Links Between Lateral Riparian Vegetation Zones and Flow

Total Page:16

File Type:pdf, Size:1020Kb

Links Between Lateral Riparian Vegetation Zones and Flow Links between lateral riparian vegetation zones and flow Michiel Karl Reinecke Dissertation presented for the degree of Doctor of Philosophy in the Faculty of AgriSciences at Stellenbosch University Supervisors: Professors Karen Esler, Cate Brown and Jackie King December 2013 i Stellenbosch University http://scholar.sun.ac.za DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. This dissertation includes 5 original unpublished publications. The development and writing of the papers were the principle responsibility of myself and, for each of the cases where this is not the case, a declaration is included in the dissertation indicating the nature and extent of the contributions of co-authors. Date: 23 October 2013 Copyright © 2013 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za ABSTRACT Riparian vegetation communities that occur along perennial rivers are structured in lateral zones that run parallel to river flow. This dissertation investigated the structure of South African riparian vegetation communities along perennial, single-thread headwater streams. The central assumption was that lateral zones result from differential species’ responses to changing abiotic factors along a lateral gradient up the river bank. It was first necessary to establish the pattern of zones and whether this pattern occurs repetitively and predictably on different rivers in different biomes. Since the flow regime is considered to be the master variable that controls the occurrence of lateral zones, the link between flow as the major abiotic driver and the distribution of plants in zones was determined. Predictions were made with respect to how variable flow may influence phenological traits, particularly with respect to seed dispersal, and physiological tolerances to drying out and were tested. The existence of lateral zones at reference sites in the Western Cape of South Africa was explored and their vegetation characteristics were described. Plant distribution was related to bank slope, as defined by elevation and distance from the wetted channel edge during summer (dry season) low flow, indicating a direct link to river bank hydraulics. Whether or not the same zonation patterns occur in riparian communities in other parts of South Africa was explored next. The four zones described for Fynbos Riparian Vegetation were evident at all of the other rivers tested, despite major differences in geographic location, vegetation community type, climate and patterns of seasonal flow. The four lateral zones could be separated from each other using a combination of flood recurrence and inundation duration. Functional differences were investigated between three tree species that occur in Fynbos Riparian Vegetation. Functional differences were apparent with respect to timing of seed dispersal, growth in branch length versus girth and three physiological measures of tolerance to drying out; specific leaf area (cm2.g-1), wood density (g.cm-3) and levels of carbon isotopes (δ13C). In order to determine the impact of invasive alien plants and to monitor recovery after clearing, the physical rules devised to help delineate zones were used to locate lateral zones that had been obliterated after invasion and subsequent clearing. At the sites invaded by A. mearnsii plants, the zone delineations showed that invasion started in the lower dynamic zone, where adult and sapling A. mearnsii were most abundant. In un-invaded systems, this zone was the least densely vegetated of the four zones, the most varied in terms of inundation duration and the frequency of inter- and intra-annual floods, and was an area of active recruitment comprised mainly of recruiting seedlings and saplings. An understanding of the functional differences between lateral zones was a common thread at each riparian community that was linked to the annual frequency of inundation and the period, when inundated. iii Stellenbosch University http://scholar.sun.ac.za OPSOMMING Oewer plantegroei gemeenskappe wat langs standhoudende riviere voorkom is gestruktureer in laterale sones parallel met die rivier vloei. Hierdie verhandeling ondersoek die struktuur van Suid-Afrikaanse oewer plantegroei gemeenskappe langs standhoudende, enkelloop hoof strome. Die sentrale aanname was dat laterale sones vorm as gevolg van verskillende spesies se reaksie teenoor die verandering van abiotiese faktore teen 'n laterale gradiënt met die rivierbank op. Dit was eers nodig om die patroon van die gebiede vas te stel en