Sessions Calendar

Total Page:16

File Type:pdf, Size:1020Kb

Sessions Calendar Associated Societies GSA has a long tradition of collaborating with a wide range of partners in pursuit of our mutual goals to advance the geosciences, enhance the professional growth of society members, and promote the geosciences in the service of humanity. GSA works with other organizations on many programs and services. AASP - The American Association American Geophysical American Institute American Quaternary American Rock Association for the Palynological Society of Petroleum Union (AGU) of Professional Association Mechanics Association Sciences of Limnology and Geologists (AAPG) Geologists (AIPG) (AMQUA) (ARMA) Oceanography (ASLO) American Water Asociación Geológica Association for Association of Association of Earth Association of Association of Geoscientists Resources Association Argentina (AGA) Women Geoscientists American State Science Editors Environmental & Engineering for International (AWRA) (AWG) Geologists (AASG) (AESE) Geologists (AEG) Development (AGID) Blueprint Earth (BE) The Clay Minerals Colorado Scientifi c Council on Undergraduate Cushman Foundation Environmental & European Association Society (CMS) Society (CSS) Research Geosciences (CF) Engineering Geophysical of Geoscientists & Division (CUR) Society (EEGS) Engineers (EAGE) European Geosciences Geochemical Society Geologica Belgica Geological Association Geological Society of Geological Society of Geological Society of Union (EGU) (GS) (GB) of Canada (GAC) Africa (GSAF) Australia (GSAus) China (GSC) Geological Society of Geological Society of Geologische Geoscience Geoscience Society of Groundwater History of Earth London (GSL) South Africa (GSSA) Vereinigung (GV) Information Society New Zealand (GSNZ) Resources Association Sciences Society (GSIS) of California (GRA) (HESS) International Association International Association International Association International Association of International International International Medical for Geoscience Diversity for Promoting Geoethics of Emergency Managers GeoChemistry (IAGC) Association of Association of Geology Association (IAGD) (IAPG) (IAEM) Hydrogeologists (IAH) Limnogeology (IMGA) 94 2017 GSA Annual Meeting & Exposition As the Society looks to the future, it aims to build strong, meaningful partnerships with societies and organizations across the country and around the world in service to members and the larger geoscience community. National and international societies with consistent aims and missions of advancing the geosciences and/or science in general are invited to affiliate with GSA as Associated Societies. For further information, or if your organization’s contact person has changed, please contact GSA’s Executive Director, Vicki McConnell, at [email protected]. International Society Israel Geological Karst Waters Institute Microanalysis Society Mineralogical Mineralogical Society The Mineralogical for Aeolian Research Society (IGS) (KWI) (MAS) Association of Canada of America (MSA) Society (MS) (ISAR) (MAC) Minnesota Ground National Association National Association National Association National Cave and National Earth Science National Ground Water Association of Black Geoscientists of Geoscience of State Boards of Karst Research Teachers Association Water Association (MGWA) (NABG) Teachers (NAGT) Geology (ASBOG®) Institute (NCKRI) (NESTA) (NGWA) Nepal Geological Paleontological Paleontological Seismological Society Sigma Gamma Epsilon Sociedad Geológica Società Geologica Society (NGS) Research Institution Society (PS) of America (SSA) (SGE) Mexicana, A.C. Italiana (SGI) (PRI) (SGM) Society for American Society for Environmental Society for Mining, SEPM (Society for Society for the Preservation Society of Economic Society of Exploration Archaeology (SAA) Geochemistry and Health Metallurgy & Sedimentary Geology) of Natural History Geologists (SEG) Geophysicists (SEG) (SEGH) Exploration (SME) Collections (SPNHC) Society of Vertebrate Soil Science Society of Western Interior Paleontology (SVP) America (SSSA) Paleontological Society (WIPS) 22–25 October • Seattle, Washington, USA 95 Organizing Committee Thanks to the GSA 2017 Organizing Committee Co-General Chairs: Alan Gillespie, University of Washington; Darrel Cowan, University of Washington Field Trip Co-Chairs: Ralph Haugerud, U.S. Geological Survey; Harvey Kelsey, Humboldt State University Technical Program Chair: Dick Berg, Illinois State Geological Survey Alan Gillespie Darrel Cowan Ralph Haugerud Harvey Kelsey Technical Program Vice-Chair: Kevin Mickus, Missouri State University Sponsorship Chair: Brian Butler, Landau Associates Inc. K–12 Chair: Michael O’Neal, University of Delaware Dick BergKevin Mickus Brian Butler Michael O’Neal Student Committee Chair: Linnea McCann, University of Washington Student Committee Members: Madeleine Hummer, University of Washington; Michael