Distinguishing Planting Structures of Different Complexity from UAV Multispectral Images

Total Page:16

File Type:pdf, Size:1020Kb

Distinguishing Planting Structures of Different Complexity from UAV Multispectral Images sensors Article Distinguishing Planting Structures of Different Complexity from UAV Multispectral Images Qian Ma 1,2, Wenting Han 1,3,*, Shenjin Huang 3, Shide Dong 4 , Guang Li 3 and Haipeng Chen 3 1 Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China; [email protected] 2 College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; [email protected] (S.H.); [email protected] (G.L.); [email protected] (H.C.) 4 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] * Correspondence: [email protected]; Tel.: +86-029-8709-1325 Abstract: This study explores the classification potential of a multispectral classification model for farmland with planting structures of different complexity. Unmanned aerial vehicle (UAV) remote sensing technology is used to obtain multispectral images of three study areas with low-, medium-, and high-complexity planting structures, containing three, five, and eight types of crops, respectively. The feature subsets of three study areas are selected by recursive feature elimination (RFE). Object-oriented random forest (OB-RF) and object-oriented support vector machine (OB-SVM) classification models are established for the three study areas. After training the models with the feature subsets, the classification results are evaluated using a confusion matrix. The OB-RF and OB-SVM models’ classification accuracies are 97.09% and 99.13%, respectively, for the low-complexity planting structure. The equivalent values are 92.61% and 99.08% for the medium-complexity planting Citation: Ma, Q.; Han, W.; Huang, S.; structure and 88.99% and 97.21% for the high-complexity planting structure. For farmland with Dong, S.; Li, G.; Chen, H. fragmentary plots and a high-complexity planting structure, as the planting structure complexity Distinguishing Planting Structures of Different Complexity from UAV changed from low to high, both models’ overall accuracy levels decreased. The overall accuracy of the Multispectral Images. Sensors 2021, OB-RF model decreased by 8.1%, and that of the OB-SVM model only decreased by 1.92%. OB-SVM 21, 1994. https://doi.org/10.3390/ achieves an overall classification accuracy of 97.21%, and a single-crop extraction accuracy of at least s21061994 85.65%. Therefore, UAV multispectral remote sensing can be used for classification applications in highly complex planting structures. Academic Editor: Thomas Jarmer Keywords: UAV; multispectral remote sensing; farmland objects; classification; RF; SVM Received: 17 January 2021 Accepted: 22 February 2021 Published: 12 March 2021 1. Introduction Publisher’s Note: MDPI stays neutral According to statistics published by the United Nations, the world population is with regard to jurisdictional claims in expected to reach about 10 billion in 2050 [1,2]. Population expansion brings new challenges published maps and institutional affil- to the maintenance of food production security. Mastering the area and spatial distribution iations. of regional crops is the prerequisite for accurately obtaining regional crop yields, and the rational allocation of regional water resources. However, smallholders or family farms, which are still prevailing in some developing countries, are responsible for a large share of the world food production. The scattered farmland and discrete crops of smallholders Copyright: © 2021 by the authors. make cropland mapping and monitoring more difficult, affecting the accurate estimation Licensee MDPI, Basel, Switzerland. of regional crop yields and the rational allocation of water resources. The emergence This article is an open access article of remote sensing technology has promoted agricultural production and research, from distributed under the terms and the traditional stage to the stage of refinement, quantification, and mechanism. High- conditions of the Creative Commons Attribution (CC BY) license (https:// quality remote sensing images, especially those of high resolution, can extract feature creativecommons.org/licenses/by/ information from the ground, making the fine classification and monitoring of ground 4.0/). details possible [3,4]. Agricultural information at the farmland scale can be directly applied Sensors 2021, 21, 1994. https://doi.org/10.3390/s21061994 https://www.mdpi.com/journal/sensors Sensors 2021, 21, 1994 2 of 22 to the optimization of cultivation management and the analysis of breeding decisions. It has further applications compared with the large-scale agricultural monitoring technology used for macro decision-making [5]. Moreover, the acquisition of farmland-scale agricultural information places more stringent requirements on image data timeliness and spatial resolution. At present, the monitoring platform for acquiring crop planting information