Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium from the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella Atlantisensis Gen

Total Page:16

File Type:pdf, Size:1020Kb

Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium from the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella Atlantisensis Gen fmicb-10-01497 July 16, 2019 Time: 16:31 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmicb.2019.01497 Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Marianne Quéméneur1, Gaël Erauso1, Eléonore Frouin1, Emna Zeghal1, Céline Vandecasteele2, Bernard Ollivier1, Christian Tamburini1, Marc Garel1, Bénédicte Ménez3 and Anne Postec1* Edited by: 1 Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France, 2 INRA, US 1426, GeT-PlaGe, Isabelle Daniel, Genotoul, Castanet-Tolosan, France, 3 Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, Paris, Université Claude Bernard Lyon 1, France France Reviewed by: Rock-hosted subseafloor habitats are very challenging for life, and current knowledge Ida Helene Steen, University of Bergen, Norway about microorganisms inhabiting such lithic environments is still limited. This study Lotta Purkamo, explored the cultivable microbial diversity in anaerobic enrichment cultures from cores Geological Survey of Finland, Finland recovered during the International Ocean Discovery Program (IODP) Expedition 357 from *Correspondence: ◦ Anne Postec the Atlantis Massif (Mid-Atlantic Ridge, 30 N). 16S rRNA gene survey of enrichment ◦ [email protected] cultures grown at 10–25 C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed Specialty section: This article was submitted to depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures Extreme Microbiology, (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly a section of the journal anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 Frontiers in Microbiology meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa. Received: 22 February 2019 Accepted: 14 June 2019 This strain named Petrocella atlantisensis is a novel species of a new genus within Published: 16 July 2019 the newly described family Vallitaleaceae (order Clostridiales, phylum Firmicutes). It Citation: is a mesophilic, moderately halotolerant and piezophilic chemoorganotroph, able to Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C, grow by fermentation of carbohydrates and proteinaceous compounds. Its 3.5 Mb Ollivier B, Tamburini C, Garel M, genome contains numerous genes for ABC transporters of sugars and amino acids, Ménez B and Postec A (2019) and pathways for fermentation of mono- and di-saccharides and amino acids were Hydrostatic Pressure Helps to Cultivate an Original Anaerobic identified. Genes encoding multimeric TFeFeU hydrogenases and a Rnf complex form the Bacterium From the Atlantis Massif basis to explain hydrogen and energy production in strain 70B-AT. This study outlines Subseafloor (IODP Expedition 357): Petrocella atlantisensis the importance of using hydrostatic pressure in culture experiments for isolation and gen. nov. sp. nov. characterization of autochthonous piezophilic microorganisms from subseafloor rocks. Front. Microbiol. 10:1497. doi: 10.3389/fmicb.2019.01497 Keywords: Atlantis Massif, subseafloor, oceanic crust, serpentinization, anaerobic culture, hydrostatic pressure Frontiers in Microbiology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1497 fmicb-10-01497 July 16, 2019 Time: 16:31 # 2 Quéméneur et al. Petrocella atlantisensis gen. nov. sp. nov. INTRODUCTION communities may vary depending on the age of the lithosphere, its alteration and the hydrothermal activity. The subseafloor biosphere remains largely unexplored, although The emblematic LCHF located on top of the Atlantis estimated as a huge reservoir for prokaryotic life (Whitman Massif, at 800 meters below sea level (mbsl), exhibits high et al., 1998; Orcutt et al., 2011; Kallmeyer et al., 2012). carbonate chimneys discharging alkaline hydrothermal fluids at Exploration of the rock-hosted subseafloor biosphere is especially moderate temperature (∼ pH 11 and 90◦C) and high levels very challenging and carried out through costly ocean drilling of dissolved H2 (1-15 mM) and CH4 (1-2 mM) as the most programs, which still must face several technical difficulties, obvious manifestation of underground serpentinization reactions such as poor core recovery and microbial contamination. In (Schrenk et al., 2013). The unique microbial communities addition, the very low microbial cell density, around 104 living inside the porous chimney structures are dominated cells per gram of rock at North Pond (Jørgensen and Zhao, by a single Methanosarcinales phylotype (Archaea), with 2016) or even less in the Atlantis Massif (Früh-Green et al., Proteobacteria and Firmicutes (Bacteria)(Schrenk et al., 2013). 