212Asparagus Workshop Part1.Indd

Total Page:16

File Type:pdf, Size:1020Kb

212Asparagus Workshop Part1.Indd Plant Protection Quarterly Vol.21(2) 2006 63 National Asparagus Weeds Management Workshop Proceedings of a workshop convened by the National Asparagus Weeds Management Committee held in Adelaide on 10–11 November 2005. Editors: John G. Virtue and John K. Scott. Introduction John G. VirtueA and John K. ScottB A Department of Water Land and Biodiversity Conservation, GPO Box 2834, Adelaide, South Australia 5001, Australia. E-mail: [email protected] B CSIRO Entomology, Private Bag 5, PO Wembley, Western Australia 6913, Australia. Welcome to this special issue of Plant Pro- The National Asparagus Weeds Man- authors for the effort they have put into tection Quarterly, which details the current agement Committee (NAWMC) convened their papers and all the workshop par- state of Asparagus weeds management in the National Asparagus Weeds Manage- ticipants for their contribution. A special Australia. Bridal creeper, Asparagus as- ment Workshop in Adelaide, 10–11 No- thanks for workshop organization also paragoides (L.) Druce, is the best known vember 2005. The workshop was attended goes to Dennis Gannaway and Susan Asparagus weed and certainly deserves by 60 people including representation ex- Lawrie. its Weed of National Signifi cance (WoNS) tending from South Africa, through most status in Australia. However, there are regions of continental Australia, to Lord Reference other Asparagus species in Australia that Howe Island in the Pacifi c. The workshop Agriculture & Resource Management have the potential to reach similar levels was made possible with funding assistance Council of Australia & New Zealand, of impact as bridal creeper on biodiversity through the Australian Government’s Nat- Australia & New Zealand Environment (and hence their inclusion in the national ural Heritage Trust. This special double is- & Conservation Council and Forestry bridal creeper strategic plan [ARMCANZ sue of Plant Protection Quarterly contains Ministers (2001). ‘Weeds of National et al. 2001]). There is much to be gained the proceedings of the workshop, as well Signifi cance: Bridal creeper (Asparagus from sharing information and experiences as additional research and management asparagoides) strategic plan’. (National about the biology, ecology, impacts and papers on Asparagus weeds including the Weeds Strategy Executive Committee, control of all Asparagus weeds to advance review of bridal creeper for the Biology Launceston). their overall strategic management. of Australian Weeds series. We thank all found in Australia. In South Africa it is restricted to the winter rainfall region of Asparagus weeds in Australia – a South African the Western Cape. This form of the plant is a host for Zygina sp. and Eurytoma sp. perspective with emphasis on biological control and the tubers are damaged by weevil prospects larvae, but Crioceris sp. and P. myrsiphyl- li were not recorded. Carien A. KleinjanA,B and Penny B. EdwardsA,C Potential taxonomic difficulties of A CSIRO Biological Control Unit, Zoology Department, University of Cape some of the other Asparagus spp. that oc- cur in Australia are discussed, and pre- Town, Private Bag, Rondesbosch, 7701, South Africa. B liminary observations are provided on Current address: Zoology Department, University of Cape Town, Private their associated natural enemies in South Bag, Rondebosch, 7701, South Africa. e-mail: [email protected] Africa. C Current address: PO Box 865, Maleny, Queensland 4552, Australia. Keywords: Asparagus, Asparagus aspara- goides, Australia, biological control, Criocer- is, environmental weed, Eurytoma, natural Summary released in Australia against the first enemies, Puccinia, South Africa, Zygina. The results of an extensive South African form which has a wide distribution in survey to identify potential biological South Africa. No candidate was found Introduction control agents for Asparagus asparagoides that damages the tuber system of this South Africa supports a wealth of Aspara- are discussed. Two forms of A. aspara- form of A. asparagoides, but foliage dam- gus species with several endemic to the re- goides were found that are distinguished age reduced tuber mass and fruit produc- gion. The most recent taxonomic revision of by