on the farmland scale is mainly based on high-resolution satellite remote sensing and unmanned aerial vehicle (UAV) remote sensing. Compared with satellite remote sensing, UAV remote sensing is less expensive, offers more flexible mobility, and has a short operating cycle, thus providing several advantages in precision agriculture [6–9]. Researchers have focused on the extraction and classification of single and multiple farmland features, based on UAV remote sensing technology and remote sensing recognition algorithms, in recent years. Supervised classification is widely used to achieve high-precision classification results. There are many supervised classifica- tion algorithms, such as the maximum likelihood, single linkage, Mahalanobis distance, support vector machines and random forests. Among them, support vector machines (SVMs) and random forests (RFs) have been widely used in recent years, as they typically offer superior classification [10–13]. Compared with traditional statistical theory, SVMs with simple structures and strong generalization ability can solve a large number of small- sample learning problems [14]. RF uses sample disturbance and attributes disturbance to achieve good robustness in classification convergence and generalization error [15]. Besides this, deep learning, as an extension of the artificial neural network method, is a new exciting and effective classification method. However, its high requirement of samples increases its cost and limits its application in areas lacking samples [16,17]. The extraction of single-crop planting information is mainly realized by appropriate remote sensing recognition algorithms based on the unique phenological characteristics of a crop. At present, the extraction of large-scale crops, such as corn, wheat, rice, to- bacco, and fruit trees, is based on pixel- and object-oriented classification algorithms, and the classification accuracy can reach more than 90% [18–21]. Liu et al. [22] reported a classification accuracy of winter wheat planting information that exceeded 93.0%, using a deep learning algorithm for pixels combined with UAV visible light remote sensing data. Hall et al. [23] constructed spectral and texture features for maize information from UAV multispectral remote sensing data, and applied an object-oriented SVM to realize the extraction of corn planting information with an extraction accuracy of 94.0%. However, in the case of mixed crops or the intercropping of multiple crops, the fine extraction of multi-crop information suffers significant interference. It requires more robust recognition algorithms than single-crop information extraction. Object-oriented image analysis (OBIA) takes the speckle as the primary processing unit. It considers the spectrum, texture, and context as input features, effectively solving the “salt and pepper” phenomenon in pixel classification [24,25]. Scholars have used OBIA to achieve good classification results for complex planting structures containing between three and five different crops [26–29]. For example, based on UAV images, OBIA was used to classify five types of crops with an overall accuracy of 84.7% [30]. Nevertheless, the extraction accuracy of multiple crops is still insufficient because the similarity of two or more crops is high. Wu et al. [31] used a portable UAV to obtain light images, and used an object-oriented classification method to classify rice, lotus root, and vegetables. Their results showed that the mixed classification of lotus root and vegetable land presented a severe challenge, with a relative error as high as 193%. Liu et al. [32] used SVM to distinguish corn, wheat, trees, greenhouses, and other ground features, based on UAV visible images data and digital surface model (DSM) data. Their results indicated that using only spectral features for classification would lead to confusion between trees and corn. In general, the information extraction of single farmland features based on UAV remote sensing data is relatively mature, and the extraction accuracy is high. However, there is still some confusion in the classification of many kinds of crops. In addition, multiple crop classification mainly focuses on three to five different crops, and there have Sensors 2021, 21, x FOR PEER REVIEW 3 of 22 Sensors 2021, 21, 1994 In general, the information extraction of single farmland features based on UAV3 of re- 22 mote sensing data is relatively mature, and the extraction accuracy is high. However, there is still some confusion in the classification
Recommended publications
  • Studies on Genetic Diversity of Japanese and Vietnamese Melon Germplasm by Using Molecular Markers