2018) (respectively 22 and 30◦N along the Mid-Atlantic Ridge), This peculiar ecosystem is assumed to picture an “open the usually low growth rate, and the lack of knowledge on window on deep serpentinizing hydrothermal system” (Lang the physiology and metabolism of the prokaryotes living in et al., 2018). However, due to the lack of core samples these extreme environments, hamper the attempt at cultivating from the LCHF basement, direct experimental evidences them. As a result, the subseafloor prokaryotic cultivability was supporting this assumption are missing. Only one study on estimated below 0.1% of total microscopically counted cells the microbiology of the Atlantis Massif (IODP Expeditions (D’Hondt et al., 2004). Moreover, the hydrostatic pressure is an 304-305, Hole U1309D) reports that the gabbroic layers host important physical parameter of these deep-sea environments a low diversity of proteobacterial lineages (Alpha-, Beta- and but was often neglected in previous subseafloor cultivation Gammaproteobacteria) hypothetically degrading hydrocarbons studies. To date, most of the enrichment tests performed on and fixing carbon and nitrogen with the potential for anaerobic rocks recovered during ocean drilling programs were made at respiration of nitrate, sulfate and metals (Mason et al., 2010). To atmospheric pressure and failed to obtain microbial growth after date no cultivated microorganism has been reported from these first incubations or subcultures (Santelli et al., 2010; Hirayama ecosystems to attest the occurrence of these metabolisms, and et al., 2015). Both hydrostatic and lithostatic pressures in deep- most of the deep-subsurface microorganisms detected so far were sea and deep subseafloor environments (increasing by about 10 refractory to cultivation. and 30 MPa km−1, respectively (Schrenk et al., 2010)) have an The primary goal of this study was to explore the diversity impact on microbial growth, metabolism and physiology, thus on of cultivable prokaryotic communities of the Atlantis Massif the cultivability of microorganisms (Bartlett et al., 2007; Lauro subseafloor from a unique collection of rock cores composed in and Bartlett, 2007; Parkes et al., 2009; Takai, 2011; Picard and various proportions of carbonate, basalt, serpentinized peridotite Daniel, 2013). Moreover, the importance of high HP for deep-sea and gabbro (Figure 1 and Supplementary Figure 1). To increase microorganisms cultivation is now well established (Tamburini our chance of success, we used a high-pressure incubation system et al., 2013). In this work, HP incubation systems were used to (Figure 1) to mimic in situ HP at the sampling sites and the cultivate and study physiology of microorganisms inhabiting the various anaerobic metabolisms likely to be present were targeted underexplored oceanic crustal biosphere. based on literature surveys (Mason et al., 2010; Schrenk et al., The Atlantis Massif, a prominent underwater oceanic core 2013). We used next-generation sequencing (NGS) of 16S rRNA complex of nearly 4 000 m high, hosts the famous Lost City gene amplicons to explore the cultivable microbial diversity Hydrothermal Field (LCHF) (Kelley et al., 2005). It is composed of Atlantis Massif core samples incubated at atmospheric or of deep crustal (gabbro) and upper mantle rocks (peridotite) in situ HP. We report novel anaerobes isolated from rock-hosted that have been exposed at the ocean floor as a result of tectonic subseafloor ecosystems and describe the phenotypic and genomic plates drifting and large active faulting (Früh-Green et al., 2018). features of strain 70B-AT, the first isolate from the Atlantis Serpentinization of ultramafic mantle rocks by deeply circulating Massif subseafloor obtained from high-pressure cultures. Finally, seawater produces heat and generates alkaline fluids enriched in we propose it to represent a novel species of a new bacterial hydrogen (H2), methane (CH4), short-chain alkanes and small genus within the newly described family Vallitaleaceae (order organic acids, representing possible carbon and energy sources Clostridiales, phylum Firmicutes). to fuel life in the absence of light and contributing to global biogeochemical cycles (Levin et al., 2016). Such environmental conditions and ecosystems may have prevailed on early Earth MATERIALS AND METHODS or other planets (Martin et al., 2008). In this context, the main objective of the IODP Expedition 357 “Atlantis Massif Rock Sample Collection Serpentinization and Life” was to explore the extent and activity A unique set of rock samples was recovered during IODP of the subseafloor biosphere in a young ultramafic substratum Expedition 357 “Atlantis Massif Serpentinization