uit te vind of hierdie patroon herhaaldelik en voorspelbaar binne verskillende riviere in verskillende biome voorkom. Aangesien die vloeiwyse beskou word as die hoof veranderlike wat die teenwoordigheid van laterale sones beheer, is die skakel tussen die vloei, as die belangrikste abiotiese bestuurder, en die verspreiding van plante in sones bepaal. Voorspellings is gemaak met betrekking tot hoe veranderlike vloei fenologiese eienskappe kan beïnvloed, veral met betrekking tot die saad verspreiding, en fisiologiese toleransie teen uitdroog, en is getoets. Die bestaan van laterale sones binne verwysings studie terreine in die Wes-Kaap van Suid- Afrika is ondersoek en hul plantegroei eienskappe is beskryf. Plant verspreiding was verwant aan bank helling, soos gedefinieer deur hoogte en afstand vanaf die nat kanaal rand gedurende somer (droë seisoen) lae vloei, en dui dus op 'n direkte skakel met die rivier bank hidroulika. Of dieselfde sonering patrone voorkom in oewer gemeenskappe in ander dele van Suid-Afrika is volgende verken. Die vier sones beskryf vir fynbos oewer plantegroei was duidelik by al die ander riviere wat ondersoek is, ten spyte van groot verskille in geografiese ligging, plantegroei gemeenskap tipe, klimaat en patrone van seisoenale vloei. Die vier laterale sones kan onderskei word van mekaar deur middel van 'n kombinasie van vloed herhaling en oorstroomde toestand duur. Funksionele verskille is ondersoek tussen drie boom spesies wat voorkom in Fynbos Oewer Plantegroei. Funksionele verskille was duidelik met betrekking tot tydsberekening van saad verspreiding, groei in tak lengte tenoor omtrek, en drie fisiologiese maatstawwe van verdraagsaamheid teenoor uitdroging; spesifieke blaar area (cm2.g-1), hout digtheid (g.cm-3) en vlakke van koolstof isotope (δ13C). Ten einde die impak van indringerplante te bepaal en die herstel na ontbossing te monitor is die fisiese reëls voorheen vasgestel om sones te help baken gebruik om laterale sones, wat vernietig is na indringing en die daaropvolgende ontbossing, te vind. Op die terreine wat deur A. mearnsii indringerplante binnegeval is, het die indeling van sones getoon dat die indringing begin het in die laer dinamiese sone, waar volwasse en klein A. mearnsii bome die volopste was. In stelsels wat nie binnegeval is deur indringerplante was hierdie sone die minste dig begroei van die vier sones, die mees verskillend in terme van oorstroomde toestand duur en die frekwensie van inter-en intra-jaarlikse vloede, en was 'n gebied van aktiewe werwing hoofsaaklik bestaande uit rekruut saailinge en boompies. 'n Begrip van die funksionele verskille tussen laterale sones was 'n algemene verskynsel by elke oewer gemeenskap wat gekoppel was aan die jaarlikse frekwensie van oorstroming en die oorstroomde toestand duur. iv Stellenbosch University http://scholar.sun.ac.za ABSTRACT ........................................................................................................................ iii OPSOMMING .................................................................................................................... iv ACKNOWLEDGEMENTS ................................................................................................ xiii 1 Introduction ..................................................................................................................... 1 1.1 Definitions ................................................................................................................ 1 1.1.1 Riparian area ..................................................................................................... 1 1.1.2 Riparian vegetation ........................................................................................... 2 1.1.3 Environmental Flows ......................................................................................... 2 1.1.4 Lateral vegetation zones ................................................................................... 2 1.2 Focus of the dissertation .......................................................................................... 2 2 Literature review .............................................................................................................. 5 2.1 Flow and the structure of river channels ................................................................... 5 2.1.1 Basin scale concepts of river channel structure ................................................. 5 2.1.2 A hierarchical geomorphological classification for South African rivers .............. 6 2.1.3 Riparian areas as ecological landscapes ..........................................................