Zackery McIntire, University of Washington; Virginia Littell, University of Washington; Linnea McCann Madeleine Hummer Michael Zackery McIntire Keith Hodson, University of Washington Virginia Littell Keith Hodson Host University: University of Washington 96 2017 GSA Annual Meeting & Exposition Joint Technical Program Committee Representatives 2017 Technical Program Chair: Richard C. Berg Quaternary Geology and Geomorphology Division: Glenn D. 2017 Technical Program Vice Chair: Kevin Mickus Thackray, Tammy M. Rittenour Sedimentary Geology Division: Ryan F. Morgan, Piret Associated Societies Plink-Bjorklund Association of Earth Science Editors: Monica Easton Structural Geology and Tectonics Division: Juliet Crider, Andrew P. Barth Geochemical Society: Matthew Brueseke Geoscience Information Society: Chris Badurek Representatives at Large Mineralogical Society of America: Philip Brown, Jane A. Gilotti International/International Interdisciplinary Interest Group: Jim Hendry NAGT: Don Duggan-Haas, John Taber Marine/Coastal Geology: Joe Kelley, Duncan M. Fitzgerald Paleontological Society: Erin Saupe, Pincelli Hull, Matthew E. Clapham Paleoceanography/Paleoclimatology: Miriam E. Katz Society for Sedimentary Geology: Piret Plink-Bjorklund Precambrian Geology: Michael Williams Society of Economic Geologists: Garth Graham Soils and Soil Processes (Interdisciplinary Interest Group): Steven G. Driese, Neil J. Tabor, Zsuzsanna Balogh-Brunstad GSA Divisions Archaeological Geology Division: Cynthia Fadem, Richard Dunn Energy Geology Division: Marc L. Buursink, Laura Suzanne Ruhl Environmental and Engineering Geology Division: Jessica E. Annual Program Witt, Stephen Slaughter Geobiology & Geomicrobiology Division: Lydia Schiavo Committee Tackett, Carie Marie Frantz Geoinformatics Division: Denise Hills, Leslie Hsu Chair: Peter T. Bobrowsky Geology & Health Division: Saugata Datta, Thomas Darrah Larry McKay Geology & Society Division: Christopher P. Carlson, Richard C. Berg Bruce Clark Kevin Mickus Geophysics Division: Lisa Tauxe, Nicholas C. Schmerr, Amy Brock-Hon Benjamin Drenth Christopher M. Bailey Geoscience Education Division: Natalie Bursztyn, Robyn Richelle Allen King Mieko Dahl, Shane V. Smith Andres Meglioli History and Philosophy of Geology Division: Dorothy Sack, Joanne Bourgeois, Michael S. Smith, Renee Clary Lisa Park Boush Hydrogeology Division: Kallina Dunkle, Yu-Feng Forrest Lin Sarah George Karst Division: Cory Blackeagle, Jonathan Sumrall, Jason Polk Limnogeology Division: Jeffery Stone, Scott Starratt Mineralogy, Geochemistry, Petrology, and Volcanology Division: Anita L. Grunder, John W. Shervais, Wendy A. Bohrson Planetary Geology Division: Bradley Thomson, James J. Wray, Debra Buczkowski 22–25 October • Seattle, Washington, USA 97 Session Cosponsor Organizations Sponsor Recognition—Session International Association for Geoscience Diversity Cosponsor Organizations International Association of GeoChemistry International Association of Hydrogeologists American Association of Petroleum Geologists (AAPG) International Association of Limnogeology American Geophysical Union International Lithosphere Program American Geosciences Institute International Medical Geology Association American Institute of Professional Geologists International Society of Groundwater for Sustainable American Quaternary Association (AMQUA) Development (ISGSD) Association of American State Geologists International Subcommission on Stratigraphic Classification Association of American State Geologists Journal of Maps Association of Environmental & Engineering Geologists Lunar and Planetary Institute (LPI) Climate Literacy Network (CLEAN) Microanalysis Society Collaborative for Research in Origins (CRiO), the John Templeton Mineralogical Society of America Foundation–FfAME Origins Program National Association of Black Geoscientists Council on Undergraduate Research Geosciences Division National Association of Geoscience Teachers Cushman Foundation National Association of Geoscience Teachers Geo2YC Division Cushman Foundation for Foraminiferal Research National Association of Geoscience Teachers, Division of EarthScope National Office Geoscience Education Research Future of Tectonics Initiative National Association of Geoscience Teachers, Teacher Education Future of Tectonics Initiative Division Gemological Institute of America National Cave and Karst Research Institute Geochemical Society National Earth Science Teachers Association Geologic TimeScale Foundation National Ground Water Association (NGWA) Geological Society of China National Park Service Geology and Public Policy Committee of GSA North American Commission on Stratigraphic Nomenclature Geoscience Information Society Northwest
Recommended publications
  • Message from the New Chairman
