Thermophilic Endospore-Forming Bacteria As Models for Exploring Microbial Dispersal in Time and Space

Total Page:16

File Type:pdf, Size:1020Kb

Thermophilic Endospore-Forming Bacteria As Models for Exploring Microbial Dispersal in Time and Space University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Thermophilic Endospore-Forming Bacteria as Models for Exploring Microbial Dispersal in Time and Space Cramm, Margaret Cramm, M. (2017). Thermophilic Endospore-Forming Bacteria as Models for Exploring Microbial Dispersal in Time and Space (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/28742 http://hdl.handle.net/11023/4275 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Thermophilic Endospore-Forming Bacteria as Models for Exploring Microbial Dispersal in Time and Space by Margaret Anne Cramm A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA DECEMBER, 2017 © Margaret Anne Cramm 2017 Abstract Thermophilic endospore-forming bacteria – “ thermospores ” – are particularly useful model organisms for exploring microbial biogeography because they remain viable for long geologic time periods owing to a dormant state that confers resistant to extreme conditions. Using high temperature incubation experiments and 16S rRNA gene amplicon sequencing, geographic and temporal thermospore dispersal in marine sediments was explored. Thermospores detected in surface sediments across the North Atlantic are likely to originate from multiple warm temperature habitats, and are viable in sediments buried ~15 000 years ago. These approaches also revealed thermospore viability following the extreme stress of prolonged -80°C exposure. Thermospore viability and dispersal on a scale of millions of years was explored in a 1.2 km long sediment core. Uneven thermospore germination posed a challenge for thermospore detection but their capacity for use as models of biological dispersal remains valid. ii Preface This thesis is the original, unpublished, independent work by the author, Margaret Cramm iii Acknowledgements I would like to thank the funding agencies NSERC, Genome Canada, MEOPAR, ArcticNet and, the Province of Alberta for supporting my research. I would like to thank Anirban Chakraborty for teaching me everything I know about microbiological labwork. Anirban’s patience and dedicaton to teaching me was central to the establishment of my research foundation and the completion of this thesis. Addionally, I would also like to thank Carmen Li for her patience and assistance with the molecular work required for this research. Carmen was integral in the collection and interpretation of DNA sequencing data that was central to this research. Emil Ruff is a wizard of microbial community analysis. I am grateful for Emil’s dedication to teaching me that went beyond simply teaching me analysis techniques but also ensured that I understood the underlying concepts. Finally, I would like to thank Casey Hubert, my supervisor, for mentoring and championing me throughout my graduate student research career. I am particularly grateful to Casey for allowing me to steer the direction of my research based on my curiosity, increasing the quality of my scientific writing, and supporting me in participating in unique domestic and international research opportunities that elevated my research skill set. My time as a graduate student has offered me diverse learning experiences that have advanced me as a researcher and evolved me personally. Much of what I have gained during this time is a direct result of my sense of adventure meeting Casey’s open-minded approach to graduate student learning and for this reason I know that of all the supervisors in the world Casey is the best one for me. iv Dedication I would like to dedicate this work to Albert Stephen Bishop Cramm and Ann Ida (Appelt) Cramm whose support made my education and participation in this research possible. v Table of Contents Abstract .......................................................................................................................... ii Preface........................................................................................................................... iii Acknowledgements ...................................................................................................... iv Dedication ...................................................................................................................... v Table of Contents ......................................................................................................... vi List of Tables ................................................................................................................ ix List of Figures ............................................................................................................... xi List of Supplementary Tables ..................................................................................... xv List of Supplementary Figures .................................................................................. xvi List of Abbreviations ................................................................................................... xx Chapter 1: Introduction ................................................................................................. 1 1.1 Bacterial endospores ............................................................................................. 1 1.2 Endospore strategies for survival and longevity ..................................................... 3 1.3 Thermophilic endospore-forming bacteria .............................................................. 5 1.4 Microbial biogeography and thermospores ............................................................ 5 1.5 Thermospores in anoxic environments .................................................................. 8 1.6 Panspermia and the last universal common ancestor .......................................... 10 1.7 Thesis overview ................................................................................................... 14 Chapter 2: Materials and Methods ............................................................................. 15 2.1 Sediment sample collection ................................................................................. 15 2.2 High temperature incubation ................................................................................ 17 2.3 Sulfate and organic acid measurement ................................................................ 