Impact of Diet Composition on Rumen Bacterial

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Diet Composition on Rumen Bacterial IMPACT OF DIET COMPOSITION ON RUMEN BACTERIAL PHYLOGENETICS A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Animal and Poultry Science University of Saskatchewan Saskatoon By RENÉE MAXINE PETRI Copyright Renee M. Petri, March, 2013. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Dr. Andrew Van Kessel Head of the Department of Animal and Poultry Science University of Saskatchewan Saskatoon, Saskatchewan S7N 5A8 i ABSTRACT Two experiments were conducted to determine the effects of various forage to concentrate ratios on the rumen microbial ecosystem and rumen fermentation parameters using culture- independent methods. In the first experiment, cattle were fed either a high concentrate (HC) or a high concentrate without forage (HCNF) diet. Comparison of rumen fermentation parameters between these two diets showed that duration of time spent below pH 5.2 and rumen osmolality were higher for HCNF. Calculations using Simpson’s index showed a greater diversity of dominant species for HCNF than in HC based on 16S rRNA PCR-DGGE. Real-time real-time PCR showed populations of Fibrobacter succinogenes (P=0.01) were lower in HCNF than HC diets. Ruminococcus spp., F. succinogenes and Selenomonas ruminantium were present at higher (P≤0.05) concentrations in solid than in liquid digesta in both diets. The second experiment compared cattle as they adapted from a strictly forage to a concentrate diet, after which they were subject to an acidotic challenge and a recovery period (Forage, Mixed Forage, High Grain, Acidosis and Recovery). A total of 153,621 high-quality bacterial sequences were obtained from biopsied rumen epithelium, and 407,373 sequences from the solid and liquid phases of rumen contents. Only 14 epithelial genera representing >1.0% of the epimural population differed (P ≤ 0.05) among dietary treatments. However, clustering showed a closer relation in bacterial profiles for the Forage and Mixed Forage diets as compared to the High Grain, Acidosis and Recovery diets. Several epithelial identified genera including Atopobium, Desulfocurvus, Fervidicola, Lactobacillus and Olsenella increased as a result of acidosis. However, any changes in bacterial populations during the acidosis challenge were not sustained during the recovery period. This indicates a high level of stability within the rumen epimural community. An epithelial core microbiome was determined which explained 21% of the enumerable rumen population across all treatment samples. Cluster analysis of the solid and liquid phase rumen ii bacterial showed that these populations differed (P ≤ 0.10) between forage and grain-based diets. Rumen core microbiome analysis found 32 OTU’s representing 10 distinct bacterial taxa in whole rumen contents for all dietary treatments. Heifers that developed clinical acidosis vs the subclinical acidosis showed increases in the genera Acetitomaculum, Lactobacillus, Prevotella, and Streptococcus. Variation in microbial taxa as an effect of both treatment and animal was evident in the solid and liquid fractions of the rumen digesta. However, impacts of a dietary treatment were transient and despite an acidotic challenge, rumen microbiota were able to recover within a week of perturbation. The bacterial populations in the rumen are highly diverse as indicated by DGGE analysis and showed clear distinction between not only dietary treatments, individual animals, but also between epithelial, liquid and solid associated populations on the same diet. Molecular techniques provide an increased understanding of the impact of dietary change on the nature of rumen bacterial populations and conclusions derived using these techniques may not match those previously derived using traditional laboratory culturing techniques. iii ACKNOWLEDGMENTS I would like to express my deep appreciation and gratitude to my advisors, Dr. Tim McAllister and Dr. John McKinnon for the support, guidance and mentorship provided to me, all the way from when I was first considering applying to a PhD program, through to completion of this degree. John, thank you for encouraging me to continue on past my Master’s program, I am truly fortunate to have had the opportunity to work you throughout my graduate programs. Tim, your keen intellect and drive for knowledge is surpassed only by your skills in support and motivation of graduate students, I am honored to have had the chance to work with you. I would also like to thank my committee members, Drs. Tim Mutsvangwa, Karen Beauchemin, Andrew Van Kessel and Steve Hendrick for the friendly guidance, thought provoking suggestions, and the general collegiality that each of them offered to me over the years. In a similar vein, I’d like to recognize Drs. Robert Forster, Ron Teather, Trevor Alexander, Greg Penner and the late Denis Krause for the contributions that each of them made to my intellectual growth during my program. I must also express my appreciation to the staff of the Lethbridge Research Centre for their assistance and collaborative work throughout my program. Primarily, Shaun Cook, Wendy Smart, Lyn Paterson, Pam Lussier, and Krysty Munns. Finally, I’d be remiss if I didn’t acknowledge the innumerable sacrifices made by my husband, Daniel, in shouldering daily burdens, diaper changes and long distances all while also pursuing his PhD program. iv DEDICATION To the most amazing little boy I know. Finn, you are my biggest accomplishment. v TABLE OF CONTENTS Page ABSTRACT .................................................................................................................................... ii ACKNOWLEDGMENTS ............................................................................................................. iv LIST OF TABLES ......................................................................................................................... ix LIST OF FIGURES ....................................................................................................................... xi ABBREVIATIONS ..................................................................................................................... xiii 1.0 GENERAL INTRODUCTION ..................................................................................................1 2.0 LITERATURE REVIEW ..........................................................................................................4 2.1 Microbial Ecology in the Rumen .......................................................................................... 