What Small Modular Reactors Can Learn From

Total Page:16

File Type:pdf, Size:1020Kb

What Small Modular Reactors Can Learn From E NCOURAGING N U C L E A R I N N O V A T I O N WHAT SMALL MODULAR R EACTORS CAN LEARN FR OM NUCLEAR ATTACK SUBMARINE DEV ELOPMENT Master of Arts in Law and Diplomacy Capstone Project Submitted by Evan M. Paradis February 28th, 2014 © 2014 EVAN M. PARADIS http://fletcher.tufts.edu Table of Contents List of Tables & Figures ......................................................................................................................................... 1 Abstract: ............................................................................................................................................................... 2 Introduction .......................................................................................................................................................... 3 Impetus for this Study: The SMR Licensing & Technical Support Program & the Failures of Nuclear Innovation . 5 What is SMR? ................................................................................................................................................. 5 Nuclear’s Need for Innovation: The Rationale for SMR ............................................................................... 10 Economics & Finance ................................................................................................................................... 13 Siting Flexibility ............................................................................................................................................ 16 Safety ........................................................................................................................................................... 17 Nonproliferation .......................................................................................................................................... 18 Existing Benefits of Nuclear Energy .............................................................................................................. 20 Literature Review: Energy Technology Innovation System, the Valley of Death, and Studies in Nuclear Innovation ........................................................................................................................................................... 23 Previous Studies in Nuclear Innovation ........................................................................................................ 23 Literature Review: Conclusion ...................................................................................................................... 31 Innovation and Energy Technology ..................................................................................................................... 33 Rationale, Objectives, and Methods of this Study .............................................................................................. 38 Nuclear Attack Submarine (SSN) Innovation Network ........................................................................................ 41 Introduction ................................................................................................................................................. 41 The SSN Development Network ................................................................................................................... 42 SSN Network: Initial Formation ................................................................................................................... 43 Organizational Culture ................................................................................................................................. 52 Where Culture Meets Design ....................................................................................................................... 55 Platforms in the United States Navy ............................................................................................................ 58 Learning Effects in SSN Development ................................................................................................................. 69 Problems with Seawolf ................................................................................................................................. 70 The Virginia Class Platform .......................................................................................................................... 72 Learning Effects: Conclusion ........................................................................................................................ 79 Lessons from the SSN Network: Enabling the Key Functions of Innovation Systems .......................................... 80 Recommendations .............................................................................................................................................. 87 Network Strengthening ................................................................................................................................ 87 Policy Incentives ........................................................................................................................................... 88 SMR Design .................................................................................................................................................. 90 Cultural Legitimacy ...................................................................................................................................... 91 International Markets for SMR .................................................................................................................... 