Recommended publications
  • Otanewainuku ED (Report Prepared on 13 August 2013)
    1 NZFRI collection wish list for Otanewainuku ED (Report prepared on 13 August 2013) Fern Ally Isolepis cernua Lycopodiaceae Isolepis inundata Lycopodium fastigiatum Isolepis marginata Lycopodium scariosum Isolepis pottsii Psilotaceae Isolepis prolifera Tmesipteris lanceolata Lepidosperma australe Lepidosperma laterale Gymnosperm Schoenoplectus pungens Cupressaceae Schoenoplectus tabernaemontani Chamaecyparis lawsoniana Schoenus apogon Cupressus macrocarpa Schoenus tendo Pinaceae Uncinia filiformis Pinus contorta Uncinia gracilenta Pinus patula Uncinia rupestris Pinus pinaster Uncinia scabra Pinus ponderosa Hemerocallidaceae Pinus radiata Dianella nigra Pinus strobus Phormium cookianum subsp. hookeri Podocarpaceae Phormium tenax Podocarpus totara var. totara Iridaceae Prumnopitys taxifolia Crocosmia xcrocosmiiflora Libertia grandiflora Monocotyledon Libertia ixioides Agapanthaceae Watsonia bulbillifera Agapanthus praecox Juncaceae Alliaceae Juncus articulatus Allium triquetrum Juncus australis Araceae Juncus conglomeratus Alocasia brisbanensis Juncus distegus Arum italicum Juncus edgariae Lemna minor Juncus effusus var. effusus Zantedeschia aethiopica Juncus sarophorus Arecaceae Juncus tenuis var. tenuis Rhopalostylis sapida Luzula congesta Asparagaceae Luzula multiflora Asparagus aethiopicus Luzula picta var. limosa Asparagus asparagoides Orchidaceae Cordyline australis x banksii Acianthus sinclairii Cordyline banksii x pumilio Aporostylis bifolia Asteliaceae Corunastylis nuda Collospermum microspermum Diplodium alobulum Commelinaceae
    [Show full text]
  • 212Asparagus Workshop Part1.Indd
    Plant Protection Quarterly Vol.21(2) 2006 63 National Asparagus Weeds Management Workshop Proceedings of a workshop convened by the National Asparagus Weeds Management Committee held in Adelaide on 10–11 November 2005. Editors: John G. Virtue and John K. Scott. Introduction John G. VirtueA and John K. ScottB A Department of Water Land and Biodiversity Conservation, GPO Box 2834, Adelaide, South Australia 5001, Australia. E-mail: [email protected] B CSIRO Entomology, Private Bag 5, PO Wembley, Western Australia 6913, Australia. Welcome to this special issue of Plant Pro- The National Asparagus Weeds Man- authors for the effort they have put into tection Quarterly, which details the current agement Committee (NAWMC) convened their papers and all the workshop par- state of Asparagus weeds management in the National Asparagus Weeds Manage- ticipants for their contribution. A special Australia. Bridal creeper, Asparagus as- ment Workshop in Adelaide, 10–11 No- thanks for workshop organization also paragoides (L.) Druce, is the best known vember 2005. The workshop was attended goes to Dennis Gannaway and Susan Asparagus weed and certainly deserves by 60 people including representation ex- Lawrie. its Weed of National Signifi cance (WoNS) tending from South Africa, through most status in Australia. However, there are regions of continental Australia, to Lord Reference other Asparagus species in Australia that Howe Island in the Pacifi c. The workshop Agriculture & Resource Management have the potential to reach similar levels was made possible with funding assistance Council of Australia & New Zealand, of impact as bridal creeper on biodiversity through the Australian Government’s Nat- Australia & New Zealand Environment (and hence their inclusion in the national ural Heritage Trust.
    [Show full text]
  • Rdna) Organisation
    OPEN Heredity (2013) 111, 23–33 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation S Garcia1 and A Kovarˇı´k2 In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (B30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.
    [Show full text]
  • Gymnosperms of Nilgiris District, Tamil Nadu
    Research in Plant Biology, 4(6): 10-16, 2014 ISSN : 2231-5101 www.resplantbiol.com Regular Article Gymnosperms of Nilgiris District, Tamil Nadu *Jeevith S.1, Ramachandran V.S.1 and V. Ramsundar 2 1Taxonomy and Floristic Lab, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India, 2Government Botanical Garden, Udhagamandalam, Nilgiris - 643 001, Tamil Nadu, India * Corresponding author Email : [email protected] Gymnosperms are seed bearing vascular plants; an intermediate of Pteridophytes and Angiosperms occupying an important place in the plant kingdom. In the present study 43 species belonging to 20 genera comes under 10 families. The wild and exotic species are catalogue in Government botanical garden at Udhagamandalam for conservation strategies. Key words: Gymnosperms, naked seed, Nilgiris. A Gymnosperm is a seed plant that and they still successful in many parts of produces naked seeds that are not enclosed the world and occupy large of earth’s by a protective fruit. They have needle or surface (Dar and Dar, 2006). The scale like leaves and deep growing root importances of gymnosperms include system. Conifers are the largest group of mainly evergreen trees and shrubs, which gymnosperms on earth. The Gymnosperms are extremely captivating because of their are group co-ordinate with the graceful habit and attractive shapes Angiosperms within Phanerogams or (Poonam Tripati, Lalit M. Tewari, Ashish Spermatophytes. The Pteridospermales or Tewari, Sanjay Kumar, Pangtey, Y. P. S. and Cycadofilicales, fern like seed bearing plants Geeta Tewari, 2009). The Indian of Cordaitales dominated to the earth in subcontinent one of the 34 mega diversity Carboniferous and Permian periods.
