Determining the Culturability of the Rumen Bacterial Microbiome

Total Page:16

File Type:pdf, Size:1020Kb

Determining the Culturability of the Rumen Bacterial Microbiome Determining the culturability of the rumen bacterial microbiome Creevey, C. J., Kelly, W. J., Henderson, G., & Leahy, S. C. (2014). Determining the culturability of the rumen bacterial microbiome. Microbial Biotechnology, 7(5), 467-479. https://doi.org/10.1111/1751-7915.12141 Published in: Microbial Biotechnology Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2014 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06. Oct. 2021 bs_bs_banner Determining the culturability of the rumen bacterial microbiome Christopher J. Creevey,1,2 William J. Kelly,3,4* list of cultured rumen isolates that are representative Gemma Henderson3,4 and Sinead C. Leahy3,4 of abundant, novel and core bacterial species in the 1Animal and Bioscience Research Department, Animal rumen. In addition, we have identified taxa, particu- and Grassland Research and Innovation Centre, larly within the phylum Bacteroidetes, where further Teagasc, Grange, Dunsany, Co. Meath, Ireland. cultivation efforts are clearly required. 2Institute of Biological, Environmental and Rural This information is being used to guide the isola- Sciences, Aberystwyth University, Aberystwyth, tion efforts and selection of bacteria from the rumen Ceredigion, UK. microbiota for sequencing through the Hungate1000. 3Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand. Introduction 4New Zealand Agricultural Greenhouse Gas Research Ruminants have evolved a symbiotic relationship with a Centre, Palmerston North, New Zealand. complex microbiome consisting of bacteria, archaea, fungi, protozoa, and viruses located in their fore-stomach Summary (reticulorumen) that allows these animals to utilize the lignocellulose component of plant material as their main The goal of the Hungate1000 project is to generate a energy source. The microbial degradation of lignocellu- reference set of rumen microbial genome sequences. lose, and fermentation of the released soluble sugars, Toward this goal we have carried out a meta-analysis produces short-chain fatty acids that are absorbed across using information from culture collections, scientific the rumen epithelium and utilized by the ruminant for literature, and the NCBI and RDP databases and growth, while the microbial cells pass from the rumen to linked this with a comparative study of several rumen the digestive tract where they become the main source of 16S rRNA gene-based surveys. In this way we have amino acids and protein for the animal. Other fermenta- attempted to capture a snapshot of rumen bacterial tion end-products, including hydrogen, carbon dioxide, diversity to examine the culturable fraction of the formate and methyl-containing compounds, are important rumen bacterial microbiome. Our analyses have substrates for methanogenesis. Consequently, rumen revealed that for cultured rumen bacteria, there are microbes are central to the optimal digestive functioning many genera without a reference genome sequence. of the animal, and the lack of sufficient understanding of Our examination of culture-independent studies high- the rumen microbiome is one of the major knowledge lights that there are few novel but many uncultured gaps hindering effective enhancement and modification of taxa within the rumen bacterial microbiome. Taken rumen function (Kingston-Smith et al., 2013). together these results have allowed us to compile a Bacteria are the most numerous organisms in the rumen microbiome, being present at 1010 to 1011 g−1 of Received 3 February, 2014; revised 14 May, 2014; accepted 2 June, content and making up more than 50% of the cell mass. 2014. *For correspondence. E-mail [email protected]; Tel. Studies of rumen bacteria began with the development of (+64) 6 351 8118; Fax (+64) 6 351 8032. techniques for cultivating strictly anaerobic organisms and Microbial Biotechnology (2014) 7(5), 467–479 doi:10.1111/1751-7915.12141 have attempted to answer three questions: ‘Who is Funding Information This work was made possible through a Global there?’, ‘How many?’ and ‘What are they doing? As a Research Alliance Senior Scientist Award from the Livestock Emis- consequence, most of the knowledge we have of rumen sions & Abatement Research Network awarded to CJC. CJC is cur- rently part of the BBSRC (Biotechnology and Biological Sciences bacteria has arisen from traditional microbiological Research Council) Institute Strategic Programme Grant, Rumen methods involving the isolation and cultivation of pure Systems Biology, (Grant Number BB/J004413/1) and was also funded strains and species. Microscopic examination of rumen from the Science Foundation Ireland (SFI) Stokes Lectureship Pro- gramme (Reference Number: 07/SK/B1236A; http://www.sfi.ie) during contents shows that the rumen contains a rich diversity of this work. SCL was awarded a New Zealand Agricultural Greenhouse microbes, and many different bacteria have been isolated Gas Research Centre (NZAGRC) Travel