92 Future Work on Naval Reactors ................................................................................................................... 92 Conclusion........................................................................................................................................................... 93 Appendix A: Offshore Power Systems ................................................................................................................ 95 Appendix B: Innovations Specific to Virginia Class Submarines ......................................................................... 99 Bibliography ...................................................................................................................................................... 101 List of Tables & Figures FIGURE 1: DOE ENERGY TECHNOLOGY SHARE OF FUNDING, COMPARISON OVER THREE PERIODS .. ERROR! BOOKMARK NOT DEFINED.3 FIGURE 2: TEMPORAL TRENDS IN UNITED STATES ENERGY PATENTS .......................................... ERROR! BOOKMARK NOT DEFINED.4 FIGURE 3: COMPARISON OF FRENCH AND UNITED STATES NUCLEAR CONSTRUCTION COSTS, AVERAGE AND MINIMUM/MAXIMUM PER REACTOR COMPLETION YEAR ....................................................................................................................................................28 FIGURE 4: LEVELIZED COSTS OF LEAD AND LEARNING PLANTS ($/MWH) .................................................................................30 FIGURE 5: THE ENERGY TECHNOLOGY INNOVATION SYSTEM ..................................................... ERROR! BOOKMARK NOT DEFINED.5 FIGURE 6: THE VALLEY OF DEATH ........................................................................................................................................36 FIGURE 7: THE MOUNTAIN OF DEATH ..................................................................................................................................37 FIGURE 8: UNITED STATES GOVERNMENT SUPPORT NETWORK FOR SSN DEVELOPMENT .............................................................46 FIGURE 9: THE UNITED STATES NAVY'S ANNUAL BUDGET FOR PROCUREMENT FOR REACTOR POWER PLANTS AND REACTOR PLANT COMPONENTS, FY1996 TO FY2014 (IN MILLIONS $) ....................................................................................................48 FIGURE 10: DOE AND NAVY RESEARCH, DEVELOPMENT, TESTING & EVALUATION FUNDING FOR NUCLEAR TECHNOLOGIES (IN MILLIONS $) ..............................................................................................................................................................................50 FIGURE 11: UNITED STATES NAVY’S RDT&E BUDGET FOR PRE-EXISTING SUBMARINE MODERNIZATION, DEVELOPMENT, AND ADVANCEMENT OF NEW SUBMARINE DESIGNS (IN MILLIONS $) .............................................................................................................51 FIGURE 12: VIRGINIA CLASS SUBMARINE END-ITEM RECURRING FLYAWAY COST (IN MILLIONS OF 1995 $)....................................73 FIGURE 13: VIRGINIA CLASS SUBMARINE DELIVERY RATES (MONTHS) .....................................................................................74 FIGURE 14: INSURV READINESS RESULTS FOR DELIVERED VIRGINIA CLASS SUBMARINES ............................................................75 FIGURE 15: AVERAGE INITIAL INSURV READINESS SCORES FOR VIRGINIA CLASS SUBMARINES ....................................................75 TABLE 1: UNITED STATES NAVY’S MODERN NUCLEAR ATTACK SUBMARINE PLATFORM EVOLUTION ............................................58 TABLE 2: SOVIET NAVY’S NUCLEAR SUBMARINE INCIDENTS COMPARED TO THOSE OF THE UNITED STATES NAVY ...................... 66-67 Page | 1 Abstract: Small modular reactors (SMR) represent the most recent innovation by nuclear engineering firms in the United States, and thus are the subject of a great deal of optimism within the industry. SMR units are advanced reactors (Generation III+ or IV) that are miniaturized
Recommended publications
  • Advanced Reactors
    © 2012 European Nuclear Society Rue Belliard 65 1040 Brussels, Belgium Phone + 32 2 505 30 54 Fax +32 2 502 39 02 E-mail [email protected] Internet www.euronuclear.org ISBN 978-92-95064-14-0 These transactions contain all contributions submitted by 7 December 2012. The content of contributions published in this book reflects solely the opinions of the authors concerned. The European Nuclear Society is not responsible for details published and the accuracy of data presented. 2 of 96 ENC2012-A0026 Development of a thermohydraulic model of the Lazaro Chueca, A. (1); Ammirabile, L. (1); European Sodium Fast Reactor (ESFR) using Martorell, S. (2) the system code TRACE. 1 - JRC-IET, Netherlands 2 - Universidad Politecnica de Valencia, Spain ENC2012-A0028 Generation IV Technology Status including Anderson, G. (1); Lillington, J. (1) recent R & D Activities in ANSWERS 1 - AMEC, United Kingdom ENC2012-A0053 Preliminary Design Assessment of the Molten Merle-Lucotte, E. (1); Allibert, M. (1); Salt Fast Reactor Brovchenko, M. (1); Ghetta, V. (1); Heuer, D. (1); Rubiolo, P. (1); Laureau, A. (1) 1 - LPSC-IN2P3-CNRS / UJF / Grenoble INP, France ENC2012-A0078 Development of materials to withstand the Shepherd, D. (1) extreme, irradiated environments in advanced 1 - National Nuclear Laboratory, United Kingdom nuclear fission reactors ENC2012-A0126 ARCHER:- Material and component challenges Buckthorpe, D. (1) for the Advanced High Temperature Reactor 1 - AMEC, United Kingdom ENC2012-A0258 Pressure Drop Analysis of a Pressure-Tube Type Peiman, W. (1); Saltanov, E. (1); Pioro, I. SuperCritical Water-Cooled Reactor (SCWR) (1); Gabriel, K. (1) 1 - University of Ontario Institute of Technology, Canada ENC2012-A0003 SPES3: THE INTEGRAL FACILITY FOR Ferri, R.
