discover whether metabolic peculiarities had arisen over this long period of evolution, and to assess the diagnostic value of these changes. REVIEW OF THE SUBJECT Morphology and Taxonomy The lycopods are distinct from the ferns, with which they were once classified, in their leaves, position of sporangia, type of branching, the gametophytes. Their leaves are microphylls, generally small and al• ways supplied by a single vein which lacks a leaf gap in the stem. Even before the lycopods were recognized as a division separate from the ferns, The classification outlined in Scagel et_ al. (49) will be followed. The plant kingdom is given twelve divisions, including Psilophyta, Lycopodophyta, Arthrophyta and Pterophyta for the former Pteridophyta. 2 microphylls were thought to have a different phylogenetic origin from the megaphylls of ferns, having developed as stem enations while megaphylls developed from a specialized branch system (50). The sporangia of lycopods are borne singly on the adaxial side of a leaf or laterally on the stem but not in aggregates on the leaf margin or on the underside as they are in the ferns. Sporophylls are often localized at the ends of branches to form strobili, structures which do not occur in ferns. Branching of the stem is dichotomous with transitions to lateral branching brought about by unequal growth of the branches. This situation is considered primitive to that in the ferns where lateral branches arise in leaf axils as a rule, though there may be reversion to dichotomous branching. The relation of a branch to a particular leaf does not occur in the lycopods except in some dorsiventral Selaginella species, where it apparently arose secondarily as a result of the factors that caused dorsi• ventral ity (50). The gametophytes of the lycopods are simpler than those of ferns. In the Selaginellales and Isoetales the gametophytes develop largely within the spore wall, on nutritive substances deposited in the spore from the sporophyte (50). In the Lycopodiales the gametophyte germinates exosporally but is smaller than a fern gametophyte and frequently lacks chlorophyll. The morphology of these gametophytes seems to be related to their development; in one species if the spore germinates above ground it produces a carrot-shaped green gametophyte, but if the gametophyte develops underground it is colourless and cylindrical. Apparently all gametophytes in the Lycopodiales have a mycorrhizal association (52). The differences 3 between lycopod and fern gametophytes are not as important phylogenetic- ally as the sporophytic differences discussed, since reduction and loss of chlorophyll in gametophytes are known in fern genera (e.g. Botrychium. Qphioglossum) and since heterospory has arisen independently in more than one group of plants (20).
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Bibliography of Isoetes
    BIBLIOGRAPHY OF ISOETES ALLEN, B.M. 1975. A note on the distribution of Isoetes in the Cadiz Province, Spain. Fern Gaz. (U.K.) 11 (2-3): 163-164 (1975). ALONSO, PAZ, E. 1989. Notas sobre plantas nuevas o interesantes para la flora Uruguaya: 1. (Notes on new or interesting plants for the Uruguayan flora: 1.) Comun. Bot. Mus. Hist. Nat. Montevideo 5 (91): 1-4 (1989) - Isoetes pp.2-3 ALSTON, A.H.G. 1982. Isoetaceae: 1. In Steenis, C.G.G.J. van, Holttum, R. E., eds. Flora Malesiana, series 2. Pteridophytes, volume 1. The Hague, Martinus Nijhoff, Dr. W. Junk Publ. 62-64 (1982)- illus., chrom. nos., key. ANDREIS, C., RODONDI, G. 1987. Alcune stazioni di Isoetes echinospora Dur. nel Bresciano e osservazioni al SEM delle spore delle Isoetes della flora Italica. Natura Bresciana no.23: 119-130 (1986 publ. 1987) - illus., maps. 4, ANTHONY, N.C., & E.A. SCHELPE, 1985. Two new taxa and a new combination in southern African Pteridophyta. Bothalia, 15 (3 & 4): 554-555 (1985) ARREGUIN-SANCHEZ, M., 1986. Nuevos registros y taxa interesantes de pteridofitas del Valle de Mexico. (Isoetaceae, Psilotaceae y Selaginellaceae) Phytologia 59 (7): 451-453 (1986) ASH, S., & K.B. PIGG. 1991. A new Jurassic Isoetites (Isoetales) from the Wallowa Terrane in Hells Canyon Oregon and Idaho. Amer. J. Bot. 78: 1636-1642. BAJPAI, U., & H.K. MAHESHWARI,1985. EM studies on the megaspores of Isoetes coromandelina. Phytomorphology, 34 (1-4): 226-231 (1984 publ. 1985) - illus. BALDWIN, W.K.W. 1933. The organization of the young sporophyte of Isoetes engelmanni, A.