characteristics of the tuber system. tion under experimental conditions. The South African plants recognized 81 species, Not all the natural enemies found in as- seed wasp Eurytoma sp. occurs through- of which only 15 are recorded as occurring sociation with A. asparagoides attacked out the distributional range of this form naturally beyond the borders of southern both forms. Three biocontrol agents (Zy- of A. asparagoides. Damage levels vary Africa (Obermeyer et al. 1992). The higher gina sp., Crioceris sp. and Puccinia myr- but can be 90% or more. The second form taxonomy of Asparagus spp. has tended to siphylli) from South Africa, have been of A. asparagoides has only recently been oscillate between the recognition of one and 64 Plant Protection Quarterly Vol.21(2) 2006 three genera. Obermeyer recognized three specimens. Based on the observed dis- Impact of foliage feeding on fruit genera: Myrsiphyllum (with 12 species in tributions of the two forms of the plant, production and tuber mass South Africa), Protasparagus (with 69 spe- Kleinjan and Edwards (1999) refer to The agents released to date all target the cies in South Africa) and Asparagus (with one form of the plant as the ‘widespread foliage of the widespread form of A. as- no South African species). However, all form’ of A. asparagoides, which has a wide paragoides. It was hoped that a potential species are currently considered members distributional range in South Africa. The agent would be identifi ed that directly of a single genus, Asparagus (Malcomber second form is restricted to the western damages the tuber system of the plants, and Sebsebe 1993, Fellingham and Meyer Cape and is referred to as the ‘West- but despite intensive searching no such 1995). ern Cape form’ of A. asparagoides. These candidate was found. However, substan- The Asparagus species considered a same terms are used throughout this tial outbreaks of Zygina sp. had been noted threat in Australia (Asparagus asparagoides text. in the aseasonal rainfall region and con- (L.) Druce, Asparagus scandens Thunb., As- Asparagus asparagoides specimens from sequently an experiment (Kleinjan et al. paragus declinatus L., Asparagus plumosus Australia were compared against both 2004) was conducted with Zygina sp. to Baker, Asparagus densifl orus (Kunth) Jessop forms of this species from South Africa explore the impact of foliage damage on and Asparagus africanus Lam.) occur natu- and were found to be consistent with the tuber growth. As reduced fruit loads were rally in South Africa, but only A. aspara- ‘widespread form’ (Kleinjan and Edwards recorded subsequent to the Zygina sp. out- goides has been surveyed comprehensively 1999). In 2004 it was discovered that the break, the experiment also investigated for natural enemies for use in a biological ‘western Cape form’ of A. asparagoides is the impact of foliage damage on fruit pro- control program. also present in Australia. duction. The results showed that exten- This paper reports on the surveys con- sive foliage damage substantially reduced ducted on A. asparagoides in South Africa The widespread form of Asparagus both fruiting and fi nal tuber mass. The ex- and provides incidental observations of asparagoides in South Africa perimental design made it impossible to the natural enemies associated with the Distribution and habitat associations determine whether the impact of Zygina other species of concern in Australia, with The widespread form of A. asparagoides oc- sp. caused a reduction in the rate of tuber the exception of A. africanus for which no curs in the winter, summer and aseasonal mass accumulation or whether it caused a information is available. (i.e. the rainfall is not restricted to any par- reduction in existing tuber reserves. Morin ticular season) rainfall regions of South Af- et al. (2002) demonstrated experimentally Asparagus asparagoides rica (Kleinjan and Edwards 1999). In the that infection of the widespread form of Taxonomy and distribution of A. winter rainfall region, ripe fruits develop A. asparagoides with P. myrsiphylli similarly asparagoides in November and the plants subsequently resulted in a reduction in tuber number, Soon after surveys for natural enemies of senesce completely. Production of new rhizome length and shoot mass. A. asparagoides were initiated in South