    [Show full text]
  • EB News May 2003
    MAY 2003 First Group Model is presented to Jimmy Carter Completes Degree In Ship Systems Technology Castine, Maine ith pomp and circum- stance, 18 MDA-UAW Wmembers marked a significant achievement in their lives as they accepted associate's degrees in ship systems design technology from Maine Maritime Academy (MMA). The 18 men and women are the first graduates of Electric Boat’s associate’s degree program, which began in 1999. Under this program, graduates of EB’s five-year design continued on page 8 Patternmaker David Keith (300), INSIDE who built the Jimmy Carter The President’s Corner • 2 (SSN-23) model for the former John Holmander Receives GD president, said it was an honor to Technical Excellence Award • 3 do so. “It was good being able to Earned Hours • 3 make something for his museum,” Keith said. “It’s something people The EB Dive Team – will see forever.” Jacks Of All Trades • 4 Employees Put Automated Milling Above, former President Jimmy Carter admires a Machine To New Uses • 5 scale model of the USS Jimmy Carter (SSN-23) at U.S. Navy Awards General the presentation of the model to the Jimmy Carter Dynamics $24M Contract • 6 Library and Museum in Atlanta on May 15. EBMA Awards $14,500 In College Presenting the model to Carter was Mike Toner, Scholarships • 7 above right, executive vice president of General Lend A Hand At United Way’s Day Dynamics and the president of Electric Boat. Of Caring • 9 Describing the model to Carter is Pete Halvordson, Retirees • 9 Seawolf Class program manager.
    [Show full text]
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • 60 Years of Marine Nuclear Power: 1955
    Marine Nuclear Power: 1939 - 2018 Part 4: Europe & Canada Peter Lobner July 2018 1 Foreword In 2015, I compiled the first edition of this resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60th anniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955. That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 – 2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations. In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 – 2018.” What you have here is Part 4: Europe & Canada. The other parts are: Part 1: Introduction Part 2A: United States - Submarines Part 2B: United States - Surface Ships Part 3A: Russia - Submarines Part 3B: Russia - Surface Ships & Non-propulsion Marine Nuclear Applications Part 5: China, India, Japan and Other Nations Part 6: Arctic Operations 2 Foreword This resource document was compiled from unclassified, open sources in the public domain. I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.
    [Show full text]
  • Marine Nuclear Power 1939 – 2018 Part 1 Introduction
    Marine Nuclear Power: 1939 – 2018 Part 1: Introduction Peter Lobner July 2018 1 Foreword In 2015, I compiled the first edition of this resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60th anniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955. That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 – 2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations. In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 – 2018.” What you have here is Part 1: Introduction. The other parts are: Part 2A: United States - Submarines Part 2B: United States - Surface Ships Part 3A: Russia - Submarines Part 3B: Russia - Surface Ships & Non-propulsion Marine Nuclear Applications Part 4: Europe & Canada Part 5: China, India, Japan and Other Nations Part 6: Arctic Operations 2 Foreword This resource document was compiled from unclassified, open sources in the public domain. I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.
    [Show full text]
  • Advances in Small Modular Reactor Technology Developments
    Advances in Small Modular Reactor Technology Developments Advances in Small Modular Reactor Technology Developments Technology in Small Modular Reactor Advances A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2018 18-02989E ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS 2018 Edition A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org DISCLAIMER This is not an official IAEA publication. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.
    [Show full text]
  • AIEA D”Pliant 2013
    The CEA is a leading IRSN is the public AREVA supplies ever DCNS designs, builds The EDF group is ASSYSTEM is an ANDRA (National AFNI (France I2EN: The mission of The INSTN stands public body in research, expert in nuclear and safer and more and supports French an integrated energy international Agency for Radioactive International Nuclear the International out as a specifically development and radiological risks for economical solutions Navy nuclear company with a Engineering and Waste Management) Agency) is your Institute of Nuclear nuclear oriented innovation. The CEA is all nuclear facilities. for power generation powered vessels for presence in a wide Innovation Consultancy ensures the sustainable partner to benefit from Energy (I2EN) is to higher education active in four main As a research and with less carbon: more than 50 years. range of electricity- representing 10,200 management of the experience and provide the best institution. As part of areas: low-carbon expert appraisal nuclear and With a large offer related businesses: people worldwide. radioactive waste know-how of France in training solutions for the CEA, the INSTN energies, defence and organisation, IRSN renewables. Ranked covering engineering, nuclear, renewable As a key participant produced in France the preparation of human resources draws on the scientific security, information works together with all first in the global manufacturing and and fossil-fuel fired in the nuclear industry and provides surface your nuclear project. development in potential of this technology and health the parties concerned nuclear power services, DCNS energy production; for 45 years, disposal solutions for AFNI will assist you to nuclear energy to leading institution in technology.