    Studies on genetic diversity of Japanese and Vietnamese melon germplasm by using molecular markers 2019, September Tran Phuong Dung Graduate School of Environmental and Life Science (Doctor’s course) OKAYAMA UNIVERSITY 1 Table of contents Chapter 1. General introduction .................................................................................................................. 3 1.1. Phylogenetic relationships in genus Cucumis .............................................................................. 4 1.2. Intraspecific classification and domestication history of melon ..................................................... 9 1.3. Asia – the origin center of modern melon cultivars ....................................................................... 16 Chapter 2. Genetic diversity of Japanese melon breeding lines ............................................................... 18 2.1. Introduction ..................................................................................................................................... 18 2.2. Materials and Methods ................................................................................................................... 19 2.3. Result ............................................................................................................................................... 23 2.4. Discussion ........................................................................................................................................ 28 Chapter 3. Development of RAPD‐derived STS
    [Show full text]
  • Formulação De Gordura Interesterificada Sem
    Ana Claudia Berenhauser POTENCIAL DE TECNOLOGIAS EMERGENTES PARA A CONSERVAÇÃO E AUMENTO DO VALOR NUTRICIONAL DE LEITE HUMANO Tese apresentada ao Programa de Pós- Graduação em Ciência dos Alimentos, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, área de concentração Ciência dos Alimentos, como requisito parcial para a obtenção do Grau de Doutor em Ciência dos Alimentos. Orientadora: Profª. Drª Jane Mara Block. Florianópolis/SC 2017 3 Folha aprovacao Dedico este trabalho aos meus filhos, Bárbara, Raphael e Júlia, meu esposo, Marcus, e aos meus pais, Gabriel e Carmen. AGRADECIMENTOS A Deus, pelo dom da vida. Aos meus filhos, Bárbara, Raphael e Júlia, razão maior da minha existência. Por me permitirem experimentar o amor incondicional e pela oportunidade de lhes presentear com o alimento mais precioso e perfeito que possa existir: o leite materno. Ao meu esposo, Marcus, pelo apoio, carinho e compreensão, em todos os momentos da minha trajetória. Aos meus pais, por me ensinarem a viver a vida com dignidade, amor e dedicação. À professora Dra. Jane Mara Block pela oportunidade concedida e pela orientação. Ao professor Dr. José Vladimir de Oliveira, por acreditar na aplicação do tratamento com CO2 supercrítico no leite humano e pelo incentivo. Ao Prof. Dr. Juliano de Dea Lindner, pela orientação quanto aos procedimentos microbiológicos. À Profa. Dra. Elane Schwinden Prudêncio, pelas orientações quanto ao processo de concentração do leite humano, pelo apoio, incentivo e carinho em todas as horas. Ao Programa de Pós-Graduação pela oportunidade concedida e pelo apoio. Às colegas do Laboratório de Óleos e Gorduras, por estarem apoio e carinho.
    [Show full text]
  • China - Peoples Republic Of
    THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 12/15/2009 GAIN Report Number: CH9129 China - Peoples Republic of Post: Beijing Crop Seed of Melon Report Categories: FAIRS Subject Report Approved By: William Westman Prepared By: Mark Petry and Wu Bugang Report Highlights: On November 19, 2009 China notified "Crop Seed of Melon" to the WTO as G/TBT/N/CHN/699. Comments are due on January 18, 2010. This report contains an UNOFFICIAL translation of this draft measure. General Information: Summary On November 19, 2009 China notified “Crop Seeds of Melon” to the WTO as G/TBT/N/CHN699. Comments are due on January 18, 2010. The proposed date of adoption is 90 days after circulation by the WTO secretariat and date of entry into force is 6 months after adoption. China’s WTO notification describes this standard as specifying “the quality requirements, test methods and inspection rules for watermelon, sweet melon, wax gourd and cucumber seed. It applies to the production and sale of above mentioned melon seeds in China, which covering coating seeds and non-coating seeds.” This report contains an UNOFFICIAL translation of this draft standard. BEGIN TRANSLATION National Standard of the People’s Republic of China GB 16715.1 – 200X Replaces GB 4862 – 84 GB 16715.1 - 1996 Seed of Gourd and Vegetable Crops Part 1: Gourds (Draft for Approval) Foreword All technical aspects of this Part in GB 16715 are mandatory. GB 16715 Seed of Gourd and Vegetable Crops is divided into the following parts: Part 1: Gourd; Part 2: Chinese cabbage; Part 3: Solanaceous fruits; Part 4: Cole; Part 5: Leafy vegetables; …… This Part is the first part of GB 16715 and revision of GB 4862 - 84 The Seed of Chinese Hami Melon and GB 16715.1 - 1996 Seed of Gourd and Vegetable Crops - Gourd according to the relevant provisions of Seed Law of the People's Republic of China and the new development of the seed industry.