    [Show full text]
  • Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R
    Review of Palaeobotany and Palynology, 19 (1975): 221—232 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands PLEUROMEIA FROM THE LOWER TRIASSIC OF THE FAR EAST OF THE U.S.S.R. V. A. KRASSILOV and Yu. D. ZAKHAROV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 26, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A. and Zakharov, Yu. D., 1975. Pleuromeia from the Lower Triassic of the Far East of the U.S.S.R. Rev. Palaeobot. Palynol., 19: 221-232. Pleuromeia obrutschewii Elias from Russian Island (Russkiy Ostrov, near Vladivostok) is hardly distinguishable from the European P. sternbergii (Muenster) Corda. The sporangia are adaxial, filling spoon-like depressions of the megasporophylls which have sterile tips. P. olenekensis sp. nov. from the Olenek River (northeastern Siberia) has larger sporangia and much larger megaspores with three-layered walls. The outer layer (ectexosporium) is reticulate. It is assumed that in other species this layer is lacking due to imperfect preservation. Mature megasporophylls, when shed, have a buoy-like shape and are often deposited together with cephalopod shells. This suggests a special mecha- nism of propagation by means of megasporophylls dispersed by water currents. The cosmopolitan distribution of Pleuromeia points to weakened climatic zonation in the Early Triassic. INTRODUCTION Pleuromeia is famous for its spectacular habitus, its alleged phylogenic role as a link between the arborescent lycopods and the reduced Isoetes, and its geological history which is unusually short for a plant genus (Early- Middle Triassic).
    [Show full text]
  • National List of Plant Species That Occur in Wetlands
    ;>\ ....--'. PB89-169940 BIOLOGICAL REPORT 88(26.9) MAY 1988 NATIONAL LIST OF PLANT SPECIES THAT OCCUR IN WETLANDS: . NORTHWEST (REGION 9) " h d W"ldl"f S· In Cooperation with the National and FIS an I I e ervlce Regional Interagency Review Panels U.S. Department of the Interior REPR~EDBY u.s. DEPARTMENTOF COMMERCE NATIONAL TECHNICAL ItEORMATJON SERVICE SPRINGFIELD. VA 22161 S02n-'Ol RE?ORT DOCUMENTATION 11. REPORT NO. PAG, iBioloqical Report 88(26.9) 4. TItle arld SUbtitle National List of Plant Species That Occur in Wetiands: Northwe~t (Region 9). 7. Autllor(s) Porter B. Reed, Jr. 9. Perfonnlnc O,..nl.etton H..... • nd _ .... National Ecology Research Center U.S. Fish and Wildlife Service 11. <:omncttC) or Gr.ntCG) No. Creekside One Bldg., 2627 Redwing Rd. Fort Collins, CO 80526-2899 CGl 12. SIlO....,.;n. O,..nlUtlon H_ .rld Acid.... 13. TYIMI of Repott & Period e-Nd Department of the Interior U.S. Fish and Wildlife Service Research and Development 14. Washington, DC 20240 The National list of Plant Species That Occur in Wetlands represents the combined efforts of many biologists over the last decade to define the wetland flora of the United States. The U.S. Fish and Wildlife Service initially developed the list in order to provide an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (FWS/OBS 79/31) to assist in the field identification of wetlands. Plant species that occur in wetlands, as used in the National List, are defined as species that have demonstrated an ability to achieve maturity and reproduce in an environment where all or portions of the soil within the root zone become, periodically or continuously, saturated or inundated during the growing season.