Award to progress part of this from this environment. Some, such as Lampropedia and work. The Hungate1000 project is funded by the New Zealand Gov- ernment in support of the Livestock Research Group of the Global Quinella, are distinctive enough to be identified by mor- Research Alliance on Agricultural Greenhouse Gases. phology alone (Clarke, 1979), but most have been © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 468 C. J. Creevey, W. J. Kelly, G. Henderson and S. C. Leahy described on the basis of their metabolism and probable data. This was done not only to assess the diversity functional role in the rumen. Many of the best character- present and to identify cultured taxa that remain unrepre- ized rumen bacteria were described in the pioneering sented in reference genome collections, but also to iden- studies of rumen microbiology which isolated representa- tify taxa that require more cultivation effort. The resulting tives of the functionally significant bacterial groups list of taxa is currently being used by the Hungate1000 for (Bryant, 1959; Hungate, 1966). Knowledge of rumen bac- sequencing of previously unsequenced organisms found terial diversity has increased in subsequent years as addi- in association with ruminants. It is hoped this list of taxa tional genera of rumen bacteria have been isolated and will serve as a resource for the rumen microbiology com- characterized. These culture-based studies of bacterial munity interested in the isolation of novel members of the morphology, physiology and metabolism have revealed a microbiome. Sequencing of these organisms will bring us bacterial community that includes both generalists and closer to completing a comprehensive reference genome specialists able to convert large plant polymers into a collection for the rumen microbiome. variety of smaller organic compounds. However, in recent years, emphasis on bacterial cultur- Results and discussion ing has been reduced and our knowledge of the rumen Rumen bacteria in culture bacteria across different diets, ruminant species and geo- graphical locations has quickly expanded through the Using information from culture collections, scientific litera- insights of culture-independent methods, such as 16S ture, the National Center for Biotechnology Information rRNA gene surveys aimed at classifying and quantifying (NCBI) and Ribosomal Database Project (RDP, Cole et the microbes present (Brulc et al., 2009; Kong et al., al., 2014) databases we identified cultivated rumen bac- 2010; Pitta et al., 2010; De Menezes et al., 2011; Hess teria, which include members of 88 different bacterial et al., 2011; Kim et al., 2011; Li et al., 2011; Fouts et al., genera belonging to nine phyla (Table 1 and Supporting 2012; Jami and Mizrahi, 2012; Kav et al., 2012; Pope Information Table S1). A survey of five international et al., 2012; Wu et al., 2012). These studies are providing culture collections (American Type Culture Collection new answers to the questions ‘Who is there?’ and ‘How (ATCC), Culture Collection University of Göteborg many?’, and it is clear that the number of rumen cultured (CCUG), Leibniz Institute DSMZ-German Collection of representatives has not kept pace with this expansion in Microorganisms and Cell Culture, Japan
Recommended publications
  • Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium from the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella Atlantisensis Gen
    fmicb-10-01497 July 16, 2019 Time: 16:31 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmicb.2019.01497 Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Marianne Quéméneur1, Gaël Erauso1, Eléonore Frouin1, Emna Zeghal1, Céline Vandecasteele2, Bernard Ollivier1, Christian Tamburini1, Marc Garel1, Bénédicte Ménez3 and Anne Postec1* Edited by: 1 Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France, 2 INRA, US 1426, GeT-PlaGe, Isabelle Daniel, Genotoul, Castanet-Tolosan, France, 3 Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, Paris, Université Claude Bernard Lyon 1, France France Reviewed by: Rock-hosted subseafloor habitats are very challenging for life, and current knowledge Ida Helene Steen, University of Bergen, Norway about microorganisms inhabiting such lithic environments is still limited. This study Lotta Purkamo, explored the cultivable microbial diversity in anaerobic enrichment cultures from cores Geological Survey of Finland, Finland recovered during the International Ocean Discovery Program (IODP) Expedition 357 from *Correspondence: ◦ Anne Postec the Atlantis Massif (Mid-Atlantic Ridge, 30 N). 16S rRNA gene survey of enrichment ◦ [email protected] cultures grown at 10–25 C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed Specialty section: This article was submitted to depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures Extreme Microbiology, (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly a section of the journal anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 Frontiers in Microbiology meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa.
