Antibiotic Activity Against Acidovorax Citrulli, the Causative Agent of Bacterial Fruit Blotch in Watermelon and Melon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species of Neocosmospora from Brazil
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1995 Band/Volume: 47 Autor(en)/Author(s): Pfenning Ludwig Artikel/Article: A new species of Neocosmospora from Brazil. 65-69 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at A new species of Neocosmospora from Brazil Ludwig Pfenning* Lehrstuhl Spezielle Botanik/Mykologie, Universität Tübingen, Auf der Morgenstelle 1, D- 72076 Tübingen, Germany Pfenning, L. (1995). A new species of Neocosmospora from Brazil. Sydowia 47 (1): 65-69. During an investigation of rhizosphere fungi of primary forests and cultivated areas in the Brazilian Amazon a new species of Neocosmospora (Hypocreales, Ascomycetes) with spinose ascospores was isolated. The name N. spinulosa is proposed. Keywords: anamorph-teleomorph connection, rhizosphere, taxonomy. The genus Neocosmospora was established by E. F. Smith in 1899, with the type species N. vasinfecta. The genus, classified in the order Hypocreales (Ascomycetes) fam. Hypocreaceae, is characterized by the yellowish to reddish-brown, membranous wall of the ascomata, asci without apical differentiations and thick-walled, ornamented ascospores lacking germ pores. The species have mostly been isolated from soil or roots in tropical and subtropical regions. Most of the known anamorphs are Acremonium spp., but that of N. endophytica Polishook & al. (Polishook & al., 1991) belongs to Penicillifer van Emden. The genus was revised by Cannon & Hawksworth (1984) who accepted five species and one variety, synonymizing N. ornamentata Freitas Barbosa (Freitas Barbosa, 1965) with N. vasinfecta E. F. Sm. var. vasinfecta. Two new species from Japan, N. -
Studies on Genetic Diversity of Japanese and Vietnamese Melon Germplasm by Using Molecular Markers
Studies on genetic diversity of Japanese and Vietnamese melon germplasm by using molecular markers 2019, September Tran Phuong Dung Graduate School of Environmental and Life Science (Doctor’s course) OKAYAMA UNIVERSITY 1 Table of contents Chapter 1. General introduction .................................................................................................................. 3 1.1. Phylogenetic relationships in genus Cucumis .............................................................................. 4 1.2. Intraspecific classification and domestication history of melon ..................................................... 9 1.3. Asia – the origin center of modern melon cultivars ....................................................................... 16 Chapter 2. Genetic diversity of Japanese melon breeding lines ............................................................... 18 2.1. Introduction ..................................................................................................................................... 18 2.2. Materials and Methods ................................................................................................................... 19 2.3. Result ............................................................................................................................................... 23 2.4. Discussion ........................................................................................................................................ 28 Chapter 3. Development of RAPD‐derived STS -
Illuminating Type Collections of Nectriaceous Fungi in Saccardo's
Persoonia 45, 2020: 221–249 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.09 Illuminating type collections of nectriaceous fungi in Saccardo’s fungarium N. Forin1, A. Vizzini 2,3,*, S. Nigris1,4, E. Ercole2, S. Voyron2,3, M. Girlanda2,3, B. Baldan1,4,* Key words Abstract Specimens of Nectria spp. and Nectriella rufofusca were obtained from the fungarium of Pier Andrea Saccardo, and investigated via a morphological and molecular approach based on MiSeq technology. ITS1 and ancient DNA ITS2 sequences were successfully obtained from 24 specimens identified as ‘Nectria’ sensu Saccardo (including Ascomycota 20 types) and from the type specimen of Nectriella rufofusca. For Nectria ambigua, N. radians and N. tjibodensis Hypocreales only the ITS1 sequence was recovered. On the basis of morphological and molecular analyses new nomenclatural Illumina combinations for Nectria albofimbriata, N. ambigua, N. ambigua var. pallens, N. granuligera, N. peziza subsp. ribosomal sequences reyesiana, N. radians, N. squamuligera, N. tjibodensis and new synonymies