    Subcommission on Devonian Stratigraphy Newsletter No. 21 April, 2005 MESSAGE FROM THE NEW CHAIRMAN Dear SDS Members: This new Newsletter gives me the pleasant opportunity to thank you for your confidence which should allow me to lead our Devonian Subcommission successfully through the next four years until the next International Geological Congress in Norway. Ahmed El Hassani, as Vice-Chairman, and John Marshall, as our new Secretary, will assist and help me. As it has been our habit in the past, our outgoing chairman, Pierre Bultynck, has continued his duties until the end of the calendar year, and in the name of all the Subcommission, I like to express our warmest thanks to him for all his efforts, his enthusi- asm for our tasks, his patience with the often too slow progress of research, and for the humorous, well organized and skil- ful handling of our affairs, including our annual meetings. At the same time I like to thank all our outgoing Titular Members for their partly long-time service and I express my hope that they will continue their SDS work with the same interest and energy as Corresponding Members. The new ICS rules require a rather constant change of voting members and the change from TM to CM status should not necessarily be taken as an excuse to adopt the lifestyle of a “Devonian pensioner”. I see no reason why constantly active SDS members shouldn´t become TM again, at a later stage. On the other side, the rather strong exchange of voting members should bring in some fresh ideas and some shift towards modern stratigraphical tech- niques.
    [Show full text]
  • Middle Devonian Formations in the Subsurface of Northwestern Ohio
    STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 SCIENTIFIC AND TECHNICAL STAFF OF THE OHIO DIVISION OF GEOLOGICAL SURVEY ADMINISTRATIVE SECTION Horace R. Collins, State Geologist and Di v ision Chief David K. Webb, Jr., Geologist and Assistant Chief Eleanor J. Hyle, Secretary Jean S. Brown, Geologist and Editor Pauline Smyth, Geologist Betty B. Baber, Geologist REGIONAL GEOLOGY SECTION SUBSURFACE GEOLOGY SECTION Richard A. Struble, Geologist and Section Head William J. Buschman, Jr., Geologist and Section Head Richard M. Delong, Geologist Michael J. Clifford, Geologist G. William Kalb, Geochemist Adriaan J anssens, Geologist Douglas L. Kohout, Geologis t Frederick B. Safford, Geologist David A. Stith, Geologist Jam es Wooten, Geologist Aide Joel D. Vormelker, Geologist Aide Barbara J. Adams, Clerk· Typist B. Margalene Crammer, Clerk PUBLICATIONS SECTION LAKE ERIE SECTION Harold J. Fl inc, Cartographer and Section Head Charles E. Herdendorf, Geologist and Sectwn Head James A. Brown, Cartographer Lawrence L. Braidech, Geologist Donald R. Camburn, Cartovapher Walter R. Lemke, Boat Captain Philip J. Celnar, Cartographer David B. Gruet, Geologist Aide Jean J. Miller, Photocopy Composer Jean R. Ludwig, Clerk- Typist STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 GEOLOGY SERVES OHIO CONTENTS Page Introduction . 1 Previous investigations .. .. .. .. .. .. .. .. .. 1 Study methods . 4 Detroit River Group . .. .. .. ... .. ... .. .. .. .. .. .. .. ... .. 6 Sylvania Sandstone ..........................
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • In the Lands of the Romanovs: an Annotated Bibliography of First-Hand English-Language Accounts of the Russian Empire
    ANTHONY CROSS In the Lands of the Romanovs An Annotated Bibliography of First-hand English-language Accounts of The Russian Empire (1613-1917) OpenBook Publishers To access digital resources including: blog posts videos online appendices and to purchase copies of this book in: hardback paperback ebook editions Go to: https://www.openbookpublishers.com/product/268 Open Book Publishers is a non-profit independent initiative. We rely on sales and donations to continue publishing high-quality academic works. In the Lands of the Romanovs An Annotated Bibliography of First-hand English-language Accounts of the Russian Empire (1613-1917) Anthony Cross http://www.openbookpublishers.com © 2014 Anthony Cross The text of this book is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the text; to adapt it and to make commercial use of it providing that attribution is made to the author (but not in any way that suggests that he endorses you or your use of the work). Attribution should include the following information: Cross, Anthony, In the Land of the Romanovs: An Annotated Bibliography of First-hand English-language Accounts of the Russian Empire (1613-1917), Cambridge, UK: Open Book Publishers, 2014. http://dx.doi.org/10.11647/ OBP.0042 Please see the list of illustrations for attribution relating to individual images. Every effort has been made to identify and contact copyright holders and any omissions or errors will be corrected if notification is made to the publisher. As for the rights of the images from Wikimedia Commons, please refer to the Wikimedia website (for each image, the link to the relevant page can be found in the list of illustrations).