    [Show full text]
  • Effects of Long-Acting, Broad Spectra Anthelmintic Treatments on The
    www.nature.com/scientificreports OPEN Efects of long‑acting, broad spectra anthelmintic treatments on the rumen microbial community compositions of grazing sheep Christina D. Moon1*, Luis Carvalho1, Michelle R. Kirk1, Alan F. McCulloch2, Sandra Kittelmann3, Wayne Young1, Peter H. Janssen1 & Dave M. Leathwick1 Anthelmintic treatment of adult ewes is widely practiced to remove parasite burdens in the expectation of increased ruminant productivity. However, the broad activity spectra of many anthelmintic compounds raises the possibility of impacts on the rumen microbiota. To investigate this, 300 grazing ewes were allocated to treatment groups that included a 100‑day controlled release capsule (CRC) containing albendazole and abamectin, a long‑acting moxidectin injection (LAI), and a non‑treated control group (CON). Rumen bacterial, archaeal and protozoal communities at day 0 were analysed to identify 36 sheep per treatment with similar starting compositions. Microbiota profles, including those for the rumen fungi, were then generated for the selected sheep at days 0, 35 and 77. The CRC treatment signifcantly impacted the archaeal community, and was associated with increased relative abundances of Methanobrevibacter ruminantium, Methanosphaera sp. ISO3‑F5, and Methanomassiliicoccaceae Group 12 sp. ISO4‑H5 compared to the control group. In contrast, the LAI treatment increased the relative abundances of members of the Veillonellaceae and resulted in minor changes to the bacterial and fungal communities by day 77. Overall, the anthelmintic treatments resulted in few, but highly signifcant, changes to the rumen microbiota composition. Anthelmintic treatment of adult ewes is practiced by about 80% of sheep farmers in New Zealand1, and many of these treatments use active compounds with broad-spectrum persistent activity.
    [Show full text]
  • Biodegradation Treatment of Petrochemical Wastewaters
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA VEGETAL Biodegradation treatment of petrochemical wastewaters Catarina Isabel Nunes Alexandre Dissertação Mestrado em Microbiologia Aplicada Orientadores Doutora Sandra Sanches Professora Doutora Lélia Chambel 2015 Biodegradation treatment of petrochemical wastewaters Catarina Isabel Nunes Alexandre 2015 This thesis was fully performed at the Institute of Experimental and Technologic Biology (IBET) of Instituto de Tecnologia Química e Bioquímica (ITQB) under the direct supervision of Drª Sandra Sanches in the scope of the Master in Applied Microbiology of the Faculty of Sciences of the University of Lisbon. Prof. Drª Lélia Chambel was the internal designated supervisor in the scope of the Master in Applied Microbiology of the Faculty of Sciences of the University of Lisbon. Agradecimentos Gostaria de agradecer a todas as pessoas que estiveram directamente ou indirectamente envolvidas na execução da minha tese de mestrado, pois sem eles a sua realização não teria sido possível. Queria começar por agradecer à Doutora Sandra Sanches, que se demonstrou sempre disponível para esclarecer dúvidas quando precisei, e que fez questão de me ensinar de forma rigorosa e exigente. À Doutora Maria Teresa Crespo, que assim que lhe pedi para me orientar me disse que sim imediatamente, fez questão de me treinar em vários contextos e sempre estimulou o meu envolvimento nas rotinas do laboratório. À Professora Doutora Lélia Chambel, que sempre me esclareceu dúvidas sobre processos burocráticos, me deu conselhos quando eu mais precisei e que me apoiou durante toda a minha tese. Queria também agradecer à Doutora Dulce Brito, que sempre se mostrou disponível para ajudar quando a nossa equipa mais precisava dela, e sempre me ajudou a realizar as tarefas mais básicas do meu trabalho até eu ter ganho a minha autonomia no laboratório.