    [Show full text]
  • 2016 NAVAL SUBMARINE LEAGUE CORPORATE MEMBERS 5 STAR LEVEL Bechtel Nuclear, Security & Environmental (BNI) (New in 2016) BWX Technologies, Inc
    NAVAL SUBMARINE LEAGUE TH 34 ANNUAL SYMPOSIUM SPONSORS L-3 COMMUNICATIONS NEWPORT NEWS SHIPBUILDING-A DIVISION OF HUNTINGTON INGALLS INDUSTRIES GENERAL DYNAMICS—ELECTRIC BOAT GENERAL DYNAMICS—MISSION SYSTEMS HUNT VALVE COMPANY, INC. LOCKHEED MARTIN CORPORATION NORTHROP GRUMMAN NAVIGATION & MARITIME SYSTEMS DIVISION RAYTHEON COMPANY AECOM MANAGEMENT SERVICES GROUP BAE SYSTEMS BWX TECHNOLOGIES, INC. CURTISS-WRIGHT CORPORATION DRS TECHNOLOGIES, MARITIME AND COMBAT SUPPORT SYSTEMS PROGENY SYSTEMS, INC. TREADWELL CORPORATION TSM CORPORATION ADVANCED ACOUSTIC CONCEPTS BATTELLE BOEING COMPANY BOOZ ALLEN HAMILTON CEPEDA ASSOCIATES, INC. CUNICO CORPORATION & DYNAMIC CONTROLS, LTD. GENERAL ATOMICS IN-DEPTH ENGINEERING, INC. OCEANEERING INTERNATIONAL, INC. PACIFIC FLEET SUBMARINE MEMORIAL ASSOC., INC. SONALYSTS, INC. SYSTEMS PLANNING AND ANALYSIS, INC. ULTRA ELECTRONICS 3 PHOENIX ULTRA ELECTRONICS—OCEAN SYSTEMS, INC. 1 2016 NAVAL SUBMARINE LEAGUE WELCOME TO THE 34TH ANNUAL SYMPOSIUM TABLE OF CONTENTS SYMPOSIUM SPEAKERS BIOGRAPHIES ADM FRANK CALDWELL, USN ................................................................................ 4 VADM JOSEPH TOFALO, USN ................................................................................... 5 RADM MICHAEL JABALEY, USN ............................................................................. 6 MR. MARK GORENFLO ............................................................................................... 7 VADM JOSEPH MULLOY, USN .................................................................................
    [Show full text]
  • 2011 Design Symposium Brochure
    Naval Construction and Engineering Ship Design and Technology Symposium Wednesday, April 27, 2011 MIT Faculty Club, 50 Memorial Drive, Building E52-Sixth Floor 0800 – 0900 Registration and continental breakfast 0900 – 0915 Welcome and Opening Remarks 0915 – 1000 Research Briefs 1000 – 1030 Break and Poster Sessions (featuring student theses and projects) 1030 – 1200 Student Design Project and Research Briefs 1200 – 1230 Break and Poster Sessions (featuring student theses and projects) 1230 – 1400 Lunch Buffet and Keynote Address 1400 – 1500 Student Design Project and Research Briefs 1500 – 1530 Break and Poster Sessions (featuring student theses and projects) 1530 – 1630 Student Design Project and Research Briefs 1630 – 1645 Closing Remarks History In August 1897, the Chief Naval Constructor, Commodore Hichborn requested Massachusetts Institute of Technology to develop and offer a three-year course of study for the professional training of naval constructors. MIT cordially responded to this request and a course of study was agreed upon. The three years of work were designated as the Junior, Senior, and Graduate years. Successful completion of the course led to the Master of Science degree. In 1901, three graduates of the U.S. Naval Academy, Ensigns Ferguson, McEntee, and Spilman, began the course of study under the direction of Professor William Hovgaard. A 1877 graduate of the Danish Naval Academy in Copenhagen, Hovgaard served in the Danish Royal Navy until 1883 when he was sent to the Royal Naval College in Greenwich, England, to study warship construction. He graduated from its three-year course in 1886 and the next year published his first naval book, “Submarine Boats.” In 1901, as a Commander in the Danish Navy, he came to the United States to continue his study of the submarine and was induced by the Secretary of the Navy, John D.