17 2.4 16S rRNA gene amplicon sequencing and analyses ........................................... 18 2.4.1 DNA extraction .............................................................................................. 18 2.4.2 16S rRNA gene amplification and sequencing .............................................. 18 2.4.3 16S rRNA gene amplicon sequence analysis ................................................ 19 Chapter 3: Freezing tolerance of thermophilic endospores in Arctic marine sediment ....................................................................................................................... 21 3.1 Abstract .............................................................................................................. 21 3.2 Introduction ........................................................................................................ 23 3.3 Materials and Methods ...................................................................................... 25 3.3.1 Freezing pretreatment ................................................................................... 25 3.3.2 High temperature incubation ......................................................................... 25 3.3.3 Sulfate and organic acid measurement ......................................................... 26 3.3.4 DNA extraction and 16S rRNA gene amplicon sequencing ........................... 26 3.3.5 Gas composition measurement after freezing pretreatment .......................... 27 3.3.6 Repeat freezing pretreatment and incubation to observe the effect of O2 contamination on bacterial community structure .................................................... 27 vi 3.4 Results ................................................................................................................ 29 3.4.1 Sulfate reduction during 50°C incubations ..................................................... 29 3.4.2 Organic acid depletion ................................................................................... 30 3.4.3 16S rRNA gene amplicon library analysis and thermospore OTU identification ............................................................................................................................... 31 3.4.4 Gas analysis after freezing pretreatment and the gas permeability of rubber stoppers after freezing ............................................................................................ 40 3.4.5 Bacterial community structure after repeat pre-freezing and incubation ........ 40 3.5 Discussion .......................................................................................................... 47
Recommended publications
  • Accepted Version
    This document is the accepted manuscript version of the following article: Giometto, A., Rinaldo, A., Carrara, F., & Altermatt, F. (2014). Emerging predictable features of replicated biological invasion fronts. Proceedings of the National Academy of Sciences of the United States of America PNAS, 111(1), 297-301. https://doi.org/10.1073/pnas.1321167110 Emerging predictable features of replicated biological invasion fronts Andrea Giometto ∗ y, Andrea Rinaldo ∗ z Francesco Carrara ∗ , and Florian Altermatt y ∗Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, Ecole´ Polytechnique F´ed´eralede Lausanne,CH-1015 Lausanne, Switzerland,yDepartment of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600 D¨ubendorf, Switzerland, and zDipartimento di Ingegneria Civile, Edile ed Ambientale, Universit`adi Padova, I-35131 Padova, Italy Submitted to Proceedings of the National Academy of Sciences of the United States of America Biological dispersal shapes species' distribution and affects their co- logical range expansions is fundamental to the study of inva- existence. The spread of organisms governs the dynamics of invasive sive species dynamics [1{10], shifts in species ranges due to species, the spread of pathogens and the shifts in species ranges due climate or environmental change [11{14] and, in general, the to climate or environmental change. Despite its relevance for fun- spatial distribution of species [3, 15{18]. Dispersal is the key damental ecological processes, however, replicated experimentation agent that brings favorable genotypes or highly competitive on biological dispersal is lacking and current assessments point at inherent limitations to predictability, even in the simplest ecologi- species into new ranges much faster than any other ecological cal settings.
    [Show full text]
  • Heat Resistant Thermophilic Endospores in Cold Estuarine Sediments
    Heat resistant thermophilic endospores in cold estuarine sediments Emma Bell Thesis submitted for the degree of Doctor of Philosophy School of Civil Engineering and Geosciences Faculty of Science, Agriculture and Engineering February 2016 Abstract Microbial biogeography explores the spatial and temporal distribution of microorganisms at multiple scales and is influenced by environmental selection and passive dispersal. Understanding the relative contribution of these factors can be challenging as their effects can be difficult to differentiate. Dormant thermophilic endospores in cold sediments offer a natural model for studies focusing on passive dispersal. Understanding distributions of these endospores is not confounded by the influence of environmental selection; rather their occurrence is due exclusively to passive transport. Sediment heating experiments were designed to investigate the dispersal histories of various thermophilic spore-forming Firmicutes in the River Tyne, a tidal estuary in North East England linking inland tributaries with the North Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and enriched bacterial populations were characterised using denaturing gradient gel electrophoresis, functional gene clone libraries and high-throughput sequencing. The distribution of thermophilic endospores among different locations along the estuary was spatially variable, indicating that dispersal vectors originating in both warm terrestrial and marine habitats contribute to microbial diversity in estuarine and marine environments. In addition to their persistence in cold sediments, some endospores displayed a remarkable heat-resistance surviving multiple rounds of autoclaving. These extremely heat-resistant endospores are genetically similar to those detected in deep subsurface environments, including geothermal groundwater investigated from a nearby terrestrial borehole drilled to >1800 m depth with bottom temperatures in excess of 70°C.