    [Show full text]
  • Molecular Analysis of the Genetic Diversity of Chinese Hami Melon and Its Relationship to the Melon Germplasm from Central and South Asia
    J. Japan. Soc. Hort. Sci. 80 (1): 52–65. 2011. Available online at www.jstage.jst.go.jp/browse/jjshs1 JSHS © 2011 Molecular Analysis of the Genetic Diversity of Chinese Hami Melon and Its Relationship to the Melon Germplasm from Central and South Asia Yasheng Aierken1,2, Yukari Akashi1, Phan Thi Phuong Nhi1, Yikeremu Halidan1, Katsunori Tanaka3, Bo Long4, Hidetaka Nishida1, Chunlin Long4, Min Zhu Wu2 and Kenji Kato1* 1Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan 2Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumuqi 830000, China 3Research Institute for Humanity and Nature, Kyoto 603-8047, Japan 4Kunming Institute of Botany, CAS, Heilongtan, Kunming, Yunnan 650204, China Chinese Hami melon consists of the varieties cassaba, chandalak, ameri, and zard. To show their genetic diversity, 120 melon accessions, including 24 accessions of Hami melon, were analyzed using molecular markers of nuclear and cytoplasmic genomes. All Hami melon accessions were classified as the large-seed type with seed length longer than 9 mm, like US and Spanish Inodorus melon. Conomon accessions grown in east China were all the small- seed type. Both large- and small-seed types were in landraces from Iran, Afghanistan, Pakistan, and Central Asia. Analysis of an SNP in the PS-ID region (Rpl16-Rpl14) and size polymorphism of ccSSR7 showed that the melon accessions consisted of three chloroplast genome types, that is, maternal lineages. Hami melon accessions were T/338 bp type, which differed from Spanish melon and US Honey Dew (T/333 bp type), indicating a different maternal lineage within group Inodorus.
    [Show full text]
  • Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon
    molecules Article Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon 1, 1, 1 2 1 1 Yilin Lin y , Jiamiao Hu y , Shiyang Li , Siti Sarah Hamzah , Huiqin Jiang , Arong Zhou , Shaoxiao Zeng 1 and Shaoling Lin 1,* 1 College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China 2 Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia * Correspondence: [email protected]; Tel.: +86-15606025198 These authors contributed equally to this work. y Academic Editors: Derek J. McPhee and Francisco J. Barba Received: 24 May 2019; Accepted: 25 June 2019; Published: 27 June 2019 Abstract: Fresh-cut fruits and vegetables are the main sources of foodborne illness outbreaks with implicated pathogens such as Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes. This study aimed at investigating the influence of two key parameters (concentration of curcumin and illumination time) on the effects of curcumin-based photodynamic sterilization on the preservation of fresh-cut Hami melons. The results indicated that illumination with 50 µmol/L curcumin for 60 min using a blue LED lamp reduced the total aerobic microorganism count by ~1.8 log CFU/g in fresh-cut Hami melons. Besides this, the effects of photodynamic sterilization on the soluble solids content, color, water content, firmness, and sensory indices of the fresh-cut Hami melons were also evaluated. Compared to the control group, photodynamic sterilization can effectively delay the browning rate and maintain the luminosity, firmness, water content, and soluble solids content of fresh-cut Hami melon. The sensory quality was indeed preserved well after 9 days of storage in a fridge.