    [Show full text]
  • Politique Industrielle Et De Relance : Nous Avons Beaucoup À Apprendre De Nos Filières Industrielles Stratégiques Et Historiques ! 2 Sommaire
    Politique industrielle et de relance : nous avons beaucoup à apprendre de nos filières industrielles stratégiques et historiques ! 2 Sommaire Introduction 04 Partie 1 06 Confrontées à l’impératif de souveraineté, les filières industrielles stratégiques et historiques ont intégré des enjeux spécifiques. Partie 2 14 Les « bonnes pratiques » des filières stratégiques historiques devraient inspirer d’autres secteurs mis en défaut d’autonomie par la crise sanitaire. Partie 3 18 Quels enseignements tirer en matière de politique industrielle dans un contexte de relance ? Contact 24 3 Introduction FILIÈRES INDUSTRIELLES Sous-marins australiens, usine de souveraineté. Dans le monde STRATÉGIQUES retraitement du combustible nucléaire économique, les appels à la relance HISTORIQUES en Chine, EPR, A380, succession ont été nombreux. Celle-ci devrait du porte-avions Charles de Gaulle… être fondée sur une nouvelle politique c’est très souvent par le prisme de industrielle générale, et la (re ?) DÉFENSE l’événement – grande négociation nomination du Haut-Commissaire TERRESTRE, NAVAL ET bilatérale, signature d’un contrat, au Plan devrait en être le vecteur : AÉRONAUTIQUE dérapage d’un programme – que les quelles priorités selon les secteurs ? industries de grands programmes avec quel plan de marche et quels (défense, énergie, transport, spatial) moyens de suivi ? ÉNERGIE font parler d’elles. Pourtant, ces NUCLÉAIRE grands contrats sont avant tout Autant de questions face auxquelles le fruit d’une politique industrielle nos filières stratégiques historiques
    [Show full text]
  • Les Réacteurs Nucléaires Bugey Jacky Ruste Ingénieur INSA Génie Physique Docteur Ingénieur Université Nancy 1 (Ing
    Ecole Doctorale SI-MMEA Science et Ingénierie en Matériaux, Mécanique, Energétique et Aéronautique Formation thématique : nucléaire et matériaux Chinon Chooz Les réacteurs nucléaires Bugey Jacky Ruste Ingénieur INSA Génie Physique Docteur Ingénieur Université Nancy 1 (Ing. Senior EDF R&D) 1 [email protected] Civeaux http://micro.icaunais.free.fr L’énergie nucléaire c’est : En 2013: 435 réacteurs en service (dont 58 en France) 73 réacteurs en construction 160 réacteurs programmés 320 réacteurs en projet… 5 % de l’énergie primaire produite dans le monde 13,5 % de la production mondiale d’électricité 30 % de la production électrique de l’Union Européenne 75 % de la production française d’électricité (2012) Nombre de morts par TWh produit (selon le Wall Street Daily) L’éolien est 4 fois plus dangereux, le solaire 10 fois plus, le pétrole 1.000 fois plus et le charbon 4.000 fois plus ! (responsable de 15.000 morts par an) Selon une autre étude publiée par « Environnemental Science & technology », entre 1971 et 2009, le nucléaire 2 aurait évité près de 2 millions de décès, en se substituant aux énergies fossiles… d’ici 2018 73 réacteurs seront construits dans le monde au printemps 2013 D’autres, au Nigéria, en Turquie, en Jordanie, en Grande Bretagne, en Argentine, au Brésil…… sont en projet… des PWR, BWR, Candu, VVER, EPR, … Il n’y a pas qu’un seul type de réacteurs nucléaires… il existe différentes filières 1 - Un réacteur nucléaire, comment ça marche ? 2 – Quelles sont les différentes filières actuelles? 3 3 – Que seront les réacteurs
    [Show full text]
  • World Status of the SMR Projects
    Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile RICERCA DI SISTEMA ELETTRICO World status of the SMR projects L. Paparusso, M.E. Ricotti, M. Sumini Report RdS/2011/166 WORLD STATUS OF THE SMR PROJECTS L. Paparusso, M.E. Ricotti – Politecnico di Milano, M. Sumini – Università di Bologna Dienca Settembre 2011 Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico – ENEA Area: Governo, Gestione e sviluppo del sistema elettrico nazionale Progetto: Nuovo nucleare da fissione: collaborazioni internazionali e sviluppo competenze in materia nucleare Responsabile Progetto: Paride Meloni, ENEA CIRTEN Consorzio Interuniversitario per la Ricerca TEcnologica Nucleare °POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA, Sezione INGEGNERIA NUCLEARE-CeSNEF *UNIVERSITA’ DI BOLOGNA DIENCA - Dipartimento di Ingegneria Energetica, Nucleare e del controllo ambientale World status of the SMR projects L. Paparusso°, M.E. Ricotti°, M. Sumini* CERSE POLIMI RL 1351/2011 Milano, Settembre 2011 Lavoro svolto in esecuzione della linea progettuale LP1– punto B4 AdP MSE‐ENEA “Ricerca di Sistema Elettrico” - PAR2008-09 Progetto 1.3 – “Nuovo Nucleare da Fissione”. Rapporto “World status of the SMR projects” INDEX EXECUTIVE SUMMARY .................................................................................................................... ‐ 3 ‐ 1 INTRODUCTION .................................................................................................................. ‐ 4 ‐ SMR projects
    [Show full text]