    [Show full text]
  • The Gut Microbiota in Young and Middle-Aged Rats Showed Different
    Zhu et al. BMC Microbiology (2016) 16:281 DOI 10.1186/s12866-016-0895-0 RESEARCH ARTICLE Open Access The gut microbiota in young and middle-aged rats showed different responses to chicken protein in their diet Yingying Zhu1,2,HeLi1, Xinglian Xu1, Chunbao Li1* and Guanghong Zhou1* Abstract Background: Meat protein in the diet has been shown to be beneficial for the growth of Lactobacillus in the caecum of growing rats; however, it is unknown whether gut microbiota in middle-aged animals have the same responses to meat protein diets. This study compared the composition of the gut microbiota between young and middle-aged rats after being fed 17.7% chicken protein diet for 14 days. Methods: Feces were collected on day 0 and day 14 from young rats (4 weeks old) and middle-aged rats (64 weeks old) fed with 17.7% chicken protein diets. The composition of the gut bacteria was analyzed by sequencing the V4-V5 region of the 16S ribosomal RNA gene. Results: The results showed that the composition of the gut microbiota was significantly different between young and middle-aged rats on both day 0 and day 14. The percentage of Firmicutes decreased for middle-aged rats (72.1% versus 58.1% for day 0 and day 14, respectively) but increased for young rats (41.5 versus 57.7% for day 0 and day 14, respectively). The percentage of Bacteroidetes increased to 31.2% (20.5% on day 0) for middle-aged rats and decreased to 29.6% (41.3% on day 0) for young rats.
    [Show full text]
  • Determining the Culturability of the Rumen Bacterial Microbiome
    bs_bs_banner Determining the culturability of the rumen bacterial microbiome Christopher J. Creevey,1,2 William J. Kelly,3,4* list of cultured rumen isolates that are representative Gemma Henderson3,4 and Sinead C. Leahy3,4 of abundant, novel and core bacterial species in the 1Animal and Bioscience Research Department, Animal rumen. In addition, we have identified taxa, particu- and Grassland Research and Innovation Centre, larly within the phylum Bacteroidetes, where further Teagasc, Grange, Dunsany, Co. Meath, Ireland. cultivation efforts are clearly required. 2Institute of Biological, Environmental and Rural This information is being used to guide the isola- Sciences, Aberystwyth University, Aberystwyth, tion efforts and selection of bacteria from the rumen Ceredigion, UK. microbiota for sequencing through the Hungate1000. 3Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand. Introduction 4New Zealand Agricultural Greenhouse Gas Research Ruminants have evolved a symbiotic relationship with a Centre, Palmerston North, New Zealand. complex microbiome consisting of bacteria, archaea, fungi, protozoa, and viruses located in their fore-stomach Summary (reticulorumen) that allows these animals to utilize the lignocellulose component of plant material as their main The goal of the Hungate1000 project is to generate a energy source. The microbial degradation of lignocellu- reference set of rumen microbial genome sequences. lose, and fermentation of the released soluble sugars, Toward this goal we have carried out a meta-analysis produces short-chain fatty acids that are absorbed across using information from culture collections, scientific the rumen epithelium and utilized by the ruminant for literature, and the NCBI and RDP databases and growth, while the microbial cells pass from the rumen to linked this with a comparative study of several rumen the digestive tract where they become the main source of 16S rRNA gene-based surveys.
    [Show full text]
  • Different Drugs in Modulating Gut Microbiome of Colitis Mice
    Research Article J Complement Med Alt Healthcare Volume 9 Issue 2 - March 2019 Copyright © All rights are reserved by Chunjiang Zhang DOI: 10.19080/JCMAH.2019.09.555757 Different Drugs in Modulating Gut Microbiome of Colitis Mice Xinjun Chen1, Pingshun Song2,3, Pingrong Yang2,3, Yaping Jing4,5,6, Chenhui Li4,5,6, Junshu Wei4,5,6, Anping Li2,3, Xiao Ma2,3, Tuanjie Che5* and Chunjiang Zhang4,5,6* 1Laboratory of Pathogenic Biology and Immunology, Hainan Medical University, China 2Gansu Institute of Drug Control, China 3Gansu Tebetan Herbal Medicine Engineering Laboratory of Testing and Detection, China 4School of Life Sciences, Lanzhou University, China 5Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, China 6Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, China Submission: February 22,2019; Published: March 11, 2019 *Corresponding author: Chunjiang Zhang, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu province, China Tuanjie Che, Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou730000, China Abstract Background: therapeutics aimed at restoring microbial community structure. Saccharomyces boulardii The gut microbiome plays a key role in Inflammatory Bowel Disease (IBD), which has spurred the development of novel is a new probiotic that has not been commonly used to treatment IBD. Although the traditional Chinese herbal medicine Sijunzi Tang (SJZT) decoction has been widely used to alleviate the symptoms of ulcerativeMethods: colitis (UC), its underlying mechanismS. remains boulardii unknown. Codonopsis pilosula S. boulardii The efficacy of four drugs named , SJZT, Dangshen ( ) polysaccharide or in combination with Dangshen polysaccharide were test during treatment with Dextran Sulphate Sodium (DSS)-induced mice colitis.