Recommended publications
  • Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium from the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella Atlantisensis Gen
    fmicb-10-01497 July 16, 2019 Time: 16:31 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmicb.2019.01497 Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Marianne Quéméneur1, Gaël Erauso1, Eléonore Frouin1, Emna Zeghal1, Céline Vandecasteele2, Bernard Ollivier1, Christian Tamburini1, Marc Garel1, Bénédicte Ménez3 and Anne Postec1* Edited by: 1 Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France, 2 INRA, US 1426, GeT-PlaGe, Isabelle Daniel, Genotoul, Castanet-Tolosan, France, 3 Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, Paris, Université Claude Bernard Lyon 1, France France Reviewed by: Rock-hosted subseafloor habitats are very challenging for life, and current knowledge Ida Helene Steen, University of Bergen, Norway about microorganisms inhabiting such lithic environments is still limited. This study Lotta Purkamo, explored the cultivable microbial diversity in anaerobic enrichment cultures from cores Geological Survey of Finland, Finland recovered during the International Ocean Discovery Program (IODP) Expedition 357 from *Correspondence: ◦ Anne Postec the Atlantis Massif (Mid-Atlantic Ridge, 30 N). 16S rRNA gene survey of enrichment ◦ [email protected] cultures grown at 10–25 C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed Specialty section: This article was submitted to depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures Extreme Microbiology, (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly a section of the journal anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 Frontiers in Microbiology meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa.
    [Show full text]
  • Heat Resistant Thermophilic Endospores in Cold Estuarine Sediments
    Heat resistant thermophilic endospores in cold estuarine sediments Emma Bell Thesis submitted for the degree of Doctor of Philosophy School of Civil Engineering and Geosciences Faculty of Science, Agriculture and Engineering February 2016 Abstract Microbial biogeography explores the spatial and temporal distribution of microorganisms at multiple scales and is influenced by environmental selection and passive dispersal. Understanding the relative contribution of these factors can be challenging as their effects can be difficult to differentiate. Dormant thermophilic endospores in cold sediments offer a natural model for studies focusing on passive dispersal. Understanding distributions of these endospores is not confounded by the influence of environmental selection; rather their occurrence is due exclusively to passive transport. Sediment heating experiments were designed to investigate the dispersal histories of various thermophilic spore-forming Firmicutes in the River Tyne, a tidal estuary in North East England linking inland tributaries with the North Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and enriched bacterial populations were characterised using denaturing gradient gel electrophoresis, functional gene clone libraries and high-throughput sequencing. The distribution of thermophilic endospores among different locations along the estuary was spatially variable, indicating that dispersal vectors originating in both warm terrestrial and marine habitats contribute to microbial diversity in estuarine and marine environments. In addition to their persistence in cold sediments, some endospores displayed a remarkable heat-resistance surviving multiple rounds of autoclaving. These extremely heat-resistant endospores are genetically similar to those detected in deep subsurface environments, including geothermal groundwater investigated from a nearby terrestrial borehole drilled to >1800 m depth with bottom temperatures in excess of 70°C.
