Biostratigraphy and Paleoecology of the Upper Devonian Ithaca Formation Near Cortland, New York
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conventional Natural Gas Play Atlas Northeast British Columbia
����������������������������������� �������������������������� ������������������������������������� ���������������������� ������������������������������������������ Ministry of Energy, Mines and Petroleum Resources 1 CoverAtlas.indd 1 15/03/2006 1:55:13 PM British Columbia Ministry of Energy, Mines and Petroleum Resources Oil & Gas Division, Resource Development & Geoscience Branch 6th floor – 1810 Blanshard Street Victoria, British Columbia V8W 9N3 Contact: Vic Levson, Director Petroleum & Aggregate Geoscience E-mail: [email protected] Fax: (250) 952-0922 Web site: www.em.gov.bc.ca/oilandgas Library and Archives Canada Cataloguing in Publication Data Main entry under title: Conventional natural gas play atlas, northeast British Columbia (Petroleum geology publication ; 2006:1) Includes bibliographical references: p. ISBN 0-7726-5532-4 1. Natural gas reserves - British Columbia, Northern - Atlases. 2. Geology, Economic - British Columbia, Northern - Atlases. I. British Columbia. Resource Development and Geoscience Branch. II. Series. TN882.C32B74 2006 553.2’8509711870223 C2006-960061-9 2 Conventional Natural Gas Play Atlas: Northeast BC Ministry of Energy, Mines and Petroleum Resources 3 The Northeast BC Play Atlas The Resource Development and Geoscience Branch of the BC Ministry of Energy and Mines and Petroleum Resources (MEMPR) in partnership with the National Energy Board (NEB) have undertaken an assessment of British Columbia’s undiscovered resources. The final report entitled Northeast British Columbia’s Ultimate Potential for Natural Gas Report - 2006A is now available through both the NEB and MEMPR websites. To access the report on the provincial government website, go to: http://www.em.gov.bc.ca/subwebs/oilandgas/resource/cog/cog.htm. While this new report covers all of BC’s gas potential areas, the major focus of the assessment is the quantification of the remaining undiscovered conventional gas potential of NEBC. -
Further Paleomagnetic Evidence for Oroclinal Rotation in the Central Folded Appalachians from the Bloomsburg and the Mauch Chunk Formations
TECTONICS, VOL. 7, NO. 4, PAGES 749-759, AUGUST 1988 FURTHER PALEOMAGNETIC EVIDENCE FOR OROCLINAL ROTATION IN THE CENTRAL FOLDED APPALACHIANS FROM THE BLOOMSBURG AND THE MAUCH CHUNK FORMATIONS Dennis V. Kent Lamont-DohertyGeological Observatory and Departmentof GeologicalSciences ColumbiaUniversity, Palisades, New York Abstract.Renewed paleomagnetic investigations of red fromthe Bloomsburg, Mauch Chunk, and revised results bedsof theUpper Silurian Bloomsburg and the Lower recentlyreported for theUpper Devonian Catskill Formation Carboniferous Mauch Chunk Formations were undertaken togetherindicate 22.8•>+_11.9 oof relativerotation, accounting with theobjective of obtainingevidence regarding the for approximatelyhalf thepresent change in structuraltrend possibilityof oroclinalbending as contributing to thearcuate aroundthe Pennsylvania salient. The oroclinalrotation can be structuraltrend of thePennsylvania salient. These formations regardedas a tightenS.*'.3 o/'a lessarcuate depositional package cropout on both limbs of thesalient and earlier, but less thatdeveloped across a basementreentrant, to achievea definitivepaleomagnetic studies on these units indicate that curvaturecloser to that of the earlierzigzag continental margin earlyacquired magnetizations can be recovered. Oriented outline. sampleswere obtained from nine sites on the southern limb of thesalient and eight sites from the northern limb in the INTRODUCTION Bloomsburg.The naturalremanent magnetizations are multivectorial,dominated by a component(B) with a A testof the oroclinehypothesis -
Exhibit 5 Town of Barton Geology and Seismicity Report Sections
GEOLOGY AND SEISMICITY REPORT SNYDER E1-A WELL TOWN OF BARTON TIOGA COUNTY, NEW YORK Prepared for: Couch White, LLP 540 Broadway P.O. Box 22222 Albany, New York 12201 Prepared by: Continental Placer Inc. II Winners Circle Albany, New York 12205 July 25, 2017 Table of Contents 1.0 EXECUTIVE SUMMARY............................................................................................................. 1 2.0 INTRODUCTION ........................................................................................................................... 2 2.1 Depositional Sequences and General Stratigraphic Sequence ................................................ 