    [Show full text]
  • Characterization of the Rumen Microbiota and Volatile Fatty Acid Profiles of Weaned Goat Kids Under Shrub-Grassland Grazing and Indoor Feeding
    animals Article Characterization of the Rumen Microbiota and Volatile Fatty Acid Profiles of Weaned Goat Kids under Shrub-Grassland Grazing and Indoor Feeding 1, 1, 1, 2 1,3 1 1,3 Jiazhong Guo y, Pengfei Li y, Shuai Liu y, Bin Miao , Bo Zeng , Yahui Jiang , Li Li , Linjie Wang 1,3 , Yu Chen 2 and Hongping Zhang 1,* 1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (J.G.); [email protected] (P.L.); [email protected] (S.L.); [email protected] (B.Z.); [email protected] (Y.J.); [email protected] (L.L.); [email protected] (L.W.) 2 Nanjiang Yellow Goat Scientific Research Institute, Nanjiang 635600, China; [email protected] (B.M.); [email protected] (Y.C.) 3 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China * Correspondence: [email protected] These authors contributed equally to this work. y Received: 17 December 2019; Accepted: 20 January 2020; Published: 21 January 2020 Simple Summary: Although grazing and indoor feeding are both major production systems in the goat industry worldwide, the impacts of different feeding systems on rumen fermentation remain poorly understood. In this study, we observed large differences in microbial community compositions and volatile fatty acid profiles in the rumen of weaned goats among three feeding systems, which provides an in-depth understanding of rumen fermentation in response to changes in feeding systems. Abstract: In this study, we conducted comparative analyses to characterize the rumen microbiota and volatile fatty acid (VFA) profiles of weaned Nanjiang Yellow goat kids under shrub-grassland grazing (GR), shrub-grassland grazing and supplementary feeding (SF), and indoor feeding (IF) systems.
    [Show full text]
  • Discovery of Novel Enzymes with Industrial Potential from a Cold and Alkaline Environment by a Combination of Functional Metagenomics and Culturing
    Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter Published in: Microbial Cell Factories DOI: 10.1186/1475-2859-13-72 Publication date: 2014 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Vester, J. K., Glaring, M. A., & Stougaard, P. (2014). Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microbial Cell Factories, 13, [72]. https://doi.org/10.1186/1475-2859-13-72 Download date: 08. apr.. 2020 Vester et al. Microbial Cell Factories 2014, 13:72 http://www.microbialcellfactories.com/content/13/1/72 RESEARCH Open Access Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing Jan Kjølhede Vester, Mikkel Andreas Glaring and Peter Stougaard* Abstract Background: The use of cold-active enzymes has many advantages, including reduced energy consumption and easy inactivation. The ikaite columns of SW Greenland are permanently cold (4-6°C) and alkaline (above pH 10), and the microorganisms living there and their enzymes are adapted to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns. Results: A strain collection with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains.
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • Phylogenetic Analysis of 16S Rdna Sequences Manifest Rumen Bacterial Diversity in Gayals (Bos Frontalis) Fed Fresh Bamboo Leaves and Twigs (Sinarumdinaria)
    1057 Asian-Aust. J. Anim. Sci. Vol. 20, No. 7 : 1057 - 1066 July 2007 www.ajas.info Phylogenetic Analysis of 16S rDNA Sequences Manifest Rumen Bacterial Diversity in Gayals (Bos frontalis) Fed Fresh Bamboo Leaves and Twigs (Sinarumdinaria) Weidong Deng1, 2, 3, Metha Wanapat2, *, Songcheng Ma3, Jing Chen3, Dongmei Xi3, Tianbao He4 Zhifang Yang4 and Huaming Mao1, 3 1 Yunnan Provincial Laboratory of Animal Nutrition and Feed Science Yunnan Agricultural University, Kunming 650201, P. R. China ABSTRACT : Six male Gayal (Bos frontalis), approximately two years of age and with a mean live weight of 203±17 kg (mean±standard deviation), were housed indoors in metabolism cages and fed bamboo (Sinarundinaria) leaves and twigs. After an adjustment period of 24 days of feeding the diet, samples of rumen liquor were obtained for analyses of bacteria in the liquor. The diversity of rumen bacteria was investigated by constructing a 16S rDNA clone library. A total of 147 clones, comprising nearly full length sequences (with a mean length of 1.5 kb) were sequenced and submitted to an on-line similarity search and phylogenetic analysis. Using the criterion of 97% or greater similarity with the sequences of known bacteria, 17 clones were identified as Ruminococcus albus, Butyrivibrio fibrosolvens, Quinella ovalis, Clostridium symbiosium, Succiniclasticum ruminis, Selenomonas ruminantium and Allisonella histaminiformans, respectively. A further 22 clones shared similarity ranging from 90-97% with known bacteria but the similarity in sequences for the remaining 109 clones was less than 90% of those of known bacteria. Using a phylogenetic analysis it was found that the majority of the clones identified (57.1%) were located in the low G+C subdivision, with most of the remainder (42.2% of clones) located in the Cytophage-Flexibacter-Bacteroides (CFB) phylum and one clone (0.7%) was identified as a Spirochaete.