    [Show full text]
  • Altered Fluvial Patterns in North China Indicate Rapid Climate Change
    www.nature.com/scientificreports OPEN Altered fuvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction Zhicai Zhu1, Yongqing Liu1*, Hongwei Kuang 1*, Michael J. Benton 2, Andrew J. Newell3, Huan Xu4, Wei An5, Shu’an Ji1, Shichao Xu6, Nan Peng1 & Qingguo Zhai1 The causes of the severest crisis in the history of life around the Permian-Triassic boundary (PTB) remain controversial. Here we report that the latest Permian alluvial plains in Shanxi, North China, went through a rapid transition from meandering rivers to braided rivers and aeolian systems. Soil carbonate carbon isotope (δ13C), oxygen isotope (δ18O), and geochemical signatures of weathering intensity reveal a consistent pattern of deteriorating environments (cool, arid, and anoxic conditions) and climate fuctuations across the PTB. The synchronous ecological collapse is confrmed by a dramatic reduction or disappearance of dominant plants, tetrapods and invertebrates and a bloom of microbially- induced sedimentary structures. A similar rapid switch in fuvial style is seen worldwide (e.g. Karoo Basin, Russia, Australia) in terrestrial boundary sequences, all of which may be considered against a background of global marine regression. The synchronous global expansion of alluvial fans and high- energy braided streams is a response to abrupt climate change associated with aridity, hypoxia, acid rain, and mass wasting. Where neighbouring uplands were not uplifting or basins subsiding, alluvial fans are absent, but in these areas the climate change is evidenced by the disruption of pedogenesis. Te severest ecological crisis in Earth history, the Permian-Triassic mass extinction (PTME), occurred 252 Ma and killed over 90% of marine species and about 70% of continental vertebrate families1,2.
    [Show full text]
  • Inferring the Evolutionary Reduction of Corm Lobation in Isoëtes Using Bayesian Model- Averaged Ancestral State Reconstruction
    UC Berkeley UC Berkeley Previously Published Works Title Inferring the evolutionary reduction of corm lobation in Isoëtes using Bayesian model- averaged ancestral state reconstruction. Permalink https://escholarship.org/uc/item/39h708p5 Journal American journal of botany, 105(2) ISSN 0002-9122 Authors Freund, Forrest D Freyman, William A Rothfels, Carl J Publication Date 2018-02-01 DOI 10.1002/ajb2.1024 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE BRIEF COMMUNICATION Inferring the evolutionary reduction of corm lobation in Isoëtes using Bayesian model- averaged ancestral state reconstruction Forrest D. Freund1,2, William A. Freyman1,2, and Carl J. Rothfels1 Manuscript received 26 October 2017; revision accepted 2 January PREMISE OF THE STUDY: Inferring the evolution of characters in Isoëtes has been problematic, 2018. as these plants are morphologically conservative and yet highly variable and homoplasious 1 Department of Integrative Biology, University of California, within that conserved base morphology. However, molecular phylogenies have given us a Berkeley, Berkeley, CA 94720-3140, USA valuable tool for testing hypotheses of character evolution within the genus, such as the 2 Authors for correspondence (e-mail: [email protected], hypothesis of ongoing morphological reductions. [email protected]) Citation: Freund, F. D., W. A. Freyman, and C. J. Rothfels. 2018. METHODS: We examined the reduction in lobe number on the underground trunk, or corm, by Inferring the evolutionary reduction of corm lobation in Isoëtes using combining the most recent molecular phylogeny with morphological descriptions gathered Bayesian model- averaged ancestral state reconstruction. American from the literature and observations of living specimens.