    [Show full text]
  • Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia Glomerata Roots
    molecules Article Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments Eric Keven Silva 1 , Matheus A. Bargas 1, Henrique S. Arruda 2 , Renata Vardanega 1 , Glaucia M. Pastore 2 and M. Angela A. Meireles 1,* 1 LASEFI, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; [email protected] (E.K.S.); [email protected] (M.A.B.); [email protected] (R.V.) 2 Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; [email protected] (H.S.A.); [email protected] (G.M.P.) * Correspondence: maameireles@lasefi.com; Tel.: +55-19-98184-1414; Fax: +55-19-3521-4027 Academic Editors: Stefano Cardea and Gregory Chatel Received: 6 July 2020; Accepted: 24 August 2020; Published: 27 August 2020 Abstract: The effects of supercritical CO2 processing on the chemical stability of fructooligosaccharides (FOS) and other functional and nutritional compounds were evaluated employing non-thermal and thermal approaches. Apple juice was enriched with Pfaffia glomerata roots aqueous extract due to its high content of short-chain FOS and then subjected to different levels of temperature (40 and 60 ◦C), pressure (8 and 21 MPa), and CO2 volume ratio (20 and 50%). The percentage of CO2 volume was evaluated concerning the total volume of the high-pressure reactor. Also, the functional beverage was thermally treated at 105 ◦C for 10 min. Physicochemical properties (pH and soluble solid content), beta-ecdysone, sugars (glucose, fructose, and sucrose), and FOS (1-kestose, nystose, and fructofuranosylnystose) content were determined.
    [Show full text]
  • Development of a Muskmelon Cultivar with Improved Resistance to Gummy Stem Blight and Desired Agronomic Traits Using Gene Pyramiding
    Czech J. Genet. Plant Breed., 53, 2017 (1): 23–29 Original Paper doi: 10.17221/84/2016-CJGPB Development of a Muskmelon Cultivar with Improved Resistance to Gummy Stem Blight and Desired Agronomic Traits Using Gene Pyramiding Ning ZHANG1, Bing-hua XU 2, Yan-fei BI 1, Qun-feng LOU1, Jin-feng CHEN1, Chun-tao QIAN1*, Yong-bing ZHANG 3 and Hong-ping YI 3 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agriculture University, Nanjing, P.R. China; 2Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Jiangsu P.R. China; 3Center of Hami Melon, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, P.R. China *Corresponding author: [email protected] Abstract Zhang N., Xu B.-H., Bi Y.-F., Lou Q.-F., Chen J.-F., Qian C.-T., Zhang Y.-B., Yi H.-P. (2017): Development of a musk- melon cultivar with improved resistance to gummy stem blight and desired agronomic traits using gene pyramiding. Czech J. Genet. Plant Breed., 53: 23–29. Gummy stem blight (GSB), caused by Didymella bryoniae (Auersw.) Rehm., is a severe disease affecting Cucur- bitaceae crops including melons. The resistance of current melon varieties that carry a single Gsb resistance gene is insufficient to protect against the abundant variation of the D. bryoniae isolates. Pyramiding multiple Gsb resistance genes into melon cultivars is an effective way to develop a broad resistance spectrum and to in- crease the duration of GSB resistance. In this study, two resistance genes (Gsb-4 and Gsb-6) from two resistant accessions, PI482398 and PI420145, were pyramided into one variety using marker-assisted selection (MAS).