    [Show full text]
  • Relationship Between the True Digestibility of Dietary Calcium and Gastrointestinal Microorganisms in Goats
    animals Article Relationship between the True Digestibility of Dietary Calcium and Gastrointestinal Microorganisms in Goats 1, 1,2, 1, 1 1 1 Yuehui Liu y, Ali Mujtaba Shah y , Lizhi Wang *, Lei Jin , Zhisheng Wang , Bai Xue and Quanhui Peng 1 1 Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; [email protected] (Y.L.); [email protected] (A.M.S.); [email protected] (L.J.); [email protected] (Z.W.); [email protected] (B.X.); [email protected] (Q.P.) 2 Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Science, Sakrand 67210, Pakistan * Correspondence: [email protected]; Tel./Fax: +86-28-86290922 These authors contributed equally in this work. y Received: 29 March 2020; Accepted: 13 May 2020; Published: 18 May 2020 Simple Summary: The specific enzymes secreted by microorganisms in the gastrointestinal tract (GIT) of ruminants, such as phytase, can catalyze the decomposition of calcium compounds (e.g., phytic acid) and release bound calcium for the absorption of animals. Therefore, we speculate that gastrointestinal microbes could be a factor affecting digestion and absorption of dietary calcium. However, little related research has been reported. In the present study, we found that the true digestibility of calcium (TDC) in goats is related to gastrointestinal bacteria. Some gastro-intestinal bacteria, such as ruminal Prevotella, were beneficial for true host digestibility of dietary calcium. Abstract: The current study was performed to examine the relationship between the true digestibility of calcium (TDC) in the diet and bacterial community structure in the gastrointestinal tract (GIT) of goats.
    [Show full text]
  • The Ruminal Microbiome Associated with Methane Emissions from Ruminant Livestock Ilma Tapio1, Timothy J
    Tapio et al. Journal of Animal Science and Biotechnology (2017) 8:7 DOI 10.1186/s40104-017-0141-0 REVIEW Open Access The ruminal microbiome associated with methane emissions from ruminant livestock Ilma Tapio1, Timothy J. Snelling2, Francesco Strozzi3 and R. John Wallace2* Abstract Methane emissions from ruminant livestock contribute significantly to the large environmental footprint of agriculture. The rumen is the principal source of methane, and certain features of the microbiome are associated with low/high methane phenotypes. Despite their primary role in methanogenesis, the abundance of archaea has only a weak correlation with methane emissions from individual animals. The composition of the archaeal community appears to have a stronger effect, with animals harbouring the Methanobrevibacter gottschalkii clade tending to be associated with greater methane emissions. Ciliate protozoa produce abundant H2, the main substrate for methanogenesis in the rumen, and their removal (defaunation) results in an average 11% lower methane emissions in vivo, but the results are not consistent. Different protozoal genera seem to result in greater methane emissions, though community types (A, AB, B and O) did not differ. Within the bacteria, three different ‘ruminotypes’ have been identified, two of which predispose animals to have lower methane emissions. The two low-methane ruminotypes are generally characterized by less abundant H2-producing bacteria. A lower abundance of Proteobacteria and differences in certain Bacteroidetes and anaerobic fungi seem to be associated with high methane emissions. Rumen anaerobic fungi produce abundant H2 and formate, and their abundance generally corresponds to the level of methane emissions. Thus, microbiome analysis is consistent with known pathways for H2 production and methanogenesis, but not yet in a predictive manner.
    [Show full text]