Af- shoots starts well ahead of the next rainy rica during 1988, problems were encoun- season. In the aseasonal rainfall region Natural enemies that attack seed or fruit tered with the distribution records for this ripe fruits also develop in November, but As Asparagus species are bird dispersed, species. Published distribution records for vegetative parts of the plants are present a reduction in seed output could be pre- A. asparagoides proved to be misleading throughout the year, with an approximate- dicted to decrease the rate of colonization and required reassessment. Our surveys ly annual turnover of stems. The situation of new sites and may reduce the rate at showed that A. asparagoides does not occur in the summer rainfall region is unclear which infestations develop. Two natu- in subtropical coastal regions and the arid due to infrequent surveys in the area. ral enemies (Zalaca snelleni (Wallengren) interior and west coast regions of South However, it appears that most plants
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Asparagus Pests and Diseases by Joan Allen
    Asparagus Pests and Diseases By Joan Allen Asparagus is one of the few perennial vegetables and with good care a planting can produce a nice crop for 10-15 years. Part of that good care is keeping pest and disease problems under control. Letting them go can lead to weak plants and poor production, even death of the plants in some cases. Stress due to poor nutrition, drought or other problems can make the plants more susceptible to some diseases too. Because of this, good cultural practices, including a good site for new plantings, are the first step in preventing problems. After that, monitor regularly for common pests and diseases so you can catch any problems early and hopefully prevent them from escalating. Weed control is important for a couple of reasons. One, weeds compete with the crop for water and nutrients. More importantly from a disease perspective, they reduce air flow around the plants or between rows and this results in the asparagus spears or foliage remaining wet for a longer period of time after a rain or irrigation event. This matters because moisture promotes many plant diseases. This article will cover some of the most common pests and diseases of asparagus. If you’re not sure what you’ve got, I’ll finish up with resources for assistance. Insect pests include the common and spotted asparagus beetles, asparagus aphid, cutworms, and Japanese beetles. Diseases that will be covered are Fusarium diseases, rust, and purple spot. Both the common and spotted asparagus beetles (CAB and SAB respectively) overwinter in brushy or wooded areas near the field or garden as adults.
    [Show full text]
  • Population Biology of Switchgrass Rust
    POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) By GABRIELA KARINA ORQUERA DELGADO Bachelor of Science in Biotechnology Escuela Politécnica del Ejército (ESPE) Quito, Ecuador 2011 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2014 POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) Thesis Approved: Dr. Stephen Marek Thesis Adviser Dr. Carla Garzon Dr. Robert M. Hunger ii ACKNOWLEDGEMENTS For their guidance and support, I express sincere gratitude to my supervisor, Dr. Marek, who has supported thought my thesis with his patience and knowledge whilst allowing me the room to work in my own way. One simply could not wish for a better or friendlier supervisor. I give special thanks to M.S. Maxwell Gilley (Mississippi State University), Dr. Bing Yang (Iowa State University), Arvid Boe (South Dakota State University) and Dr. Bingyu Zhao (Virginia State), for providing switchgrass rust samples used in this study and M.S. Andrea Payne, for her assistance during my writing process. I would like to recognize Patricia Garrido and Francisco Flores for their guidance, assistance, and friendship. To my family and friends for being always the support and energy I needed to follow my dreams. iii Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. Name: GABRIELA KARINA ORQUERA DELGADO Date of Degree: JULY, 2014 Title of Study: POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) Major Field: ENTOMOLOGY AND PLANT PATHOLOGY Abstract: Switchgrass (Panicum virgatum L.) is a perennial warm season grass native to a large portion of North America.