for N. congesta, N. flageoletiana, Sordariomycetes N. phyllostachydis, N. sordescens and N. tjibodensis var. crebrior are proposed. Furthermore, the current classifi- cation is confirmed for Nectria coronata, N. cyanostoma, N. dolichospora, N. illudens, N. leucotricha, N. mantuana, N. raripila and Nectriella rufofusca. This is the first time that these more than 100-yr-old specimens are subjected to molecular analysis, thereby providing important new DNA sequence data authentic for these names. Article info Received: 25 June 2020; Accepted: 21 September 2020; Published: 23 November 2020. INTRODUCTION to orange or brown perithecia which do not change colour in 3 % potassium hydroxide (KOH) or 100 % lactic acid (LA) Nectria, typified with N. -
Formulação De Gordura Interesterificada Sem
Ana Claudia Berenhauser POTENCIAL DE TECNOLOGIAS EMERGENTES PARA A CONSERVAÇÃO E AUMENTO DO VALOR NUTRICIONAL DE LEITE HUMANO Tese apresentada ao Programa de Pós- Graduação em Ciência dos Alimentos, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, área de concentração Ciência dos Alimentos, como requisito parcial para a obtenção do Grau de Doutor em Ciência dos Alimentos. Orientadora: Profª. Drª Jane Mara Block. Florianópolis/SC 2017 3 Folha aprovacao Dedico este trabalho aos meus filhos, Bárbara, Raphael e Júlia, meu esposo, Marcus, e aos meus pais, Gabriel e Carmen. AGRADECIMENTOS A Deus, pelo dom da vida. Aos meus filhos, Bárbara, Raphael e Júlia, razão maior da minha existência. Por me permitirem experimentar o amor incondicional e pela oportunidade de lhes presentear com o alimento mais precioso e perfeito que possa existir: o leite materno. Ao meu esposo, Marcus, pelo apoio, carinho e compreensão, em todos os momentos da minha trajetória. Aos meus pais, por me ensinarem a viver a vida com dignidade, amor e dedicação. À professora Dra. Jane Mara Block pela oportunidade concedida e pela orientação. Ao professor Dr. José Vladimir de Oliveira, por acreditar na aplicação do tratamento com CO2 supercrítico no leite humano e pelo incentivo. Ao Prof. Dr. Juliano de Dea Lindner, pela orientação quanto aos procedimentos microbiológicos. À Profa. Dra. Elane Schwinden Prudêncio, pelas orientações quanto ao processo de concentração do leite humano, pelo apoio, incentivo e carinho em todas as horas. Ao Programa de Pós-Graduação pela oportunidade concedida e pelo apoio. Às colegas do Laboratório de Óleos e Gorduras, por estarem apoio e carinho. -
China - Peoples Republic Of
THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 12/15/2009 GAIN Report Number: CH9129 China - Peoples Republic of Post: Beijing Crop Seed of Melon Report Categories: FAIRS Subject Report Approved By: William Westman Prepared By: Mark Petry and Wu Bugang Report Highlights: On November 19, 2009 China notified "Crop Seed of Melon" to the WTO as G/TBT/N/CHN/699. Comments are due on January 18, 2010. This report contains an UNOFFICIAL translation of this draft measure. General Information: Summary On November 19, 2009 China notified “Crop Seeds of Melon” to the WTO as G/TBT/N/CHN699. Comments are due on January 18, 2010. The proposed date of adoption is 90 days after circulation by the WTO secretariat and date of entry into force is 6 months after adoption. China’s WTO notification describes this standard as specifying “the quality requirements, test methods and inspection rules for watermelon, sweet melon, wax gourd and cucumber seed. It applies to the production and sale of above mentioned melon seeds in China, which covering coating seeds and non-coating seeds.” This report contains an UNOFFICIAL translation of this draft standard. BEGIN TRANSLATION National Standard of the People’s Republic of China GB 16715.1 – 200X Replaces GB 4862 – 84 GB 16715.1 - 1996 Seed of Gourd and Vegetable Crops Part 1: Gourds (Draft for Approval) Foreword All technical aspects of this Part in GB 16715 are mandatory. GB 16715 Seed of Gourd and Vegetable Crops is divided into the following parts: Part 1: Gourd; Part 2: Chinese cabbage; Part 3: Solanaceous fruits; Part 4: Cole; Part 5: Leafy vegetables; …… This Part is the first part of GB 16715 and revision of GB 4862 - 84 The Seed of Chinese Hami Melon and GB 16715.1 - 1996 Seed of Gourd and Vegetable Crops - Gourd according to the relevant provisions of Seed Law of the People's Republic of China and the new development of the seed industry. -
Molecular Analysis of the Genetic Diversity of Chinese Hami Melon and Its Relationship to the Melon Germplasm from Central and South Asia