    [Show full text]
  • Global-Scale Episodes of Transoceanic Biological Dispersal During the Cenozoic
    Global-scale episodes of transoceanic biological dispersal during the Cenozoic Daniel Viete ( [email protected] ) Johns Hopkins University Siobhán Cooke Johns Hopkins School of Medicine Brief Communication Keywords: biological dispersal, transoceanic rafting, Cenozoic Posted Date: November 20th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-104248/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Global-scale episodes of transoceanic biological dispersal during the Cenozoic 2 Daniel R. Viete1 & Siobhán B. Cooke2 3 1. Department of Earth & Planetary Sciences, Johns Hopkins University; 2. Center for 4 Functional Anatomy & Evolution, Johns Hopkins School of Medicine 5 Since formalization of plate tectonic theory in the 1960s, vicariance has been the 6 dominant model for interpretation in biogeography. However, modern research 7 suggests transoceanic ‘rafting’ is also an important process in biological dispersal. 8 Here we show that Cenozoic occurrences of rafting-associated colonization of new 9 lands by terrestrial biota are not randomly distributed in time, but cluster at c. 40 10 million years ago (Ma) and c. 15 Ma. These excursions in rafting activity are reflected 11 across taxonomic groups and ocean basins. The global scale and ~25 million-year (My) 12 wavelength of the fluctuations suggest they are associated with planetary-scale 13 changes and/or events. 14 Simpson [1] argued that differences in the terrestrial faunal assemblages of Africa and 15 Madagascar could be explained by an adventitious process of faunal exchange; migration 16 from Africa was limited to fauna whose physiology could, on rare attempt, allow survival of an 17 extended oceanic journey then establishment of a viable Malagasy population.
    [Show full text]
  • Microbial Diversity of Drilling Fluids from 3000 M Deep Koyna Pilot
    Science Reports Sci. Dril., 27, 1–23, 2020 https://doi.org/10.5194/sd-27-1-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Microbial diversity of drilling fluids from 3000 m deep Koyna pilot borehole provides insights into the deep biosphere of continental earth crust Himadri Bose1, Avishek Dutta1, Ajoy Roy2, Abhishek Gupta1, Sourav Mukhopadhyay1, Balaram Mohapatra1, Jayeeta Sarkar1, Sukanta Roy3, Sufia K. Kazy2, and Pinaki Sar1 1Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India 2Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India 3Ministry of Earth Sciences, Borehole Geophysics Research Laboratory, Karad, 415114, Maharashtra, India Correspondence: Pinaki Sar ([email protected], [email protected]) Received: 24 June 2019 – Revised: 25 September 2019 – Accepted: 16 December 2019 – Published: 27 May 2020 Abstract. Scientific deep drilling of the Koyna pilot borehole into the continental crust up to a depth of 3000 m below the surface at the Deccan Traps, India, provided a unique opportunity to explore microbial life within the deep granitic bedrock of the Archaean Eon. Microbial communities of the returned drilling fluid (fluid re- turned to the mud tank from the underground during the drilling operation; designated here as DF) sampled during the drilling operation of the Koyna pilot borehole at a depth range of 1681–2908 metres below the surface (m b.s.) were explored to gain a glimpse of the deep biosphere underneath the continental crust. Change of pH 2− to alkalinity, reduced abundance of Si and Al, but enrichment of Fe, Ca and SO4 in the samples from deeper horizons suggested a gradual infusion of elements or ions from the crystalline bedrock, leading to an observed geochemical shift in the DF.