    [Show full text]
  • OUSL Journal Vol. 11 – 2016
    The OUSL Journal is a peer-reviewed journal, published biannually by The Open University of Sri Lanka (OUSL). Peer Review Policy All research articles in this journal have undergone peer review, based on initial editor screening and anonymized refereeing by at least two experts in the relevant field. Permission It is a condition of publication that manuscripts submitted to this journal should not have been published elsewhere. By submitting a manuscript, the author agrees that the copyright for the article is transferred to the publishers, if and when the article is accepted for publication. The copyright covers the exclusive right to publishing, reproductions, microforms or any other reproductions of similar nature and translations. The views expressed by the authors are their own and do not necessarily reflect the policies of The Open University of Sri Lanka. Editorial/Correspondence All correspondence including manuscripts for submission should be addressed to: Editor-in-Chief/OUSL Journal Department of Chemistry Faculty of Natural Sciences The Open University of Sri Lanka P.O. Box 21, Nawala, Nugegoda, Sri Lanka Tel: 0094-11-2881414 (Email: [email protected]) Subscription Rates Local: Rs. 200.00; Foreign: US $ 20.00 (Inclusive of postage) Local cheque should be crossed and made payable to the "The Open University of Sri Lanka" and should be addressed to the Librarian/OUSL. Copyright @ 2016, The Open University of Sri Lanka Printed at The Open University Press ISSN 1880-3621 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted or disseminated, in any form, or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise without prior written permission from the copyright holder.
    [Show full text]
  • Technology and Application of Ediblecoatings for Reduction Of
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 11, NOVEMBER 2014 ISSN 2277-8616 Technology And Application Of Edible Coatings For Reduction Of Losses And Extension Of Shelf Life Of Cantaloupe Melon Fruits Nasiru Alhassan, Adams Abdul-Rahaman ABSTRACT: Thirty-six (36) cantaloupe melon fruits were used for the weight loss and firmness level trial. Eighteen (18) fruits were coated with NatralifeTM coating while the 18 of the fruits were not coated and were used as control fruits. Six fruits each of coated and uncoated fruits were stored in a cold store at 2°C, another six fruits each of coated and uncoated were stored at 9°C cold storage, while the other six fruits each of the coated and uncoated fruit were kept in shelf life room of 20°C and a relative humidity of 85-90% for 30 days. The coating of melons with NatralifeTM coatings was by hand brushing with sponge and allowed for 30-45 minutes to dry under natural ventilation before been stored at the various storage conditions. In regard to weight loss Melon fruits coated with NatralifeTM coating had a signficant effect at 0.05% on weight loss stored at cold storage of 2°C and 9°C and shelf life room of 20°C and had reduced weight loss compared to uncoated control melons. Cantaloupe melon fruits stored at shelf life room of 20°C loss firmness at a rapid rate than fruits held at cold store of 2°C and 9°C. At cold store 2°C and 9°C, it was found that both coated and uncoated melons held at 2°C loss less firmness than fruit stored at 9°C cold store.
    [Show full text]
  • Patterns of Yeast Diversity Distribution and Its Drivers in Rhizosphere Soil of Hami Melon Orchards in Different Regions of Xinjiang
    Patterns of Yeast Diversity Distribution and its Drivers in Rhizosphere Soil of Hami Melon Orchards in Different Regions of Xinjiang ShanShan Zhu College of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang YongHui Lei Department of plant protection, College of Agriculture,Shihezi University, Shihezi, 832000, Xinjiang Chong Wang Urumqi Customs technique centerUrumqi 830063 YuMei Wei College of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang ChunCheng Wang College of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang YanFei Sun ( [email protected] ) College of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang Research Article Keywords: Yeast diversity, rhizosphere soil, Hami melon orchard, High-throughput technology, Environmental factors Posted Date: January 6th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-138293/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Background: Yeast is an essential type of microscopic fungus found in the soil. It is vital to develop the resources of yeast to gain a better understanding of its role and potential in maintaining soil ecological balance and providing microbial resources. A special ecological environment is required for the evolution of yeast species. Xinjiang in China has unique climatic conditions with abundant melon and fruit resources. Here, we aimed to evaluate the diversity, community structure, and relationship between yeast species and environmental factors in Hami melon orchards in different regions of Xinjiang, China. Results: We used Illumina MiSeq high-throughput sequencing analysis to cluster 29,090 yeast sequences into 87 operational taxonomic units (OTUs) with 97% sequence similarity and 47 genera and 73 species.