    [Show full text]
  • Links Between Riparian Vegetation and Flow
    Links Between Riparian Vegetation and Flow Report to the Water Research Commission by Karl Reinecke & Cate Brown (Authors) with contributing authors Martin Kleynhans & Martin Kidd WRC Report No. 1981/1/13 ISBN 978-1-4312-0457-1 August 2013 Obtainable from Water Research Commission Private Bag X03 GEZINA, 0031 The publication of this report emanates from a project titled Links between flow and lateral riparian vegetation zones. (WRC Project no. K5/1981//2) DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC nor does mention of trade names or commercial products constitute endorsement or recommendation for use. ©Water Research Commission EXECUTIVE SUMMARY INTRODUCTION Riparian vegetation communities occur along rivers in lateral zones parallel to the direction of river flow. These zones are sub-sections of a riparian area where groups of plants preferentially grow in association with one another as a result of shared habitat preferences and adaptations to the prevailing hydrogeomorphological conditions. The objective of this project was to quantify the links between components of the flow regime and the occurrence of riparian species in lateral zones alongside rivers. The need to understand and quantity these links rose from the need to predict changes in riparian communities in response to changes in river flow. The central hypotheses under investigation were: • Vegetation zonation patterns along rivers result from differential species responses to a combination of abiotic factors that vary in space and time. • It is possible to identify one or two key abiotic factors to predict change in the zonation patterns in response to changes in the flow regime of rivers.
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Revision of the Genus Myrsiphyllum Willd
    Bothalia 15, 1 & 2: 77 - 88 (1984) Revision of the genus Myrsiphyllum Willd. A. A. OBERMEYER* Keywords: Africa. Liliaceae, Myrsiphyllum. revision ABSTRACT The genus Myrsiphyllum Willd. (Liliaceae—Asparageae) is revised. Twelve species are recognized, one of which is new. namely, M. alopecurum Oberm. Eight new combinations are made. A key is provided for distinguishing Myrsiphyllum from Protasparagus Oberm. MYRSIPHYLLUM below, where they may form two extended spurs; anthers introrse, yellow, orange or red. Ovary Myrsiphyllum Willd.** in Ges. naturf. Freunde 3-locular: ovules 6-12 in each locule. biseriate: Berl. Magazin 2: 25 (1808): Kunth, Enum. PI. 5: 105 styles 1 or 3, stigmas 3. papillate. Berry globose or (1850). Type species: M. asparagoides (L.) Willd. ovoid-apiculate, red, yellow or orange: seeds Hecalris Salisb., Gen. PI. 66 (1866). Type species: globose, black. H. asparagoides (L.) Salisb. Species 12. recorded from the Winter Rainfall Asparagus, section Myrsiphyllum (Willd.) Bak. in Region, with M. asparagoides and M. ramosissimum J. Linn. Soc. 14: 597 (1875); FI. Cap. 6: 258 (1896): extending along the eastern Escarpment to the Jessop in Bothalia 9: 38 (1966); Dver, Gen. 2: 943 Transvaal: the former also spreading northwards to (1976).' tropical Africa and southern Europe. Recently Perennial, innocuous, glabrous climbers or erect, recorded as a troublesome adventive in Australia. usually chamaephytes. Rhizome cylindrical, often not lignified: cataphylls small or vestigial. Roots The genus Myrsiphyllum, separated from Aspar­ placed radially on the often long, creeping rhizome, agus by Willdenow in Ges. naturf. Freunde Berl. or irregularly dorsiventral on a compact rhizome: Mag. 2: 25 (1808), was upheld by Kunth in his forming fusiform tubers crowded on rhizome or Enum.