    [Show full text]
  • Corrosion of Carbon Steel by Bacteria from North
    Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation Marko Stipaničev, Florin Turcu, Loïc Esnault, Omar Rosas, Régine Basséguy, Magdalena Sztyler, Iwona B. Beech To cite this version: Marko Stipaničev, Florin Turcu, Loïc Esnault, Omar Rosas, Régine Basséguy, et al.. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation. Bioelectrochemistry, Elsevier, 2014, 97, pp.76-88. 10.1016/j.bioelechem.2013.09.006. hal-01913355 HAL Id: hal-01913355 https://hal.archives-ouvertes.fr/hal-01913355 Submitted on 6 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/20292 Official URL: https://doi.org/10.1016/j.bioelechem.2013.09.006 To cite this version: Stipaničev, Marko and Turcu, Florin and Esnault, Loïc and Rosas, Omar and Basséguy, Régine and Sztyler, Magdalena and Beech, Iwona B. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation.
    [Show full text]
  • Biodegradation Treatment of Petrochemical Wastewaters
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA VEGETAL Biodegradation treatment of petrochemical wastewaters Catarina Isabel Nunes Alexandre Dissertação Mestrado em Microbiologia Aplicada Orientadores Doutora Sandra Sanches Professora Doutora Lélia Chambel 2015 Biodegradation treatment of petrochemical wastewaters Catarina Isabel Nunes Alexandre 2015 This thesis was fully performed at the Institute of Experimental and Technologic Biology (IBET) of Instituto de Tecnologia Química e Bioquímica (ITQB) under the direct supervision of Drª Sandra Sanches in the scope of the Master in Applied Microbiology of the Faculty of Sciences of the University of Lisbon. Prof. Drª Lélia Chambel was the internal designated supervisor in the scope of the Master in Applied Microbiology of the Faculty of Sciences of the University of Lisbon. Agradecimentos Gostaria de agradecer a todas as pessoas que estiveram directamente ou indirectamente envolvidas na execução da minha tese de mestrado, pois sem eles a sua realização não teria sido possível. Queria começar por agradecer à Doutora Sandra Sanches, que se demonstrou sempre disponível para esclarecer dúvidas quando precisei, e que fez questão de me ensinar de forma rigorosa e exigente. À Doutora Maria Teresa Crespo, que assim que lhe pedi para me orientar me disse que sim imediatamente, fez questão de me treinar em vários contextos e sempre estimulou o meu envolvimento nas rotinas do laboratório. À Professora Doutora Lélia Chambel, que sempre me esclareceu dúvidas sobre processos burocráticos, me deu conselhos quando eu mais precisei e que me apoiou durante toda a minha tese. Queria também agradecer à Doutora Dulce Brito, que sempre se mostrou disponível para ajudar quando a nossa equipa mais precisava dela, e sempre me ajudou a realizar as tarefas mais básicas do meu trabalho até eu ter ganho a minha autonomia no laboratório.
    [Show full text]
  • Dispersal of Thermophilic Desulfotomaculum Endospores Into Baltic Sea Sediments Over Thousands of Years
    The ISME Journal (2012), 1–13 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years Ju´ lia Rosa de Rezende1, Kasper Urup Kjeldsen1, Casey RJ Hubert2, Kai Finster3, Alexander Loy4 and Bo Barker Jørgensen1 1Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; 2School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK; 3Microbiology Section, Department of Bioscience, Aarhus University, Aarhus, Denmark and 4Department of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria Patterns of microbial biogeography result from a combination of dispersal, speciation and extinction, yet individual contributions exerted by each of these mechanisms are difficult to isolate and distinguish. The influx of endospores of thermophilic microorganisms to cold marine sediments offers a natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85 1C, and by subsequent molecular diversity analyses of 16S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S rRNA and dsrAB sequences in Arctic surface sediment 3000 km away showed that the same phylotypes are present in both locations. Radiotracer- enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca.