    [Show full text]
  • Disease and Insect Pests of Asparagus by William R
    Page 1 Disease and insect pests of asparagus by William R. Morrison, III1, Sheila Linderman2, Mary K. Hausbeck2,3, Benjamin P. Werling3 and Zsofia Szendrei1,3 1MSU Department of Entomology; 2MSU Department of Plant, Soil and Microbial Sciences; and 3Michigan State University Extension Extension Bulletin E3219 Introduction Biology • Fungus. The goal of this bulletin is to provide basic information • Sexual stage of the fungus (Pleospora herbarum) produc- needed to identify, understand and control insect and es overwintering structures (pseudothecia), appearing as disease pests of asparagus. Because each pest is different, small, black dots on asparagus plant debris from previous control strategies are most effective when they are tai- season. lored to the species present in your production fields. For this reason, this bulletin includes sections on pest identifi- • Pseudothecia release ascospores via rain splash and cation that show key characteristics and pictures to help wind, causing the primary infection for the new season. you determine which pests are present in your asparagus. • Primary infection progresses in the asexual stage of the It is also necessary to understand pests and diseases in fungus (Stemphylium vesicarium), which produces multiple order to appropriately manage them. This bulletin includes spores (conidia) cycles throughout the growing season. sections on the biology of each major insect and disease • Conidia enter plant tissue through wounds and stoma- pest. Finally, it also provides information on cultural and ta, which are pores of a plant used for respiration. general pest control strategies. For specifics on the pesti- • Premature defoliation of the fern limits photosynthetic cides available for chemical control of each pest, consult capability of the plant, decreasing carbohydrate reserves in MSU Extension bulletin E312, “Insect, Disease, and Nema- tode Control for Commercial Vegetables” (Order in the the crown for the following year’s crop.
    [Show full text]
  • Asparagus Rust (Puccinia Asparagi) (Puccinia Matters-Of- Facts Seasons Infection
    DEPARTMENT OF PRIMARY INDUSTRIES Vegetable Matters-of-Facts Number 12 Asparagus Rust February (Puccinia asparagi) 2004 • Rust disease of asparagus is caused by the fungus Puccinia asparagi. • Rust is only a problem on fern not the spears. • Infected fern is defoliated reducing the potential yield of next seasons crop. • First detected in Queensland in 2000 and in Victoria in 2003 Infection and symptoms Infections of asparagus rust begin in spring from over-wintering spores on crop debris. Rust has several visual spore stages known as the orange, red and black spore stages. Visual symptoms of infection start in spring/summer with light green pustules on new emerging fern which mature into yellow or pale orange pustules. In early to mid summer when conditions are warm and moist, the orange spores spread to new fern growth producing brick red pustules on stalks, branches and leaves of the fern. These develop into powdery masses of rust-red coloured spores which reinfect the fern. Infected fern begins to yellow, defoliate and die back prematurely. In late autumn and winter the red-coloured pustules start to produce black spores and slowly convert in appearance to a powdery mass of jet-black spores. This is the over-wintering stage of Asparagus the fungus and the source of the next seasons infection. Control Stratagies Complete eradication of the disease is not feasible as rust spores are spread by wind. However rust can be controlled with proper fern management. • Scout for early signs for rust and implement fungicide spray program • Volunteer and other unwanted asparagus plantings must be destroyed to control infection sources.
    [Show full text]
  • Causal Agent, Biology and Management of the Leaf and Stem
    CAUSAL AGENT, BIOLOGY AND MANAGEMENT OF THE LEAF AND STEM DISEASE OF BOXWOOD {BUXUS SPP.) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by FANG SHI In partial fulfillment of requirements for the degree of Master of Science May, 2011 ©Fang Shi, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-82801-4 Our file Notre reference ISBN: 978-0-494-82801-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Links Between Riparian Vegetation and Flow
    Links Between Riparian Vegetation and Flow Report to the Water Research Commission by Karl Reinecke & Cate Brown (Authors) with contributing authors Martin Kleynhans & Martin Kidd WRC Report No. 1981/1/13 ISBN 978-1-4312-0457-1 August 2013 Obtainable from Water Research Commission Private Bag X03 GEZINA, 0031 The publication of this report emanates from a project titled Links between flow and lateral riparian vegetation zones. (WRC Project no. K5/1981//2) DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC nor does mention of trade names or commercial products constitute endorsement or recommendation for use. ©Water Research Commission EXECUTIVE SUMMARY INTRODUCTION Riparian vegetation communities occur along rivers in lateral zones parallel to the direction of river flow. These zones are sub-sections of a riparian area where groups of plants preferentially grow in association with one another as a result of shared habitat preferences and adaptations to the prevailing hydrogeomorphological conditions. The objective of this project was to quantify the links between components of the flow regime and the occurrence of riparian species in lateral zones alongside rivers. The need to understand and quantity these links rose from the need to predict changes in riparian communities in response to changes in river flow. The central hypotheses under investigation were: • Vegetation zonation patterns along rivers result from differential species responses to a combination of abiotic factors that vary in space and time. • It is possible to identify one or two key abiotic factors to predict change in the zonation patterns in response to changes in the flow regime of rivers.