    [Show full text]
  • 213Asparagus Workshop Part2.Indd
    128 Plant Protection Quarterly Vol.21(3) 2006 dioecious species examined had on aver- age twice the genome size of the South Af- Review of the current taxonomic status and rican hermaphroditic species and, based on internal transcribed spacers of nuclear authorship for Asparagus weeds in Australia ribosomal DNA, the species can be divided into two clusters, one of European species Kathryn L. Batchelor and John K. Scott, CSIRO Entomology, Private Bag 5, and the other of southern Africa species. PO Wembley, Western Australia 6913, Australia. Both Lee et al. (1997) and Stajner et al. Email: [email protected], [email protected] (2002) did not use outgroup taxa in their analyses. This issue and a larger sam- ple size (24 species) were addressed in a study by Fukuda et al. (2005) of the mo- Summary Systematic taxonomy of genera lecular phylogeny of Asparagus inferred Over the last 20 years, many scientifi c within the Asparagaceae from plastid petB intron and petD-rpoA papers and reports have been produced The debate over whether the Asparagace- intergenic spacer sequences. They found outlining the establishment, distribution ae contains one genus Asparagus with or evidence supporting a monophyletic ori- and weed status of Asparagus weeds in without subgenera, or up to 16 separate gin of Asparagus and the sub-division of Australia. Differing use of authorship genera has been going for over 200 years. Asparagus into more than three groups. and species names are present in this lit- The taxonomic history of the Asparagace- The Eurasian species of Asparagus formed erature resulting in confusion over which ae is well covered in recent papers.
    [Show full text]
  • From Southeast-Central and Southern Africa with the Description Of
    A revision of the genus Arbelodes Karsch (Lepidoptera: Cossoidea: Metarbelidae) from southeast-central and southern Africa with the description of thirteen new species Ingo Lehmann Published by the author Author: Ingo Lehmann Produced by: S&K NEUE Hamburger Digitaldruck + Medien GmbH Hamburg – Germany This publication may be ordered from: the author Date of publication: 23rd August, 2010 Copyright © 2010 The author All rights reserved. No part of this publication may be reproduced in any form or by any means, stored or transmitted electronically in any retrieval system without written prior permission of the copyright holder. One original hard copy of this publication has been sent to: the Zoological Record, Thomson Reuters, Heslington, York, UK The Natural History Museum, London, UK (BMNH), the Natural History Museum, Paris, France (MNHN), the National Museums of Kenya, Nairobi (NMK), the Royal Museum for Central Africa, Tervuren, Belgium (RMCA), the Transvaal Museum of Natural History, Pretoria, South Africa (TMSA), the Zoological Research Institute and Museum Alexander Koenig, Bonn (ZFMK), the Natural History Museum, Humboldt-University, Berlin (ZMHB). 2 Date of publication: 23rd August, 2010 (Pp. 1- 82 ) A revision of the genus Arbelodes Karsch (Lepidoptera: Cossoidea: Metarbelidae) from southeast-central and southern Africa with the description of thirteen new species Ingo Lehmann Breite Straße 52, 23966 Wismar, Germany, [email protected] University of Bonn, Zoological Research Institute and Museum Alexander Koenig Adenauerallee 160, 53113 Bonn, Germany ABSTRACT The genus Arbelodes Karsch (1896) is presented, currently comprising 22 species, from southeast-central and southern Africa. This genus is found to be centred in southern Africa, with the highest diversities and endemism in montane zones as in the Great Escarpment-Drakensberg (South Africa and Lesotho), the Cape Floristic Region and in southern Namibia.