4 2.2 Role of Microbes in Digestion .............................................................................................. 7 2.2.1 Forage Diets .................................................................................................................8 2.2.2 Mixed Forage-Concentrate Diets ...............................................................................11 2.3 Impact of Digestive Disturbances on Ruminal Microbiome .............................................. 16 2.4 Rumen Microbial Component of Acidosis ......................................................................... 19 2.5 Individual Animal Variation ............................................................................................... 20 2.6 Rumen Molecular Microbiology......................................................................................... 21 2.6.1 Current Molecular Techniques for Ecological Characterization in the Rumen .........23 2.6.2 Fingerprinting Techniques .........................................................................................27 2.6.3 Quantification Techniques .........................................................................................30 2.6.4 Next-generation sequencing technology ....................................................................31 2.7 Summary ............................................................................................................................. 34 2.8 Hypothesis........................................................................................................................... 35 3.0 CHARACTERIZATION OF RUMEN BACTERIAL DIVERSITY IN FEEDLOT CATTLE ……………………………………………………………………………………………………38 3.1 Introduction ......................................................................................................................... 38 3.2Materials and Methods ........................................................................................................
Recommended publications
  • Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium from the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella Atlantisensis Gen
    fmicb-10-01497 July 16, 2019 Time: 16:31 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmicb.2019.01497 Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Marianne Quéméneur1, Gaël Erauso1, Eléonore Frouin1, Emna Zeghal1, Céline Vandecasteele2, Bernard Ollivier1, Christian Tamburini1, Marc Garel1, Bénédicte Ménez3 and Anne Postec1* Edited by: 1 Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France, 2 INRA, US 1426, GeT-PlaGe, Isabelle Daniel, Genotoul, Castanet-Tolosan, France, 3 Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, Paris, Université Claude Bernard Lyon 1, France France Reviewed by: Rock-hosted subseafloor habitats are very challenging for life, and current knowledge Ida Helene Steen, University of Bergen, Norway about microorganisms inhabiting such lithic environments is still limited. This study Lotta Purkamo, explored the cultivable microbial diversity in anaerobic enrichment cultures from cores Geological Survey of Finland, Finland recovered during the International Ocean Discovery Program (IODP) Expedition 357 from *Correspondence: ◦ Anne Postec the Atlantis Massif (Mid-Atlantic Ridge, 30 N). 16S rRNA gene survey of enrichment ◦ [email protected] cultures grown at 10–25 C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed Specialty section: This article was submitted to depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures Extreme Microbiology, (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly a section of the journal anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 Frontiers in Microbiology meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa.
    [Show full text]
  • Biodegradation Treatment of Petrochemical Wastewaters
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA VEGETAL Biodegradation treatment of petrochemical wastewaters Catarina Isabel Nunes Alexandre Dissertação Mestrado em Microbiologia Aplicada Orientadores Doutora Sandra Sanches Professora Doutora Lélia Chambel 2015 Biodegradation treatment of petrochemical wastewaters Catarina Isabel Nunes Alexandre 2015 This thesis was fully performed at the Institute of Experimental and Technologic Biology (IBET) of Instituto de Tecnologia Química e Bioquímica (ITQB) under the direct supervision of Drª Sandra Sanches in the scope of the Master in Applied Microbiology of the Faculty of Sciences of the University of Lisbon. Prof. Drª Lélia Chambel was the internal designated supervisor in the scope of the Master in Applied Microbiology of the Faculty of Sciences of the University of Lisbon. Agradecimentos Gostaria de agradecer a todas as pessoas que estiveram directamente ou indirectamente envolvidas na execução da minha tese de mestrado, pois sem eles a sua realização não teria sido possível. Queria começar por agradecer à Doutora Sandra Sanches, que se demonstrou sempre disponível para esclarecer dúvidas quando precisei, e que fez questão de me ensinar de forma rigorosa e exigente. À Doutora Maria Teresa Crespo, que assim que lhe pedi para me orientar me disse que sim imediatamente, fez questão de me treinar em vários contextos e sempre estimulou o meu envolvimento nas rotinas do laboratório. À Professora Doutora Lélia Chambel, que sempre me esclareceu dúvidas sobre processos burocráticos, me deu conselhos quando eu mais precisei e que me apoiou durante toda a minha tese. Queria também agradecer à Doutora Dulce Brito, que sempre se mostrou disponível para ajudar quando a nossa equipa mais precisava dela, e sempre me ajudou a realizar as tarefas mais básicas do meu trabalho até eu ter ganho a minha autonomia no laboratório.