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • Geology of Alba Mons, Mars: Results from 1:1M-Scale Geologic Mapping
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2160.pdf GEOLOGY OF ALBA MONS, MARS: RESULTS FROM 1:1M-SCALE GEOLOGIC MAPPING. David A. Crown1, Daniel C. Berman1, Stephen P. Scheidt1, and Ernst Hauber3, 1Planetary Science Institute, 1700 E. Ft. Lowell Rd., Suite 106, Tucson, Arizona 85719 ([email protected]); 2Institute of Planetary Research, German Aerospace Center, Berlin, Germany. Introduction: Imaging and topographic datasets distribution and local slope, and the occurrence of are being used to produce two 1:1M-scale geologic dendritic networks on the highest local slopes, suggest maps of Alba Mons in order to document the volcanic control by topography rather than variations in evolution and geologic history of the northernmost substrate properties. volcano in the Tharsis region. We utilize geologic 2) Alba Mons’ western flank is dominated by lava mapping of Alba Mons’ summit region (245-255°E, flows and lava tube systems [24-26]. Their distribution 32.5-47.5°N) and western flank (230-245°E, 37.5- is consistent with the broad shape of the volcano and 47.5°N) to characterize volcanic, tectonic, and local slopes (i.e., at 50 km scale), although some lava erosional processes and derive age constraints from flow paths have been deflected by local obstacles, cross-cutting relationships and crater size-frequency including pre-existing craters and volcanic flows. distributions. Although local relationships are complex, lava flows Mapping Methodology and Datasets: Geologic generally seem to post-date adjacent lava tube systems. mapping uses THEMIS, HRSC, CTX, and HiRISE 3) Individual lava flows are typically elongate with images supported by HRSC and MOLA topography.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • Siberia, the Wandering Northern Terrane, and Its Changing Geography Through the Palaeozoic ⁎ L
    Earth-Science Reviews 82 (2007) 29–74 www.elsevier.com/locate/earscirev Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic ⁎ L. Robin M. Cocks a, , Trond H. Torsvik b,c,d a Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK b Center for Geodynamics, Geological Survey of Norway, Leiv Eirikssons vei 39, Trondheim, N-7401, Norway c Institute for Petroleum Technology and Applied Geophysics, Norwegian University of Science and Technology, N-7491 NTNU, Norway d School of Geosciences, Private Bag 3, University of the Witwatersrand, WITS, 2050, South Africa Received 27 March 2006; accepted 5 February 2007 Available online 15 February 2007 Abstract The old terrane of Siberia occupied a very substantial area in the centre of today's political Siberia and also adjacent areas of Mongolia, eastern Kazakhstan, and northwestern China. Siberia's location within the Early Neoproterozoic Rodinia Superterrane is contentious (since few if any reliable palaeomagnetic data exist between about 1.0 Ga and 540 Ma), but Siberia probably became independent during the breakup of Rodinia soon after 800 Ma and continued to be so until very near the end of the Palaeozoic, when it became an integral part of the Pangea Supercontinent. The boundaries of the cratonic core of the Siberian Terrane (including the Patom area) are briefly described, together with summaries of some of the geologically complex surrounding areas, and it is concluded that all of the Palaeozoic underlying the West Siberian
    [Show full text]
  • Earth: Atmospheric Evolution of a Habitable Planet
    Earth: Atmospheric Evolution of a Habitable Planet Stephanie L. Olson1,2*, Edward W. Schwieterman1,2, Christopher T. Reinhard1,3, Timothy W. Lyons1,2 1NASA Astrobiology Institute Alternative Earth’s Team 2Department of Earth Sciences, University of California, Riverside 3School of Earth and Atmospheric Science, Georgia Institute of Technology *Correspondence: [email protected] Table of Contents 1. Introduction ............................................................................................................................ 2 2. Oxygen and biological innovation .................................................................................... 3 2.1. Oxygenic photosynthesis on the early Earth .......................................................... 4 2.2. The Great Oxidation Event ......................................................................................... 6 2.3. Oxygen during Earth’s middle chapter ..................................................................... 7 2.4. Neoproterozoic oxygen dynamics and the rise of animals .................................. 9 2.5. Continued oxygen evolution in the Phanerozoic.................................................. 11 3. Carbon dioxide, climate regulation, and enduring habitability ................................. 12 3.1. The faint young Sun paradox ................................................................................... 12 3.2. The silicate weathering thermostat ......................................................................... 12 3.3. Geological