    [Show full text]
  • The Evolution of Cavitation Resistance in Conifers Maximilian Larter
    The evolution of cavitation resistance in conifers Maximilian Larter To cite this version: Maximilian Larter. The evolution of cavitation resistance in conifers. Bioclimatology. Univer- sit´ede Bordeaux, 2016. English. <NNT : 2016BORD0103>. <tel-01375936> HAL Id: tel-01375936 https://tel.archives-ouvertes.fr/tel-01375936 Submitted on 3 Oct 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. THESE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE BORDEAUX Spécialité : Ecologie évolutive, fonctionnelle et des communautés Ecole doctorale: Sciences et Environnements Evolution de la résistance à la cavitation chez les conifères The evolution of cavitation resistance in conifers Maximilian LARTER Directeur : Sylvain DELZON (DR INRA) Co-Directeur : Jean-Christophe DOMEC (Professeur, BSA) Soutenue le 22/07/2016 Devant le jury composé de : Rapporteurs : Mme Amy ZANNE, Prof., George Washington University Mr Jordi MARTINEZ VILALTA, Prof., Universitat Autonoma de Barcelona Examinateurs : Mme Lisa WINGATE, CR INRA, UMR ISPA, Bordeaux Mr Jérôme CHAVE, DR CNRS, UMR EDB, Toulouse i ii Abstract Title: The evolution of cavitation resistance in conifers Abstract Forests worldwide are at increased risk of widespread mortality due to intense drought under current and future climate change.
    [Show full text]
  • Albany Thicket Biome
    % S % 19 (2006) Albany Thicket Biome 10 David B. Hoare, Ladislav Mucina, Michael C. Rutherford, Jan H.J. Vlok, Doug I.W. Euston-Brown, Anthony R. Palmer, Leslie W. Powrie, Richard G. Lechmere-Oertel, Şerban M. Procheş, Anthony P. Dold and Robert A. Ward Table of Contents 1 Introduction: Delimitation and Global Perspective 542 2 Major Vegetation Patterns 544 3 Ecology: Climate, Geology, Soils and Natural Processes 544 3.1 Climate 544 3.2 Geology and Soils 545 3.3 Natural Processes 546 4 Origins and Biogeography 547 4.1 Origins of the Albany Thicket Biome 547 4.2 Biogeography 548 5 Land Use History 548 6 Current Status, Threats and Actions 549 7 Further Research 550 8 Descriptions of Vegetation Units 550 9 Credits 565 10 References 565 List of Vegetation Units AT 1 Southern Cape Valley Thicket 550 AT 2 Gamka Thicket 551 AT 3 Groot Thicket 552 AT 4 Gamtoos Thicket 553 AT 5 Sundays Noorsveld 555 AT 6 Sundays Thicket 556 AT 7 Coega Bontveld 557 AT 8 Kowie Thicket 558 AT 9 Albany Coastal Belt 559 AT 10 Great Fish Noorsveld 560 AT 11 Great Fish Thicket 561 AT 12 Buffels Thicket 562 AT 13 Eastern Cape Escarpment Thicket 563 AT 14 Camdebo Escarpment Thicket 563 Figure 10.1 AT 8 Kowie Thicket: Kowie River meandering in the Waters Meeting Nature Reserve near Bathurst (Eastern Cape), surrounded by dense thickets dominated by succulent Euphorbia trees (on steep slopes and subkrantz positions) and by dry-forest habitats housing patches of FOz 6 Southern Coastal Forest lower down close to the river.
    [Show full text]
  • A Vegetation Tool for Wetland Delineation in New Zealand
    A vegetation tool for wetland delineation in New Zealand A vegetation tool for wetland delineation in New Zealand Beverley R Clarkson Landcare Research doi:10.7931/J2TD9V77 Prepared for: Meridian Energy Limited 25 Sir William Pickering Drive PO Box 2454 Christchurch December 2013 Landcare Research, Gate 10 Silverdale Road, University of Waikato Campus, Private Bag 3127, Hamilton 3240, New Zealand, Phone +64 7 859 3700, Fax +64 7 859 3701, www.landcareresearch.co.nz Reviewed by: Approved for release by: Philppe Gerbeaux Bill Lee Technical Advisor Portfolio Leader Department of Conservation Landcare Research Landcare Research Contract Report: LC1793 Disclaimer This report has been prepared by Landcare Research for Meridian Energy. If used by other parties, no warranty or representation is given as to its accuracy and no liability is accepted for loss or damage arising directly or indirectly from reliance on the information in it. © Landcare Research New Zealand Ltd 2014 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic or mechanical, including photocopying, recording, taping, information retrieval systems, or otherwise) without the written permission of the publisher. Contents Summary ..................................................................................................................................... v 1 Introduction ....................................................................................................................... 1 2 Background .......................................................................................................................
    [Show full text]