    [Show full text]
  • Determining the Culturability of the Rumen Bacterial Microbiome
    bs_bs_banner Determining the culturability of the rumen bacterial microbiome Christopher J. Creevey,1,2 William J. Kelly,3,4* list of cultured rumen isolates that are representative Gemma Henderson3,4 and Sinead C. Leahy3,4 of abundant, novel and core bacterial species in the 1Animal and Bioscience Research Department, Animal rumen. In addition, we have identified taxa, particu- and Grassland Research and Innovation Centre, larly within the phylum Bacteroidetes, where further Teagasc, Grange, Dunsany, Co. Meath, Ireland. cultivation efforts are clearly required. 2Institute of Biological, Environmental and Rural This information is being used to guide the isola- Sciences, Aberystwyth University, Aberystwyth, tion efforts and selection of bacteria from the rumen Ceredigion, UK. microbiota for sequencing through the Hungate1000. 3Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand. Introduction 4New Zealand Agricultural Greenhouse Gas Research Ruminants have evolved a symbiotic relationship with a Centre, Palmerston North, New Zealand. complex microbiome consisting of bacteria, archaea, fungi, protozoa, and viruses located in their fore-stomach Summary (reticulorumen) that allows these animals to utilize the lignocellulose component of plant material as their main The goal of the Hungate1000 project is to generate a energy source. The microbial degradation of lignocellu- reference set of rumen microbial genome sequences. lose, and fermentation of the released soluble sugars, Toward this goal we have carried out a meta-analysis produces short-chain fatty acids that are absorbed across using information from culture collections, scientific the rumen epithelium and utilized by the ruminant for literature, and the NCBI and RDP databases and growth, while the microbial cells pass from the rumen to linked this with a comparative study of several rumen the digestive tract where they become the main source of 16S rRNA gene-based surveys.
    [Show full text]
  • Discovery of Novel Enzymes with Industrial Potential from a Cold and Alkaline Environment by a Combination of Functional Metagenomics and Culturing
    Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter Published in: Microbial Cell Factories DOI: 10.1186/1475-2859-13-72 Publication date: 2014 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Vester, J. K., Glaring, M. A., & Stougaard, P. (2014). Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microbial Cell Factories, 13, [72]. https://doi.org/10.1186/1475-2859-13-72 Download date: 08. apr.. 2020 Vester et al. Microbial Cell Factories 2014, 13:72 http://www.microbialcellfactories.com/content/13/1/72 RESEARCH Open Access Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing Jan Kjølhede Vester, Mikkel Andreas Glaring and Peter Stougaard* Abstract Background: The use of cold-active enzymes has many advantages, including reduced energy consumption and easy inactivation. The ikaite columns of SW Greenland are permanently cold (4-6°C) and alkaline (above pH 10), and the microorganisms living there and their enzymes are adapted to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns. Results: A strain collection with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains.
    [Show full text]
  • Characterization of Biocarbon-Source Recovery and Microbial Community Shifts from Waste Activated Sludge by Conditioning with Co
    www.nature.com/scientificreports OPEN Characterization of biocarbon- source recovery and microbial community shifts from waste Received: 12 September 2016 Accepted: 16 January 2017 activated sludge by conditioning Published: 17 February 2017 with cornstover: Assessment of cellulosic compositions Kaili Wen1, Aijuan Zhou1,2, Jiaguang Zhang3, Zhihong Liu1, Guoying Wang1, Wenzong Liu4, Aijie Wang4,5 & Xiuping Yue1 Most studies on the production of volatile fatty acids (VFAs) from waste activated sludge (WAS) digestion have focused on operating conditions, pretreatments and characteristic adjustments. Conditioning by extra carbon sources (ECS), normally added in a solid form, has been reported to be an efficient approach. However, this has caused considerable waste of monomeric sugars in the hydrolysate. In this study, the effects of two added forms (pretreated straw (S) and hydrolyzed liquid (L)) of cornstover (CS) on WAS acidification were investigated. To obtain different cellulosic compositions of CS, low-thermal or autoclaved assisted alkaline (TA or AA) pretreatments were conducted. The results showed that AA-L test achieved the highest VFAs value (653 mg COD/g VSS), followed by AA-S (613 mg COD/g VSS). These values were 12% and 28% higher, respectively, than that obtained in the TA-L and TA-S tests. Meanwhile, higher percentages of acetic acid were observed after AA pretreatment (~62% versus ~53% in TA). The added forms of CS played an important role in structuring the innate microbial community in the WAS, as shown by high-throughput sequencing and canonical correspondence analysis. The findings obtained in this work may provide a scientific basis for the potential implementation of co-digesting WAS with ECS simultaneously obtaining energy and high value-added products.