    [Show full text]
  • Department of Microbiology
    SRINIVASAN COLLEGE OF ARTS & SCIENCE (Affiliated to Bharathidasan University, Trichy) PERAMBALUR – 621 212. DEPARTMENT OF MICROBIOLOGY Course : M.Sc Year: I Semester: II Course Material on: MICROBIAL PHYSIOLOGY Sub. Code : P16MB21 Prepared by : Ms. R.KIRUTHIGA, M.Sc., M.Phil., PGDHT ASSISTANT PROFESSOR / MB Month & Year : APRIL – 2020 MICROBIAL PHYSIOLOGY Unit I Cell structure and function Bacterial cell wall - Biosynthesis of peptidoglycan - outer membrane, teichoic acid – Exopolysaccharides; cytoplasmic membrane, pili, fimbriae, S-layer. Transport mechanisms – active, passive, facilitated diffusions – uni, sym, antiports. Electron carriers – artificial electron donors – inhibitors – uncouplers – energy bond – phosphorylation. Unit II Microbial growth Bacterial growth - Phases of growth curve – measurement of growth – calculations of growth rate – generation time – synchronous growth – induction of synchronous growth, synchrony index – factors affecting growth – pH, temperature, substrate and osmotic condition. Survival at extreme environments – starvation – adaptative mechanisms in thermophilic, alkalophilic, osmophilic and psychrophilic. Unit III Microbial pigments and photosynthesis Autotrophs - cyanobacteria - photosynthetic bacteria and green algae – heterotrophs – bacteria, fungi, myxotrophs. Brief account of photosynthetic and accessory pigments – chlorophyll – fluorescence, phosphorescence - bacteriochlorophyll – rhodopsin – carotenoids – phycobiliproteins. Unit IV Carbon assimilation Carbohydrates – anabolism – autotrophy –
    [Show full text]
  • Determining the Culturability of the Rumen Bacterial Microbiome
    bs_bs_banner Determining the culturability of the rumen bacterial microbiome Christopher J. Creevey,1,2 William J. Kelly,3,4* list of cultured rumen isolates that are representative Gemma Henderson3,4 and Sinead C. Leahy3,4 of abundant, novel and core bacterial species in the 1Animal and Bioscience Research Department, Animal rumen. In addition, we have identified taxa, particu- and Grassland Research and Innovation Centre, larly within the phylum Bacteroidetes, where further Teagasc, Grange, Dunsany, Co. Meath, Ireland. cultivation efforts are clearly required. 2Institute of Biological, Environmental and Rural This information is being used to guide the isola- Sciences, Aberystwyth University, Aberystwyth, tion efforts and selection of bacteria from the rumen Ceredigion, UK. microbiota for sequencing through the Hungate1000. 3Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand. Introduction 4New Zealand Agricultural Greenhouse Gas Research Ruminants have evolved a symbiotic relationship with a Centre, Palmerston North, New Zealand. complex microbiome consisting of bacteria, archaea, fungi, protozoa, and viruses located in their fore-stomach Summary (reticulorumen) that allows these animals to utilize the lignocellulose component of plant material as their main The goal of the Hungate1000 project is to generate a energy source. The microbial degradation of lignocellu- reference set of rumen microbial genome sequences. lose, and fermentation of the released soluble sugars, Toward this goal we have carried out a meta-analysis produces short-chain fatty acids that are absorbed across using information from culture collections, scientific the rumen epithelium and utilized by the ruminant for literature, and the NCBI and RDP databases and growth, while the microbial cells pass from the rumen to linked this with a comparative study of several rumen the digestive tract where they become the main source of 16S rRNA gene-based surveys.