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Revision of the Genus Myrsiphyllum Willd
    Bothalia 15, 1 & 2: 77 - 88 (1984) Revision of the genus Myrsiphyllum Willd. A. A. OBERMEYER* Keywords: Africa. Liliaceae, Myrsiphyllum. revision ABSTRACT The genus Myrsiphyllum Willd. (Liliaceae—Asparageae) is revised. Twelve species are recognized, one of which is new. namely, M. alopecurum Oberm. Eight new combinations are made. A key is provided for distinguishing Myrsiphyllum from Protasparagus Oberm. MYRSIPHYLLUM below, where they may form two extended spurs; anthers introrse, yellow, orange or red. Ovary Myrsiphyllum Willd.** in Ges. naturf. Freunde 3-locular: ovules 6-12 in each locule. biseriate: Berl. Magazin 2: 25 (1808): Kunth, Enum. PI. 5: 105 styles 1 or 3, stigmas 3. papillate. Berry globose or (1850). Type species: M. asparagoides (L.) Willd. ovoid-apiculate, red, yellow or orange: seeds Hecalris Salisb., Gen. PI. 66 (1866). Type species: globose, black. H. asparagoides (L.) Salisb. Species 12. recorded from the Winter Rainfall Asparagus, section Myrsiphyllum (Willd.) Bak. in Region, with M. asparagoides and M. ramosissimum J. Linn. Soc. 14: 597 (1875); FI. Cap. 6: 258 (1896): extending along the eastern Escarpment to the Jessop in Bothalia 9: 38 (1966); Dver, Gen. 2: 943 Transvaal: the former also spreading northwards to (1976).' tropical Africa and southern Europe. Recently Perennial, innocuous, glabrous climbers or erect, recorded as a troublesome adventive in Australia. usually chamaephytes. Rhizome cylindrical, often not lignified: cataphylls small or vestigial. Roots The genus Myrsiphyllum, separated from Aspar­ placed radially on the often long, creeping rhizome, agus by Willdenow in Ges. naturf. Freunde Berl. or irregularly dorsiventral on a compact rhizome: Mag. 2: 25 (1808), was upheld by Kunth in his forming fusiform tubers crowded on rhizome or Enum.
    [Show full text]
  • 213Asparagus Workshop Part2.Indd
    128 Plant Protection Quarterly Vol.21(3) 2006 dioecious species examined had on aver- age twice the genome size of the South Af- Review of the current taxonomic status and rican hermaphroditic species and, based on internal transcribed spacers of nuclear authorship for Asparagus weeds in Australia ribosomal DNA, the species can be divided into two clusters, one of European species Kathryn L. Batchelor and John K. Scott, CSIRO Entomology, Private Bag 5, and the other of southern Africa species. PO Wembley, Western Australia 6913, Australia. Both Lee et al. (1997) and Stajner et al. Email: [email protected], [email protected] (2002) did not use outgroup taxa in their analyses. This issue and a larger sam- ple size (24 species) were addressed in a study by Fukuda et al. (2005) of the mo- Summary Systematic taxonomy of genera lecular phylogeny of Asparagus inferred Over the last 20 years, many scientifi c within the Asparagaceae from plastid petB intron and petD-rpoA papers and reports have been produced The debate over whether the Asparagace- intergenic spacer sequences. They found outlining the establishment, distribution ae contains one genus Asparagus with or evidence supporting a monophyletic ori- and weed status of Asparagus weeds in without subgenera, or up to 16 separate gin of Asparagus and the sub-division of Australia. Differing use of authorship genera has been going for over 200 years. Asparagus into more than three groups. and species names are present in this lit- The taxonomic history of the Asparagace- The Eurasian species of Asparagus formed erature resulting in confusion over which ae is well covered in recent papers.