2 2.1.1 Upper Devonian Lithologies ........................................................................................................ 4 2.1.2 Marcellus-Hamilton ..................................................................................................................... 4 2.1.3 Tristates-Onondaga ...................................................................................................................... 4 2.1.4 Helderberg .................................................................................................................................... 4 2.1.5 Oneida-Clinton-Salina ................................................................................................................. 4 2.1.6 Black River-Trenton-Utica-Frankfort .......................................................................................... 5 2.1.7 Potsdam-Beekmantown .............................................................................................................. -
Mapping Known and Potential Karst Areas in the Northwest Territories, Canada
Mapping Known and Potential Karst Areas in the Northwest Territories, Canada Derek Ford, PGeo., PhD, FRSC. Emeritus Professor of Geography and Earth Sciences, McMaster University [email protected] For: Environment and Natural Resources, Government of the Northwest Territories August 2009 (i) Executive Summary The Goal of this Report is to Produce Maps of the Known and Potential Karst Landform Sites in the Northwest Territories (NWT) Karst landforms are those created by the dissolution of comparatively soluble rocks and the routing of the water (from rain or snowmelt) underground via caves rather than at the surface in river channels. The principal karst rocks are salt (so soluble that it is scarcely seen at the surface in the NWT), gypsum and anhydrite (solubility around 2500 mg/l of water), and limestone and dolomite (solubility around 250 -350 mg/l). All of these rock types are common and widespread amongst the sedimentary strata in the NWT. Surface karst landforms include: a) karren, which are spreads of individually small solution pits, shafts, and runnels that, collectively, may cover many hectares (limestone pavements); b) sinkholes of solutional, collapse, or other origin that can be tens to hundreds of metres in diameter and proportionally as deep. Sinkholes are considered the diagnostic karst landform worldwide; c) larger topographically closed depressions that may flood or drain seasonally, poljes if flat-floored, otherwise turloughs; d) extensive dry valleys and gorges, dry because their formative waters have been captured underground. All water sinking underground via karst landforms of all sizes drain quickly in comparison with all other types of groundwater because they are able to flow through solutionally enlarged conduits, termed caves where they are of enterable size. -
Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St. -
U.S. Geological Survey Bulletin 1839-G, H
Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H i i i I ' i ' i ' X- »-v l^,:^ Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia By ROBERT T. RYDER Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia By CHRYSA M. CULLATHER Chapters G and H are issued as a single volume and are not available separately U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H EVOLUTION OF SEDIMENTARY BASINS-APPALACHIAN BASIN U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging in Publication Data (revised for vol. G-H) Evoluation of sedimentary basins Appalachian basin. (U.S. Geological Survey bulletin ; 1839 A-D, G-H) Includes bibliographies. Supt. of Docs. no.:19.3:1839-G Contents: Horses in fensters of the Pulaski thrust sheet, southwestern Virginia / by Arthur P. Schultz [etc.] Stratigraphic framework of Cam brian and Ordovician rocks in central Appalachian basin from Morrow County, Ohio, to Pendleton County, West Virginia / by Robert T. -
Structural Geology of the Transylvania Fault Zone in Bedford County, Pennsylvania
University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2009 STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA Elizabeth Lauren Dodson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Dodson, Elizabeth Lauren, "STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA" (2009). University of Kentucky Master's Theses. 621. https://uknowledge.uky.edu/gradschool_theses/621 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA Transverse zones cross strike of thrust-belt structures as large-scale alignments of cross-strike structures. The Transylvania fault zone is a set of discontinuous right-lateral transverse faults striking at about 270º across Appalachian thrust-belt structures along 40º N latitude in Pennsylvania. Near Everett, Pennsylvania, the Breezewood fault terminates with the Ashcom thrust fault. The Everett Gap fault terminates westward with the Hartley thrust fault. Farther west, the Bedford fault extends westward to terminate against the Wills Mountain thrust fault. The rocks, deformed during the Alleghanian orogeny, are semi-independently deformed on opposite sides of the transverse fault, indicating fault movement during folding and thrusting. Palinspastic restorations of cross sections on either side of the fault zone are used to compare transverse fault displacement. -