    [Show full text]
  • Demographic Stochasticity in Evolutionary Biology
    Demographic Stochasticity in Evolutionary Biology by Yen Ting Lin A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in The University of Michigan 2013 Doctoral Committee: Professor Charles R. Doering, Chair Post-Doc Assistant Professor Arash Fahim Assistant Professor Emanuel Gull Professor Mark E. J. Newman Professor John C. Schotland 5/1, 2013 at Navy Pier, Chicago. c Yen Ting Lin 2013 All Rights Reserved To Chia-Hui and Amber ii ACKNOWLEDGEMENTS I met Prof. Charles Doering, who prefers to be called \Charlie", in my very first class|Complex System 541|here at the UM. Immediately I was attractive to his teaching charisma|until then I had not realized the meaning of the famous saying \teaching is an art". Charlie really masters the \art". After 541 I took his Asymptotic Analysis offered by the Department of Mathematics and learned a great deal about asymptotic analysis, which turned out to be one of the main tools for my later research. If I can only thank one person in this Acknowledgement, Charlie is the one. Without him, I would probably never finish my Ph. D. study. He kindly accepted me transferring from Prof. Leonard Sander's group, and has been a wonderful mentor to me since then. He reshaped my \thinking" so that I can perform a more mathematical research, pushed me to take graduate courses in mathematics to broaden my view, encouraged me to attend to conferences (with financial support!) and supported me| financially and mentally|to work on subjects that I really enjoy.
    [Show full text]
  • Evolutionarily Stable and Convergent Stable Strategies in Reaction-Diffusion Models for Conditional Dispersal
    EVOLUTIONARILY STABLE AND CONVERGENT STABLE STRATEGIES IN REACTION-DIFFUSION MODELS FOR CONDITIONAL DISPERSAL KING-YEUNG LAM AND YUAN LOU Abstract. We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations. Keywords: Conditional dispersal; Evolutionarily stable strategy; Convergent stable strategy; Reaction- diffusion-advection; Competition. AMS Classification: 92D35, 92D40, 35K57, 35J55. 1. Introduction Biological dispersal refers to the movement of organisms from one location to another within a habitat. Dispersal of organisms has important consequence on population dynamics, disease spread and distribution of species [3, 32, 36, 37]. Unconditional dispersal refers to the movement of organisms in which the probability of movement is independent of the local environment, while conditional dispersal refers to those that are contingent on the local environmental cues. Understanding the evolution of dispersal is an important topic in ecology and evolutionary biology [9, 35]. In the following, we limit our discussion to phenotypic evolution under clonal reproduction, where the importance of genes and sex are ignored.
    [Show full text]
  • Dispersal of Microalgae of Dispersal the Role of Biological and Physical Barriers Barriers Physical and of Biological the Role
    JosefinSefbom Dispersal of Microalgae The role of Biological and Physical Barriers DispersalBiologicalMicroalgaeof RolePhysicalTheofand Barriers – Josefin Sefbom Ph.D. thesis Department of Marine Sciences University of Gothenburg 2015 ISBN 978-91-85529-83-4 Printed by Aidla Trading AB Dispersal of Microalgae The role of Biological and Physical Barriers Doctoral Thesis Josefin Sefbom Department of Marine Sciences Faculty of Science 2015 Front cover photograph by Josefin Sefbom & Susanna Gross Printed by Kompendiet, Aidla Trading AB, Gothenburg, Sweden © Josefin Sefbom, 2015 ISBN 978-91-85529-83-4 2 Abstract Microalgae are only a few micrometres to a millimetre in size, yet they constitute the base for aquatic food webs and are extremely important drivers in elemental cycling. Long it has been assumed that small organisms (<1 mm) that occur in high abundances, have global dispersal potential facilitated by winds, currents and vectors e.g. birds and insects. A growing body of evidence is however portraying a different story; that several planktonic microalgal species exhibit genetically differentiated populations at regional geographic scales, and that populations can also differ in environmentally important phenotypic traits. In this thesis I present results from field studies and experiments designed to test various physical and biological dispersal barriers to explain why, despite the high dispersal potential, microalgae exhibit reduced gene flow (exchange of genetic material) between populations. A marine species Skeletonema marinoi (Bacillariophyceae) and a freshwater species Gonyostomum semen (Raphidophyceae) were used to test the function of geographic distance and hydrographic connectivity (physical barriers) as well as local adaptation and priority effects (biological barriers) on gene flow between populations.