    [Show full text]
  • Determining the Culturability of the Rumen Bacterial Microbiome
    Determining the culturability of the rumen bacterial microbiome Creevey, C. J., Kelly, W. J., Henderson, G., & Leahy, S. C. (2014). Determining the culturability of the rumen bacterial microbiome. Microbial Biotechnology, 7(5), 467-479. https://doi.org/10.1111/1751-7915.12141 Published in: Microbial Biotechnology Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2014 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06. Oct. 2021 bs_bs_banner Determining the culturability of the rumen bacterial microbiome Christopher J. Creevey,1,2 William J. Kelly,3,4* list of cultured rumen isolates that are representative Gemma Henderson3,4 and Sinead C.
    [Show full text]
  • Enhanced Acetogenesis of Waste Activated Sludge by Conditioning with Processed Organic Wastes in Co-Fermentation: Kinetics, Performance and Microbial Response
    energies Article Enhanced Acetogenesis of Waste Activated Sludge by Conditioning with Processed Organic Wastes in Co-Fermentation: Kinetics, Performance and Microbial Response Yu Zhang 1, Rui Sun 1,*, Cristiano Varrone 2 , Yaoli Wei 3, Alimzhanova Shyryn 1, Aijuan Zhou 3,4 and Jie Zhang 1 1 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; [email protected] (Y.Z.); [email protected] (A.S.); [email protected] (J.Z.) 2 Department of Chemistry and BioScience, Aalborg University, 9220 Copenhagen, Denmark; [email protected] 3 College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] (Y.W.); [email protected] (A.Z.) 4 State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China * Correspondence: [email protected]; Tel.: +86-451-86282762 Received: 8 June 2020; Accepted: 9 July 2020; Published: 14 July 2020 Abstract: Aimed at the low ratio of carbon and nitrogen (C/N, approximately 7/1) of waste activated sludge (WAS), which would inhibit the acetogenesis process during anaerobic fermentation, this study introduced three brewing wastes, including vinegar (VR), stillage (SR) and soy sauce (SSR) residues, to promote acetogenesis by co-fermenting with WAS. Results showed that different brewing wastes contributed differently to the volatile fatty acids (VFAs) yield. The best performance was observed with SSR (4517 367 mg COD/L), particularly rich in C –C VFAs, corresponding to 40% and 52% higher ± 2 3 concentrations than with SR and VR, respectively. Meanwhile, the hydrolysis rate constant peaked 1 1 at 0.0059 h− in the SSR test, compared to the sole WAS test (0.0018 h− ).
    [Show full text]
  • Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium from the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella Atlantisensis Gen
    fmicb-10-01497 July 16, 2019 Time: 16:31 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmicb.2019.01497 Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Marianne Quéméneur1, Gaël Erauso1, Eléonore Frouin1, Emna Zeghal1, Céline Vandecasteele2, Bernard Ollivier1, Christian Tamburini1, Marc Garel1, Bénédicte Ménez3 and Anne Postec1* Edited by: 1 Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France, 2 INRA, US 1426, GeT-PlaGe, Isabelle Daniel, Genotoul, Castanet-Tolosan, France, 3 Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, Paris, Université Claude Bernard Lyon 1, France France Reviewed by: Rock-hosted subseafloor habitats are very challenging for life, and current knowledge Ida Helene Steen, University of Bergen, Norway about microorganisms inhabiting such lithic environments is still limited. This study Lotta Purkamo, explored the cultivable microbial diversity in anaerobic enrichment cultures from cores Geological Survey of Finland, Finland recovered during the International Ocean Discovery Program (IODP) Expedition 357 from *Correspondence: ◦ Anne Postec the Atlantis Massif (Mid-Atlantic Ridge, 30 N). 16S rRNA gene survey of enrichment ◦ [email protected] cultures grown at 10–25 C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed Specialty section: This article was submitted to depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures Extreme Microbiology, (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly a section of the journal anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 Frontiers in Microbiology meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa.
    [Show full text]