Paleomagnetism of the Upper Ordovician Juniata Formation of the Central Appalachians Revisited Again
JOURNALOF GEOPHYSICALRESEARCH, VOL. 94, NO. B2, PAGES1843-1849, FEBRUARY10, 1989 PALEOMAGNETISM OF THE UPPER ORDOVICIAN JUNIATA FORMATION OF THE CENTRAL APPALACHIANS REVISITED AGAIN JohnD. Miller1 andDennis V. Kent Lamont-DohertyGeological Observatol 3, and Department of GeologicalSciences, ColumbiaUniversity, Palisades, New York Abstract.Two componentsof magnetizationwere isolated demagnetizationin thestudy of red beds.During this time in theUpper Ordovician Juniata Formation sampled in the area periodall of themajor Appalachian red beds were studied or of the Pennsylvaniasalient. The thermallydistributed, restudiedusing modem paleomagnetic techniques. The revised reversedpolarity B componentwas most likely acquired resultsfrom the Juniatawere reported by Van der Voo and duringAlleghenian deformation, and although it is poorly French[ 1977], andwere incorporatedinto the analysisof grouped,it is similarto otherAppalachian synfolding Schwartzand Van der Voo [ 1983], which concludedthat there magnetizations.The pre-Alleghenianage C magnetizationis was no oroclinal rotation involved in the formation of the entirelyof normalpolarity and showsa differencein Pennsylvaniasalient, a majorstructural feature of thecentral declinationsbetween the meanmagnetizations isolated on the Appalachians. northern and southern limbs of the salient of 24 ø _+23 ø. This Recentcontroversy regarding the Paleozoic reference poles anomalyis consistentwith the senseand magnitude of for North Americaand their tectonic implications [Kent and declinationanomalies observed -
Ordovician, in CH Shultz Ed, the Geology of Pennsylvania
SCALE :ii! o 10 20 30 40 50 MI I 'i I' "i' , o 20 40 60 80 KM 41 40 ' EXPLANATION ~ l1li Ordovician rocks in subsurface Autochthonous OrdOllician rocks at surface Hamburg klippe Figure 5-1. Distribution of Ordovician sedimentary rocks In Pennsylvania west of the Martie Line (modified from Berg and others, 1980, and Pennsylvania Geological Survey, 1990). Part II. Stratigraphy and Sedimentary Tectonics CHAPTERS ORDOVICIAN ALLAN M. THOMPSON INTRODUCTION Department of Geology University of Delaware This chapter contains a summary of lithologic, Newark, DE 19716 facies, and temporal relationships of sedimentary rocks of Ordovician age in Pennsylvania west and northwest of the Martie Line (Figure 5-1). Ordovician sedimentary rocks occur only in the subsurface of northern and western Pennsylvania (Fettke, 1961; Wagner, 1966b) and crop out in cen tral and southeastern Pennsylvania (Figure 5-1). In central and south-central Pennsylvania, the Ridge and Valley belt contains a nearly complete Ordovician section. The Great Valley contains predominantly Lower and Middle Ordovician strata. The east-central part of the Great Valley contains allochthonous Cam brian to Middle Ordovician rocks of the Hamburg klippe; these rocks have been compared to the Ta conian allochthons of eastern New York and western New England (Rodgers, 1970; Lash and others, 1984). The Piedmont Lowland contains carbonates and shale of Early and possibly Middle Ordovician age (Gobn, 1978). Possibly coeval rocks of the Glenarm Super group, which occur southeast of the Martic Line (Fig ure 5-1), are penetratively deformed and variably metamorphosed (see Chapters 3A and 4). Some were assigned Early Ordovician ages by Berg, McInerney, and others (1986), but the evidence is equivocal. -
APPENDIX C Additional Information and Clarification of Historic Properties