    [Show full text]
  • Transcriptome Sequencing for SNP Discovery Across Cucumis Melo
    Blanca et al. BMC Genomics 2012, 13:280 http://www.biomedcentral.com/1471-2164/13/280 RESEARCH ARTICLE Open Access Transcriptome sequencing for SNP discovery across Cucumis melo José Blanca1, Cristina Esteras1, Pello Ziarsolo1, Daniel Pérez1, Victoria Fernández-Pedrosa2, Carmen Collado2, Raquel Rodríguez de Pablos2, Alida Ballester2, Cristina Roig1, Joaquín Cañizares1 and Belén Picó1* Abstract Background: Melon (Cucumis melo L.) is a highly diverse species that is cultivated worldwide. Recent advances in massively parallel sequencing have begun to allow the study of nucleotide diversity in this species. The Sanger method combined with medium-throughput 454 technology were used in a previous study to analyze the genetic diversity of germplasm representing 3 botanical varieties, yielding a collection of about 40,000 SNPs distributed in 14,000 unigenes. However, the usefulness of this resource is limited as the sequenced genotypes do not represent the whole diversity of the species, which is divided into two subspecies with many botanical varieties variable in plant, flowering, and fruit traits, as well as in stress response. As a first step to extensively document levels and patterns of nucleotide variability across the species, we used the high-throughput SOLiD™ system to resequence the transcriptomes of a set of 67 genotypes that had previously been selected from a core collection representing the extant variation of the entire species. Results: The deep transcriptome resequencing of all of the genotypes, grouped into 8 pools (wild African agrestis, Asian agrestis and acidulus, exotic Far Eastern conomon, Indian momordica and Asian dudaim and flexuosus, commercial cantalupensis, subsp. melo Asian and European landraces, Spanish inodorus landraces, and Piel de Sapo breeding lines) yielded about 300 M reads.
    [Show full text]
  • 9 the Uighurs, the Kyrgyz and the Tangut (Eighth to The
    ISBN 978-92-3-103467-1 THE UIGHURS AND THE KYRGYZ 9 THE UIGHURS, THE KYRGYZ AND THE TANGUT (EIGHTH TO THE THIRTEENTH CENTURY)* D. Sinor, Geng Shimin and Y. I. Kychanov Contents THE UIGHURS IN MONGOLIA AND THE KYRGYZ ............... 196 THE UIGHUR KINGDOM OF KOCHO ........................ 206 THE TANGUT HSI HSIA KINGDOM (982–1227) .................. 212 Part One THE UIGHURS IN MONGOLIA AND THE KYRGYZ (D. Sinor) The first mention of the Uighurs (under the name Hui-ho and various graphic variants) appears in Chinese sources and refers to the early seventh century a.d. when this people lived on the banks of the Selenga river and was subjected to the Türks. The Chinese viewed the Uighurs as the descendants of the Hsiung-nu, the dominant power on the steppe from * See Map 2. 196 ISBN 978-92-3-103467-1 THE UIGHURS AND THE KYRGYZ about 200 b.c. to a.d. 48. This may indeed have been the historical truth, but there is no way to substantiate it, since the Chinese sources tend to ascribe Hsiung-nu origin to any of the numerous steppe peoples with whom the Chinese had contacts over succeeding centuries. It is thus not surprising that the description given of the Uighurs by the Chin T’ang-shu [Old T’ang Annals] follows the traditional pattern of characterization of the steppe peoples: They have no chiefs, no permanent dwellings; they wander in search of water and pasture. These men are of an evil disposition and cruel. They are excellent riders and archers and most rapacious.
    [Show full text]