    [Show full text]
  • Discovery of Novel Enzymes with Industrial Potential from a Cold and Alkaline Environment by a Combination of Functional Metagenomics and Culturing
    Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter Published in: Microbial Cell Factories DOI: 10.1186/1475-2859-13-72 Publication date: 2014 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Vester, J. K., Glaring, M. A., & Stougaard, P. (2014). Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microbial Cell Factories, 13, [72]. https://doi.org/10.1186/1475-2859-13-72 Download date: 08. apr.. 2020 Vester et al. Microbial Cell Factories 2014, 13:72 http://www.microbialcellfactories.com/content/13/1/72 RESEARCH Open Access Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing Jan Kjølhede Vester, Mikkel Andreas Glaring and Peter Stougaard* Abstract Background: The use of cold-active enzymes has many advantages, including reduced energy consumption and easy inactivation. The ikaite columns of SW Greenland are permanently cold (4-6°C) and alkaline (above pH 10), and the microorganisms living there and their enzymes are adapted to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns. Results: A strain collection with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains.
    [Show full text]
  • Hydrogen Stress and Syntrophy of Hyperthermophilic Heterotrophs and Methanogens
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses July 2018 HYDROGEN STRESS AND SYNTROPHY OF HYPERTHERMOPHILIC HETEROTROPHS AND METHANOGENS Begum Topcuoglu University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Environmental Microbiology and Microbial Ecology Commons, and the Microbial Physiology Commons Recommended Citation Topcuoglu, Begum, "HYDROGEN STRESS AND SYNTROPHY OF HYPERTHERMOPHILIC HETEROTROPHS AND METHANOGENS" (2018). Doctoral Dissertations. 1299. https://doi.org/10.7275/11912692.0 https://scholarworks.umass.edu/dissertations_2/1299 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. HYDROGEN STRESS AND SYNTROPHY OF HYPERTHERMOPHILIC HETEROTROPHS AND METHANOGENS A Dissertation Presented by BEGÜM D. TOPÇUOĞLU Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2018 Microbiology © Copyright by Begüm Topçuoğlu 2018 All Rights Reserved HYDROGEN STRESS AND SYNTROPHY OF HYPERTHERMOPHILIC HETEROTROPHS AND METHANOGENS A Dissertation Presented by BEGÜM D. TOPÇUOĞLU Approved as to style and content by: ____________________________________
    [Show full text]
  • Bacterial Communities Associated With
    BACTERIAL COMMUNITIES ASSOCIATED WITH NATURAL AND ANTHROPOGENIC PETROLEUM IMPACTED ANAEROBIC ENVIRONMENTS By JAMES PAUL DAVIS Bachelor of Science in Microbiology University of Oklahoma Norman, Oklahoma 2006 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2012 BACTERIAL COMMUNITIES ASSOCIATED WITH NATURAL AND ANTHROPOGENIC PETROLEUM IMPACTED ANAEROBIC ENVIRONMENTS Dissertation Approved: Dr. Mostafa S. Elshahed Dissertation Adviser Dr. Robert V. Miller Dr. Wouter D. Hoff Dr. Babu Z. Fathepure Dr. Ulrich Melcher Outside Committee Member Dr. Sheryl A. Tucker Dean of the Graduate College ii TABLE OF CONTENTS Table of contents .......................................................................................................... iii List of Tables .................................................................................................................v List of Figures .............................................................................................................. vi Preface ......................................................................................................................... vii Chapter Page I. CULTURE-INDEPENDENT MOLECULAR BIOLOGICAL APPROACHES IN MICROBIAL ECOLOGY .......................................................................................1 Microbial Ecology ...................................................................................................2 The