J. Japan. Soc. Hort. Sci. 80 (1): 52–65. 2011. Available online at www.jstage.jst.go.jp/browse/jjshs1 JSHS © 2011 Molecular Analysis of the Genetic Diversity of Chinese Hami Melon and Its Relationship to the Melon Germplasm from Central and South Asia Yasheng Aierken1,2, Yukari Akashi1, Phan Thi Phuong Nhi1, Yikeremu Halidan1, Katsunori Tanaka3, Bo Long4, Hidetaka Nishida1, Chunlin Long4, Min Zhu Wu2 and Kenji Kato1* 1Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan 2Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumuqi 830000, China 3Research Institute for Humanity and Nature, Kyoto 603-8047, Japan 4Kunming Institute of Botany, CAS, Heilongtan, Kunming, Yunnan 650204, China Chinese Hami melon consists of the varieties cassaba, chandalak, ameri, and zard. To show their genetic diversity, 120 melon accessions, including 24 accessions of Hami melon, were analyzed using molecular markers of nuclear and cytoplasmic genomes. All Hami melon accessions were classified as the large-seed type with seed length longer than 9 mm, like US and Spanish Inodorus melon. Conomon accessions grown in east China were all the small- seed type. Both large- and small-seed types were in landraces from Iran, Afghanistan, Pakistan, and Central Asia. Analysis of an SNP in the PS-ID region (Rpl16-Rpl14) and size polymorphism of ccSSR7 showed that the melon accessions consisted of three chloroplast genome types, that is, maternal lineages. Hami melon accessions were T/338 bp type, which differed from Spanish melon and US Honey Dew (T/333 bp type), indicating a different maternal lineage within group Inodorus. -
Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon
molecules Article Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon 1, 1, 1 2 1 1 Yilin Lin y , Jiamiao Hu y , Shiyang Li , Siti Sarah Hamzah , Huiqin Jiang , Arong Zhou , Shaoxiao Zeng 1 and Shaoling Lin 1,* 1 College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China 2 Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia * Correspondence: [email protected]; Tel.: +86-15606025198 These authors contributed equally to this work. y Academic Editors: Derek J. McPhee and Francisco J. Barba Received: 24 May 2019; Accepted: 25 June 2019; Published: 27 June 2019 Abstract: Fresh-cut fruits and vegetables are the main sources of foodborne illness outbreaks with implicated pathogens such as Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes. This study aimed at investigating the influence of two key parameters (concentration of curcumin and illumination time) on the effects of curcumin-based photodynamic sterilization on the preservation of fresh-cut Hami melons. The results indicated that illumination with 50 µmol/L curcumin for 60 min using a blue LED lamp reduced the total aerobic microorganism count by ~1.8 log CFU/g in fresh-cut Hami melons. Besides this, the effects of photodynamic sterilization on the soluble solids content, color, water content, firmness, and sensory indices of the fresh-cut Hami melons were also evaluated. Compared to the control group, photodynamic sterilization can effectively delay the browning rate and maintain the luminosity, firmness, water content, and soluble solids content of fresh-cut Hami melon. The sensory quality was indeed preserved well after 9 days of storage in a fridge. -
(Hypocreales) Proposed for Acceptance Or Rejection
IMA FUNGUS · VOLUME 4 · no 1: 41–51 doi:10.5598/imafungus.2013.04.01.05 Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) ARTICLE proposed for acceptance or rejection Amy Y. Rossman1, Keith A. Seifert2, Gary J. Samuels3, Andrew M. Minnis4, Hans-Josef Schroers5, Lorenzo Lombard6, Pedro W. Crous6, Kadri Põldmaa7, Paul F. Cannon8, Richard C. Summerbell9, David M. Geiser10, Wen-ying Zhuang11, Yuuri Hirooka12, Cesar Herrera13, Catalina Salgado-Salazar13, and Priscila Chaverri13 1Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA; corresponding author e-mail: Amy.Rossman@ ars.usda.gov 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada 3321 Hedgehog Mt. Rd., Deering, NH 03244, USA 4Center for Forest Mycology Research, Northern Research Station, USDA-U.S. Forest Service, One Gifford Pincheot Dr., Madison, WI 53726, USA 5Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia 6CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 7Institute of Ecology and Earth Sciences and Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 8Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK 9Sporometrics, Inc., 219 Dufferin Street, Suite 20C, Toronto, Ontario, Canada M6K 1Y9 10Department of Plant Pathology and Environmental Microbiology, 121 Buckhout Laboratory, The Pennsylvania State University, University Park, PA 16802 USA 11State -
Color Plates
Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper. -
Characteristics and Host Range of a Novel Fusarium Species Causing
CHARACTERISTICS AND HOST RANGE OF A NOVEL FUSARIUM SPECIES CAUSING YELLOWING DECLINE OF SUGARBEET A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Johanna Patricia Villamizar-Ruiz In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology November 2013 Fargo, North Dakota North Dakota State University Graduate School Title CHARACTERISTICS AND HOST RANGE OF A NOVEL FUSARIUM SPECIES CAUSING YELLOWING DECLINE OF SUGARBEET By JOHANNA PATRICIA VILLAMIZAR-RUIZ The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Gary Secor Chair Dr. Mohamed Khan Dr. Luis del Río Mendoza Dr. Marisol Berti Approved: Nov 14 / 2013 Dr. Jack Rasmussen Date Department Chair ABSTRACT In 2008, a novel and distinct Fusarium species was reported in west central Minnesota causing early-season yellowing and severe decline of sugarbeet. This study was conducted to (i) establish optimum conditions for fungal growth and (ii) determine the host range of the novel Fusarium . The optimum temperature for fungal growth is 24°C and root injury is not needed to penetrate, infect, and cause disease of sugarbeet plants. Of the fifteen common crops and weeds tested for susceptibility to the new Fusarium sp. in field and greenhouse trials, disease symptoms were only observed in sugarbeet. Host range plants were tested for the presence of latent infection by root isolations and PCR. The pathogen was only present in canola and sugarbeet. -
Bionectria Pseudochroleuca, a New Host Record on Prunus Sp. in Northern Thailand
Studies in Fungi 5(1): 358–367 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/17 Bionectria pseudochroleuca, a new host record on Prunus sp. in northern Thailand Huanraluek N1, Jayawardena RS1,2, Aluthmuhandiram JVS 1, 2,3, Chethana KWT1,2 and Hyde KD1,2,4* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 4Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China Huanraluek N, Jayawardena RS, Aluthmuhandiram JVS, Chethana KWT, Hyde KD 2020 – Bionectria pseudochroleuca, a new host record on Prunus sp. in northern Thailand. Studies in Fungi 5(1), 358–367, Doi 10.5943/sif/5/1/17 Abstract This study presents the first report of Bionectria pseudochroleuca (Bionectriaceae) on Prunus sp. (Rosaceae) from northern Thailand, based on both morphological characteristics and multilocus phylogenetic analyses of internal transcribe spacer (ITS) and Beta-tubulin (TUB2). Key words – Bionectriaceae – Clonostachys – Hypocreales – Nectria – Prunus spp. – Sakura Introduction Bionectriaceae are commonly found in soil, on woody substrates and on other fungi (Rossman et al. 1999, Schroers 2001). Bionectria is a member of Bionectriaceae (Rossman et al. 2013, Maharachchikumbura et al. 2015, 2016) and is distinct from other genera in the family as it has characteristic ascospores and ascus morphology, but none of these are consistently found in all Bionectria species (Schroers 2001). Some species of this genus such as B. -
Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia Glomerata Roots
molecules Article Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments Eric Keven Silva 1 , Matheus A. Bargas 1, Henrique S. Arruda 2 , Renata Vardanega 1 , Glaucia M. Pastore 2 and M. Angela A. Meireles 1,* 1 LASEFI, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; [email protected] (E.K.S.); [email protected] (M.A.B.); [email protected] (R.V.) 2 Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; [email protected] (H.S.A.); [email protected] (G.M.P.) * Correspondence: maameireles@lasefi.com; Tel.: +55-19-98184-1414; Fax: +55-19-3521-4027 Academic Editors: Stefano Cardea and Gregory Chatel Received: 6 July 2020; Accepted: 24 August 2020; Published: 27 August 2020 Abstract: The effects of supercritical CO2 processing on the chemical stability of fructooligosaccharides (FOS) and other functional and nutritional compounds were evaluated employing non-thermal and thermal approaches. Apple juice was enriched with Pfaffia glomerata roots aqueous extract due to its high content of short-chain FOS and then subjected to different levels of temperature (40 and 60 ◦C), pressure (8 and 21 MPa), and CO2 volume ratio (20 and 50%). The percentage of CO2 volume was evaluated concerning the total volume of the high-pressure reactor. Also, the functional beverage was thermally treated at 105 ◦C for 10 min. Physicochemical properties (pH and soluble solid content), beta-ecdysone, sugars (glucose, fructose, and sucrose), and FOS (1-kestose, nystose, and fructofuranosylnystose) content were determined.