    [Show full text]
  • On the Fundamental Difference Between Coal Rank and Coal Type
    International Journal of Coal Geology 118 (2013) 58–87 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Review article On the fundamental difference between coal rank and coal type Jennifer M.K. O'Keefe a,⁎, Achim Bechtel b,KimonChristanisc, Shifeng Dai d, William A. DiMichele e, Cortland F. Eble f,JoanS.Esterleg, Maria Mastalerz h,AnneL.Raymondi, Bruno V. Valentim j,NicolaJ.Wagnerk, Colin R. Ward l, James C. Hower m a Department of Earth and Space Sciences, Morehead State University, Morehead, KY 40351, USA b Department of Applied Geosciences and Geophysics, Montan Universität, Leoben, Austria c Department of Geology, University of Patras, 265.04 Rio-Patras, Greece d State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China e Department of Paleobiology, Smithsonian Institution, Washington, DC 20013-7012, USA f Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA g School of Earth Sciences, The University of Queensland, QLD 4072, Australia h Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208, USA i Department of Geology and Geophysics, College Station, TX 77843, USA j Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto and Geology Centre of the University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal k School Chemical & Metallurgical Engineering, University of Witwatersrand, 2050, WITS, South Africa l School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia m University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA article info abstract Article history: This article addresses the fundamental difference between coal rank and coal type.
    [Show full text]
  • U.S. Department of the Interior U.S. Geological Survey
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Prepared in cooperation with New Mexico Bureau of Mines and Mineral Resources 1997 MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Cover: View looking south to the east side of the northeastern Organ Mountains near Augustin Pass, White Sands Missile Range, New Mexico. Town of White Sands in distance. (Photo by Susan Bartsch-Winkler, 1995.) MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO By SUSAN BARTSCH-WINKLER, Editor ____________________________________________________ U. S GEOLOGICAL SURVEY OPEN-FILE REPORT 97-521 U.S. Geological Survey Prepared in cooperation with New Mexico Bureau of Mines and Mineral Resources, Socorro U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Shaefer, Interim Director For sale by U.S. Geological Survey, Information Service Center Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO Susan Bartsch-Winkler, Editor Summary Mimbres Resource Area is within the Basin and Range physiographic province of southwestern New Mexico that includes generally north- to northwest-trending mountain ranges composed of uplifted, faulted, and intruded strata ranging in age from Precambrian to Recent.
    [Show full text]
  • A Geologic Excursion to Fluorspar Mines in Hardin and Pope Counties, Illinois
    Prepared for the Ninth Annual Forum on the Geology of Industrial Minerals Paducoh, Kentucky, April 27-28, 1973 A GEOLOGIC EXCURSION TO FLUORSPAR MINES IN HARDIN AND POPE COUNTIES, ILLINOIS Illinois-Kentucky Mining District and Adjacent Upper Mississippi Embayment James W. Baxter James C. Bradbury Norman C. Hester Contributions on Mine Geology D. B. Saxby B. L. Perry Illinois State Geologicol Survey Guidebook Series II A WONDERFUL AND VALUABLE FLUX. OXMXO- " FLUOR SPAR." Mined and Especially Manufactured by -^THE PEIUL MINING GOMPANY,^- ROSE CLARE, HARDIN COUNTY, ILLINOIS, For the immediate use of all Metal Workers , comprising Smelting and Refining Works, Brass and Copper Works, Car Wheel Works, Sewing Machine Works, Stove Works, Glass and Chemical Works, Agricultural Works, OR WHEREVER METAL OF ANY KIND IS SMELTED OR CASTINGS MADE. iiiiiiiiiiiiiiiiii Gentlemen : —Your close attention is earnestly invited to this new and powerful flux, endorsed by all chemists as the most searching and most favorable mineral ever discovered for the reduction and purification of metals. Our mines produce it in its purest state and without adulteration, and as it is only manufactured so as to be in the best condition for your use, we respectfully ask you to give it a trial. Kluor Spar, when exposed to heat, sends forth fumes of the most powerful fluxing, searching, purifying kind known to science, and these fumes, coming into contact with the silicates and impurities in metals, drives them out. Phosphorus and sulphur, that bllfjbear to all metals, is volatilized at once and passes off, leaving a clean, clear residue which flows without hindrance or obstruction until the last ounce of metal contained in the charge is withdrawn.
    [Show full text]