    [Show full text]
  • Plant List Lomatium Mohavense Mojave Parsley 3 3 Lomatium Nevadense Nevada Parsley 3 Var
    Scientific Name Common Name Fossil Falls Alabama Hills Mazourka Canyon Div. & Oak Creeks White Mountains Fish Slough Rock Creek McGee Creek Parker Bench East Mono Basin Tioga Pass Bodie Hills Cicuta douglasii poison parsnip 3 3 3 Cymopterus cinerarius alpine cymopterus 3 Cymopterus terebinthinus var. terebinth pteryxia 3 3 petraeus Ligusticum grayi Gray’s lovage 3 Lomatium dissectum fern-leaf 3 3 3 3 var. multifidum lomatium Lomatium foeniculaceum ssp. desert biscuitroot 3 fimbriatum Plant List Lomatium mohavense Mojave parsley 3 3 Lomatium nevadense Nevada parsley 3 var. nevadense Lomatium rigidum prickly parsley 3 Taxonomy and nomenclature in this species list are based on Lomatium torreyi Sierra biscuitroot 3 western sweet- the Jepson Manual Online as of February 2011. Changes in Osmorhiza occidentalis 3 3 ADOXACEAE–ASTERACEAE cicely taxonomy and nomenclature are ongoing. Some site lists are Perideridia bolanderi Bolander’s 3 3 more complete than others; all of them should be considered a ssp. bolanderi yampah Lemmon’s work in progress. Species not native to California are designated Perideridia lemmonii 3 yampah with an asterisk (*). Please visit the Inyo National Forest and Perideridia parishii ssp. Parish’s yampah 3 3 Bureau of Land Management Bishop Resource Area websites latifolia for periodic updates. Podistera nevadensis Sierra podistera 3 Sphenosciadium ranger’s buttons 3 3 3 3 3 capitellatum APOCYNACEAE Dogbane Apocynum spreading 3 3 androsaemifolium dogbane Scientific Name Common Name Fossil Falls Alabama Hills Mazourka Canyon Div. & Oak Creeks White Mountains Fish Slough Rock Creek McGee Creek Parker Bench East Mono Basin Tioga Pass Bodie Hills Apocynum cannabinum hemp 3 3 ADOXACEAE Muskroot Humboldt Asclepias cryptoceras 3 Sambucus nigra ssp.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Williamsonia Stewardiana, (Open Canopy Growth Form) E.G
    Were Mesozoic Ginkgophytes Shrubby? Data on leaf morphology in the Mesozoic of North America shows a proportional increase of bifurcated, ginkgo-like leaves during the middle of the Jurassic. This ginkophyte acme is correlated with W. A. Green—Department of Geology—Yale University—P. O. Box 208109, Yale Station—New Haven, Connecticut 06520—[email protected] a decreased proportion of the leaf forms associated with herbaceous or shrubby pteridophytes, and with no substantial change in the proportion of leaf forms associated with canopy gymnosperms. The increase in ginkgo-like foliage at the same time as fern-like forms decreased in relative abundance suggests replacement of The conventional view sees all ginkgophytes as some part of the forest understory or early-successional habitats by early ginkgophytes. That is, early ginkgophytes may not have arborescent, by analogy with modern Ginkgo biloba: been competing for light or water in an established gymnosperm canopy. This suggests that most Mesozoic ginkgophytes were shrubs rather than being large trees like the surviving Ginkgo biloba. Such a result explains the absence of Mesozoid ginkgophyte wood and supports the argument that has already been made from sedimentological data, that to a much greater extent than do individuals of Ginkgo biloba now cultivated around the world, many ancestral ginkgophytes pursued early-successional strategies. 1: Competitive displacement alues) 2 v Records of Jurassic fossil occurrences in the Compendium Index of Mesozoic and Cenozoic Jurassic Records
    [Show full text]
  • The Siberian Traps and the End-Permian Mass Extinction: a Critical Review (Andy Saunders & Marc Reichow, P
    In this issue: The Siberian Traps and the End-Permian mass extinction: A critical review (Andy Saunders & Marc Reichow, p. 20-37) Chinese Science Bulletin © 2009 SCIENCE IN CHINA PRESS Springer NEWS & VIEWS Editor’s note Andy Saunders is currently Professor of Geochemistry in the Department of Geology at the University of Leicester, UK. He received a BSc in Geology (1972) from the University of Sheffield, an MSc in Mineral Chemistry (1973) and PhD in Geology (1976) from the University of Birmingham. He worked as a post-doctoral researcher at Birmingham before taking up a lectureship at Bedford College, University of London, in 1979, and moved to Leicester in 1984. He was made Reader in 1988, and Professor in 1997. He held a visiting Fellowship at the University of Wellington, New Zealand, in 1986. Andy is a renowned igneous petrologist and geochemist. He has published over 130 original research papers in leading international journals such as Nature, Science, Geology, Earth and Planetary Science Letters, Journal of Geophysical Research, Journal of Petrology, Contributions to Petrology and Mineralogy, Geochimica et Cosmochimica Acta, Chemical Geology etc. For most of his research career, Andy has investigated the formation of igneous rocks, particularly basalts. Initially, the topic of interest was active and ‘fossil’ back-arc basins in South America and the Scotia Arc, and then island arc and continental arc magmatism. After a brief sojourn into ocean islands, he began working on large igneous provinces, addressing both their formation and environmental impact. This work has taken him to Madagascar, the Solomon Islands, Russia and China, and has involved ocean drilling in the North Atlantic Ocean.