APPENDIX C Additional Information and Clarification of Historic Properties Continuing Consultation for Historic Properties Additional Historic Resources • 200 Madison Street, Onondaga County War Memorial • 717 State Street, Everson Museum of Art • Onondaga Creek Bridges • 99 North Salina Street and 98 South Salina Street, Clinton Square • 800 North Clinton Street, Former Easy Washing Machine Co., currently Destiny Arms Additional photos for properties evaluated as Not NRE in 2016 Architectural Resources Survey Updated Building Eligibility Assessment Table Interstate 81- Viaduct Project PIN 3501.60 SHPO # 16PR006314 Continuing Consultation for Historic Properties As part of continuing consultation in accordance with Section 106 of the National Historic Preservation Act, as amended, and implementing regulations at 36 CFR Part 800: Protection of Historic Properties, the New York State Department of Transportation (NYSDOT) is submitting to the New York State Historic Preservation Office (SHPO) an update of the eligibilities for some of the properties within the APE for the I-81 Viaduct Project. The NYSHPO Building Eligibility Assessment Table has been updated to reflect the most current information based on information regarding properties that have been demolished and to provide the current status of eligibility for properties within the North Salina Street Historic District Expansion nomination. Since the Architectural Resources survey for the Project was conducted in September 2016, the following properties have been demolished: • 325 - 327 Irving Avenue to Genesee Street • 404 Martin Luther King East • 105-109 Townsend St S/ aka 500 Water Street – Phoenix Foundry & Machine Company The draft National Register nomination for the North Salina Street Historic District Expansion was presented before the New York State Board for Historic Preservation on September 14, 2017. -
Paper 61-13 Camsell Bend and Root River Map-Areas
PAPER 61-13 CAMSELL BEND AND ROOT RIVER MAP-AREAS, DISTRICT OF MACKENZIE, NORTHWEST TERRITORIES 95Jand K (Report, 2 maps, 2 figures) R. J. W. Douglas and D. K. Norris DEC 5 1961 . _.. Price 50 cents 1961 GEOLOGICAL SURVEY OF CANADA CANADA PAPER 61-13 CAMSELL BEND AND ROOT RIVER MAP-AREAS, DISTRICT OF MACKENZIE, NORTHWEST TERRITORIES 95 J,K By R. J. W. Douglas and D. K. Norris DEPARTMENT OF MINES AND TECHNICAL SURVEYS CANADA 51310-1 ROGER DUHAMEL, F. R. S. C. QUEEN'S PR INTER AND CONTROLLER OF STATIONERY OTTAWA, 1961 Pri ce 50 ce nts Cat. No. M44-6 1 11 CONTENTS Page Introduction .•••••••••••••••••••••• • • •••••••••••••••.••.•• References • • • • • • . • • • • • • • • • • • • • • • . • • . • • • • • • • • • • 1 Physical features........ ................................ 3 Stratigraphy......... ....... .................... ......... 5 Table of formations • • • • • • • • • . • . • • • . • . • • • • • • • . • • • • • • • 8-9 Palaeozoic •.•• , .............................. • • • • • • 6 Ordovician and older {?) - Sunblood formation ( 1) • • • . • • • • • • • . • • . • • • • • • • • • • • • • • • • • . 6 Ordovician and younger - map-units 2-10, including the Whittaker (3), Delorme (4), Camsell (5), Mount Kindle (7), a nd Sombre (10) formations • • • • • • • . • . • • • • • • • • • • • . • • • • • • • • . • • • . • 7 Middle Devonian and older { ? ) - map-units 11-17, comprising the Arnica {11), Manetoe (12), Fune ral (13), Bear Rock (14), Landry (15), Headless (16), and Nahanni (17) formations....... 14 Upper Devonian - map-units 18-25, including -
Petroleum Resource Assessment, Peel Plateau and Plain, Yukon Territory, Canada K.G
Energy, Mines and Resources • Yukon Geological Survey • Oil and Gas Management Branch YGS OPEN FILE 2005-3/GSC OPEN FILE 4841 Petroleum Resource Assessment, Peel Plateau and Plain, Yukon Territory, Canada K.G. Osadetz, B.C. MacLean, D.W. Morrow, J. Dixon and P.K. Hannigan Natural Resources Ressources naturelles Canada Canada YGS OPEN FILE 2005-3/GSC OPEN FILE 4841 Petroleum Resource Assessment, Peel Plateau and Plain, Yukon Territory, Canada K.G. Osadetz1, B.C. MacLean1, D.W. Morrow1, J. Dixon1 and P.K. Hannigan1 1Geological Survey of Canada, 3303 33rd Street NW, Calgary, Alberta T2L 2A7 Published under the authority of the Minister of Energy, Mines and Resources, Yukon Government http://www.emr.gov.yk.ca Printed in Whitehorse, Yukon, 2005. © Minister of Energy, Mines and Resources, Yukon Government This report may be obtained from: Geoscience and Information Sales GSC Calgary Publication Sales c/o Whitehorse Mining Recorder 3303-33rd Street N.W. 102-300 Main Street Calgary, Alberta, Canada T2L 2A7 Box 2703 (K102) phone (403) 292-7030 Whitehorse, Yukon, Canada Y1A 2C6 fax (403) 299-3542 phone (867) 667-5200, fax (867) 667-5150 e-mail [email protected] e-mail [email protected] http://gsc.nrcan.gc.ca/org/calgary/pub/bookstore_e.php www.geology.gov.yk.ca In referring to this publication, please use the following citation: Osadetz, KG., MacLean, B.C., Morrow, D.W., Dixon, J. and Hannigan, P.K., 2005. Petroleum Resource Assessment, Peel Plateau and Plain, Yukon Territory, Canada. Yukon Geological Survey Open File 2005-3, Geological Survey of Canada Open File 4841, 76 p.