    [Show full text]
  • Risk Analysis of the Puccinia Psidii/ Guava Rust Fungal Complex (Including Uredo Rangelii/Myrtle Rust) on Nursery Stock
    Risk analysis of the Puccinia psidii/ Guava Rust fungal complex (including Uredo rangelii/Myrtle Rust) on nursery stock ISBN 978-0-478-38464-2 (print) ISBN 978-0-478-38465-9 (online) 14 June 2011 Ministry of Agriculture and Forestry Pastoral House 25 The Terrace PO Box 2526 Wellington 6140 New Zealand Tel: 64-4-894 0100 Fax: 64-4-894 0731 Biosecurity Risk Analysis Group Ministry of Agriculture and Forestry Risk analysis of the Puccinia psidii/Guava Rust fungal complex (including Uredo rangelii/Myrtle Rust) on nursery stock FINAL 14 June 2011 Approved for general release Christine Reed Manager, Biosecurity Risk Analysis Group Ministry of Agriculture and Forestry Contributors to this risk analysis 1. Primary author/s Dr Sarah Clark Senior Adviser Ministry of Agriculture and Risk Analysis - Plants Forestry, Wellington 2. Secondary contributors Internal reviewers from the Myrtle Rust Working Group: David Eyles Senior Adviser, Readiness & Response Ministry of Agriculture Dan Fieselmann Senior Adviser, Readiness & Response and Forestry, Dr Erik Van Principal Adviser Conservation, Wellington Eyndhoven Readiness and Response Dr Wellcome Ho Scientist, IDC George Gill Manager, Plant Response Graham Burnip Incursion Investigator, IDC Kathryn Hurr Senior Adviser, Border Standards Vivian Dalley Senior Adviser, Border Standards Internal reviewers from Risk Analysis Group Dr Nicholas Adviser, Risk Analysis - Plants Ministry of Agriculture Amponsah and Forestry, Dr Michael Ormsby Acting Team Manager, Risk Analysis Wellington Dr Helen Harman Adviser, Risk Analysis - Plants Melanie Newfield Team Manager, Risk Analysis - Plants Ministry of Agriculture and Forestry, Wellington 3. External peer review Dr Margaret Dick Forest pathologist Scion New Zealand Forest Research Institute Ltd, Rotorua, New Zealand Dr Jack Simpson Biosecurity Australia, Department of Agriculture, Fisheries and Forestry, Australian Governement Canberra, Australia Lloyd Loope US Geological Survey, Pacific Island Ecosystems Research Center Hawaii Dr Peter J.
    [Show full text]
  • An Assessment of Invasive Species Management in Idaho
    University of Idaho Archives, University of Idaho, www.invasive.org Robert L. Johnson, Cornell University, www.invasive.org Preparing to Meet the Challenge An Assessment of Eric Coombs, Oregan Department of Agriculture, www.invasive.org Invasive Species Management in Idaho Prepared for: The Idaho Invasive Species Council With the Support of: Kenneth R. Law, The Idaho Department of Agriculture USDA APHIS PPQ, www.invasive.org and The Nature Conservancy Northwest Natural Resource Group, LLC Joe Hinson, ©2003 i Table of Contents Foreword....................................................................................................................... iii Acknowledgements .........................................................................................................v Executive Summary...................................................................................................... vii Introduction.....................................................................................................................1 The Concept of ÒInvasivenessÓ ....................................................................................1 Why Should IdahoÕs Citizens Worry About Invasive Species?.....................................4 Facing Up to the Challenge..............................................................................................7 What Level of Commitment is Needed?.....................................................................14 Conclusions ...............................................................................................................18
    [Show full text]