    [Show full text]
  • Pbv61n2 387.Pdf
    The Palaeobotanist 61(2012): 387-405 0031-0174/2012 $2.00 Sporophyll morphology and reconstruction of the heterosporous lycopod Tomiostrobus radiatus Neuburg emend. from the Lower Triassic of Siberia (Russia) SERGE V. NAUGOLNYKH Laboratory of Paleofloristics, Geological Institute, Russian Academy of Sciences, Pyzhevsky per 7, Moscow, 119017, Russia. Corresponding author: [email protected] (Received 5 July, 2011; revised version accepted 18 July, 2012) ABSTRACT Naugolnykh SV 2012. Sporophyll morphology and reconstruction of the heterosporous lycopod Tomiostrobus radiatus Neuburg emend. from the Lower Triassic of Siberia (Russia). The Palaeobotanist 61(2): 387-405. The paper deals with the taxon Tomiostrobus radiatus Neuburg emend., a heterosporous isoetopsid lycopod from the Babiy Kamen Locality of Lower Triassic of Siberia (Russia). Morphological diversity of the T. radiatus sporophylls is described in detail. Interpretation of structure and function of the sporophylls, and analysis of their morphological peculiarities are given. Arguments for attributing the lycopod T. radiatus to the Isoetaceae family have been provided. The reconstruction of T. radiatus is proposed. Origin and evolution of the families Isoetaceae and Pleuromeiaceae are also discussed. Key-words—Triassic, Siberia, lycopods, Tomiostrobus, Isoetaceae, Isoetes. chtk.kqi.kZ vkd`frfoKku rFkk lkbcsfj;k ¼#l½ ds fuEu r`rh;d ls izkIr fo"kechtk.kq ykbdksikWM VkWfevksLVªkscl jsfM,Vl U;wcxZ besaM uoe ds o`n~f/k iz#i dh iqulZajpuk ltZ oh ukSxkWYuh[k lkjka'k ;g 'kks/k&i= lkbcsfj;k
    [Show full text]
  • Washington Flora Checklist a Checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium
    Washington Flora Checklist A checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium The Washington Flora Checklist aims to be a complete list of the native and naturalized vascular plants of Washington State, with current classifications, nomenclature and synonymy. The checklist currently contains 3,929 terminal taxa (species, subspecies, and varieties). Taxa included in the checklist: * Native taxa whether extant, extirpated, or extinct. * Exotic taxa that are naturalized, escaped from cultivation, or persisting wild. * Waifs (e.g., ballast plants, escaped crop plants) and other scarcely collected exotics. * Interspecific hybrids that are frequent or self-maintaining. * Some unnamed taxa in the process of being described. Family classifications follow APG IV for angiosperms, PPG I (J. Syst. Evol. 54:563?603. 2016.) for pteridophytes, and Christenhusz et al. (Phytotaxa 19:55?70. 2011.) for gymnosperms, with a few exceptions. Nomenclature and synonymy at the rank of genus and below follows the 2nd Edition of the Flora of the Pacific Northwest except where superceded by new information. Accepted names are indicated with blue font; synonyms with black font. Native species and infraspecies are marked with boldface font. Please note: This is a working checklist, continuously updated. Use it at your discretion. Created from the Washington Flora Checklist Database on September 17th, 2018 at 9:47pm PST. Available online at http://biology.burke.washington.edu/waflora/checklist.php Comments and questions should be addressed to the checklist administrators: David Giblin ([email protected]) Peter Zika ([email protected]) Suggested citation: Weinmann, F., P.F. Zika, D.E. Giblin, B.
    [Show full text]