    [Show full text]
  • Corrosion of Carbon Steel by Bacteria from North
    Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation Marko Stipaničev, Florin Turcu, Loïc Esnault, Omar Rosas, Régine Basséguy, Magdalena Sztyler, Iwona B. Beech To cite this version: Marko Stipaničev, Florin Turcu, Loïc Esnault, Omar Rosas, Régine Basséguy, et al.. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation. Bioelectrochemistry, Elsevier, 2014, 97, pp.76-88. 10.1016/j.bioelechem.2013.09.006. hal-01913355 HAL Id: hal-01913355 https://hal.archives-ouvertes.fr/hal-01913355 Submitted on 6 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/20292 Official URL: https://doi.org/10.1016/j.bioelechem.2013.09.006 To cite this version: Stipaničev, Marko and Turcu, Florin and Esnault, Loïc and Rosas, Omar and Basséguy, Régine and Sztyler, Magdalena and Beech, Iwona B. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation.
    [Show full text]
  • Diffusion of Point Source and Biological Dispersal
    Chapter 3 Diffusion of point source and biological dispersal 3.1 Diffusion of a point source Suppose that a new species is introduced to an existing environment, then naturally the individuals of the species will disperse from the release point. That would similar to the diffusion when a drop of ink enter a jar of pure water. Reaction-diffusion equation can be used to describe an ideal growth and spatial-diffusion phenomena. The simplest way is to consider the dispersion in an infinite domain–we first consider the simplest one dimensional problem. Suppose that P (t,x) is the population density function of this species, t 0 and x ( , ). Suppose that at t = 0, we ≥ ∈ −∞ ∞ import a group of M individuals to a point (say, x = 0). Let u0(x) be the initial distribution of the population. Then ∞ u0(x)dx = M. (3.1) Z−∞ However u (x) = 0 for any x = 0 since before the dispersion, the species does not exist in the 0 6 environment yet. On the other hand the population density at x = 0 is given by the following limit x x u0(x)dx u0(0) = lim − = . (3.2) x 0+ 2x ∞ → R Thus u0(x) is an unusual function can be characterized by if x = 0, ∞ u0(x)= ∞ and u0(x)dx = M. (3.3) 0 otherwise, ( Z−∞ This function is called a δ-function (delta function) in physics, and we denote it by δ0(x) (a function which is infinity at a would be δa(x).) Although this function is not a function in the normal sense, we can check that the function M x2 Φ(t,x)= e− 4Dt (3.4) √4πDt 37 38 CHAPTER 3.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Dispersal of Thermophilic Desulfotomaculum Endospores Into Baltic Sea Sediments Over Thousands of Years
    The ISME Journal (2012), 1–13 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years Ju´ lia Rosa de Rezende1, Kasper Urup Kjeldsen1, Casey RJ Hubert2, Kai Finster3, Alexander Loy4 and Bo Barker Jørgensen1 1Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; 2School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK; 3Microbiology Section, Department of Bioscience, Aarhus University, Aarhus, Denmark and 4Department of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria Patterns of microbial biogeography result from a combination of dispersal, speciation and extinction, yet individual contributions exerted by each of these mechanisms are difficult to isolate and distinguish. The influx of endospores of thermophilic microorganisms to cold marine sediments offers a natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85 1C, and by subsequent molecular diversity analyses of 16S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S rRNA and dsrAB sequences in Arctic surface sediment 3000 km away showed that the same phylotypes are present in both locations. Radiotracer- enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca.
    [Show full text]
  • Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure
    Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure Authors: Suzanne L. Ishaq, Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled The final publication is available at Springer via http://dx.doi.org/10.1007/s00248-016-0861-2. Ishaq, Suzanne L. , Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled. "Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure." Microbial Ecology 73, no. 2 (February 2017): 417-434. DOI: 10.1007/s00248-016-0861-2. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure 1,2 & 2 & 3 & 4 & Suzanne L. Ishaq Stephen P. Johnson Zach J. Miller Erik A. Lehnhoff 1 1 2 Sarah Olivo & Carl J. Yeoman & Fabian D. Menalled 1 Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, MT 59717, USA 2 Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT 59717, USA 3 Western Agriculture Research Center, Montana State University, Bozeman, MT, USA 4 Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA Abstract Farming practices affect the soil microbial commu- then individual farm. Living inoculum-treated soil had greater nity, which in turn impacts crop growth and crop-weed inter- species richness and was more diverse than sterile inoculum- actions.
    [Show full text]