    [Show full text]
  • Thi Na Utaliblat in Un Minune Talk
    THI NA UTALIBLATUS010064900B2 IN UN MINUNE TALK (12 ) United States Patent ( 10 ) Patent No. : US 10 , 064 ,900 B2 Von Maltzahn et al . ( 45 ) Date of Patent: * Sep . 4 , 2018 ( 54 ) METHODS OF POPULATING A (51 ) Int. CI. GASTROINTESTINAL TRACT A61K 35 / 741 (2015 . 01 ) A61K 9 / 00 ( 2006 .01 ) (71 ) Applicant: Seres Therapeutics, Inc. , Cambridge , (Continued ) MA (US ) (52 ) U . S . CI. CPC .. A61K 35 / 741 ( 2013 .01 ) ; A61K 9 /0053 ( 72 ) Inventors : Geoffrey Von Maltzahn , Boston , MA ( 2013. 01 ); A61K 9 /48 ( 2013 . 01 ) ; (US ) ; Matthew R . Henn , Somerville , (Continued ) MA (US ) ; David N . Cook , Brooklyn , (58 ) Field of Classification Search NY (US ) ; David Arthur Berry , None Brookline, MA (US ) ; Noubar B . See application file for complete search history . Afeyan , Lexington , MA (US ) ; Brian Goodman , Boston , MA (US ) ; ( 56 ) References Cited Mary - Jane Lombardo McKenzie , Arlington , MA (US ); Marin Vulic , U . S . PATENT DOCUMENTS Boston , MA (US ) 3 ,009 ,864 A 11/ 1961 Gordon - Aldterton et al. 3 ,228 ,838 A 1 / 1966 Rinfret (73 ) Assignee : Seres Therapeutics , Inc ., Cambridge , ( Continued ) MA (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 CN 102131928 A 7 /2011 EA 006847 B1 4 / 2006 U .S . C . 154 (b ) by 0 days. (Continued ) This patent is subject to a terminal dis claimer. OTHER PUBLICATIONS ( 21) Appl . No. : 14 / 765 , 810 Aas, J ., Gessert, C . E ., and Bakken , J. S . ( 2003) . Recurrent Clostridium difficile colitis : case series involving 18 patients treated ( 22 ) PCT Filed : Feb . 4 , 2014 with donor stool administered via a nasogastric tube .
    [Show full text]
  • Anaeromicrobium Sediminis Gen. Nov., Sp. Nov., a Fermentative Bacterium Isolated from Deep-Sea Sediment
    NOTE Zhang et al., Int J Syst Evol Microbiol 2017;67:1462–1467 DOI 10.1099/ijsem.0.001739 Anaeromicrobium sediminis gen. nov., sp. nov., a fermentative bacterium isolated from deep-sea sediment Xiaobo Zhang,1,2,3† Xiang Zeng,1,2,3† Xi Li,1,2,3 Karine Alain,4,5,6 Mohamed Jebbar4,5,6 and Zongze Shao1,2,3,* Abstract A novel anaerobic, mesophilic, heterotrophic bacterium, designated strain DY2726DT, was isolated from West Pacific Ocean sediments. Cells were long rods (0.5–0.8 µm wide, 4–15 µm long), Gram-positive and motile by means of flagella. The temperature and pH ranges for growth were 25–40 C and pH 6.5–9.0, while optimal growth occurred at 37 C and pH 7.5, with a generation time of 76 min. The strain required sea salts for growth at concentrations from 10 to 30 g lÀ1 (optimum at 20 g lÀ1). Substrates used as carbon sources were yeast extract, tryptone, glucose, cellobiose, starch, gelatin, dextrin, fructose, fucose, galactose, galacturonic acid, gentiobiose, glucosaminic acid, mannose, melibiose, palatinose and rhamnose. Products of fermentation were carbon dioxide, acetic acid and butyric acid. Strain DY2726DT was able to reduce amorphous iron hydroxide, goethite, amorphous iron oxides, anthraquinone-2,6-disulfonate and crotonate, but did not reduce sulfur, sulfate, thiosulfate, sulfite or nitrate. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DY2726DT was affiliated to the family Clostridiaceae and was most closely related to the type strains of Alkaliphilus transvaalensis (90.0 % similarity) and Alkaliphilus oremlandii (89.6 %).
    [Show full text]