Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formation of Mangala Valles Outflow Channel, Mars: Morphological Development and Water Discharge and Duration Estimates Harald J
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E08003, doi:10.1029/2006JE002851, 2007 Click Here for Full Article Formation of Mangala Valles outflow channel, Mars: Morphological development and water discharge and duration estimates Harald J. Leask,1 Lionel Wilson,1 and Karl L. Mitchell1,2 Received 24 October 2006; revised 3 April 2007; accepted 24 April 2007; published 4 August 2007. [1] The morphology of features on the floor of the Mangala Valles suggests that the channel system was not bank-full for most of the duration of its formation by water being released from its source, the Mangala Fossa graben. For an estimated typical 50 m water depth, local slopes of sin a = 0.002 imply a discharge of 1 Â 107 m3 sÀ1, a water flow speed of 9msÀ1, and a subcritical Froude number of 0.7–0.8. For a range of published estimates of the volume of material eroded from the channel system this implies a duration of 17 days if the sediment carrying capacity of the 15,000 km3 of water involved had been 40% by volume. If the sediment load had been 20% by volume, the duration would have been 46 days and the water volume required would have been 40,000 km3. Implied bed erosion rates lie in the range 1to12 m/day. If the system had been bank-full during the early stages of channel development the discharge could have been up to 108 m3 sÀ1, with flow speeds of 15 m sÀ1 and a subcritical Froude number of 0.4–0.5. -
Discrete Element Modelling of Pit Crater Formation on Mars
geosciences Article Discrete Element Modelling of Pit Crater Formation on Mars Stuart Hardy 1,2 1 ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys 23, 08010 Barcelona, Spain; [email protected]; Tel.: +34-934-02-13-76 2 Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, C/Martí i Franqués s/n, 08028 Barcelona, Spain Abstract: Pit craters are now recognised as being an important part of the surface morphology and structure of many planetary bodies, and are particularly remarkable on Mars. They are thought to arise from the drainage or collapse of a relatively weak surficial material into an open (or widening) void in a much stronger material below. These craters have a very distinctive expression, often presenting funnel-, cone-, or bowl-shaped geometries. Analogue models of pit crater formation produce pits that typically have steep, nearly conical cross sections, but only show the surface expression of their initiation and evolution. Numerical modelling studies of pit crater formation are limited and have produced some interesting, but nonetheless puzzling, results. Presented here is a high-resolution, 2D discrete element model of weak cover (regolith) collapse into either a static or a widening underlying void. Frictional and frictional-cohesive discrete elements are used to represent a range of probable cover rheologies. Under Martian gravitational conditions, frictional-cohesive and frictional materials both produce cone- and bowl-shaped pit craters. For a given cover thickness, the specific crater shape depends on the amount of underlying void space created for drainage. -
Workers' Guide to Health and Safety
Workers’ Guide to Health and Safety by Todd Jailer Miriam Lara-Meloy and Maggie Robbins health guides Berkeley, California, USA Copyright © 2015 by Hesperian Health Guides. All rights reserved. ISBN: 978-0-942364-71-2 Hesperian encourages you to copy, reproduce, or adapt any or all parts of this book, including the illustrations, provided that you do this for non-commercial purposes, credit Hesperian, and follow the other requirements of Hesperian’s Open Copyright License (see www.hesperian.org/about/open-copyright). For certain kinds of adaptation and distribution, we ask that you first obtain permission from Hesperian. Contact [email protected] to use any part of this book: for commercial purposes; in quantities more than 100 print copies; in any digital format; or with an organizational budget more than US $1 million. We also ask that you contact Hesperian for permission before beginning any translation, to avoid duplication of efforts, and for suggestions about adapting the information in this book. Please send Hesperian a copy of any materials in which text or illustrations from this book have been used. THIS EDITION CAN BE IMPROVED WITH YOUR HELP. If you are a worker health promoter, occupational safety and health professional, community organizer, or anyone with ideas or suggestions for ways this book could be changed to better meet the needs of your community, please write to Hesperian. Thank you for your help. This book has been printed in Canada by Friesens, an employee-owned corporation, on 100% post-consumer, chlorine-free, recycled paper. health guides Hesperian Health Guides 1919 Addison St. -
Impact Craters on Earth and in the Solar System Christian KOEBERL
Impact Craters on Earth and in the Solar System Christian KOEBERL Natural History Museum & University of Vienna, Austria • The importance of impact cratering on terrestrial planets is obvious from the abundance of craters on their surfaces Studying Impact Craters on Earth: • Only source for ground/truthing impact processes in the solar system • Connection with early Earth processes – importance for origin and evolution of life • Importance for, and connection with, mass extinction events • Exposure of deep crust at central uplifts of large impact structures Mercury Mariner 10 (1974) Messenger (2008) Venus – 30 km crater A comparison of ~30-km diameter impact craters on several planetary bodies. All craters are shown at the same scale and have been rotated so that the light source is from the left. This rotation puts north at the bottom of the images of the lunar crater and the Ganymede crater. Names and locations of the four craters are as follows: Golubkhina (Venus), 60.30N, 286.40E; Kepler (Moon), 8.10N, 38.10W; (Mars), 20.80S, 53.60E; (Ganymede), 29.80S, 136.00W. Mars Small simple crater on Mars Mars – crater in stream New impact craters observed on Mars new impact crater south of Echus Chasma, Mars (2011 image; not in 2009 image) Ice in Pair of Fresh Craters on Mars Fades with Time This series of HiRISE images (75 m wide) spanning a period of 15 weeks shows a pair of fresh, middle-latitude craters on Mars in which ice apparent in the earliest images disappears by the later ones. The two craters are each about 4 m in diameter and half a meter deep. -
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
Geology of Alba Mons, Mars: Results from 1:1M-Scale Geologic Mapping
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2160.pdf GEOLOGY OF ALBA MONS, MARS: RESULTS FROM 1:1M-SCALE GEOLOGIC MAPPING. David A. Crown1, Daniel C. Berman1, Stephen P. Scheidt1, and Ernst Hauber3, 1Planetary Science Institute, 1700 E. Ft. Lowell Rd., Suite 106, Tucson, Arizona 85719 ([email protected]); 2Institute of Planetary Research, German Aerospace Center, Berlin, Germany. Introduction: Imaging and topographic datasets distribution and local slope, and the occurrence of are being used to produce two 1:1M-scale geologic dendritic networks on the highest local slopes, suggest maps of Alba Mons in order to document the volcanic control by topography rather than variations in evolution and geologic history of the northernmost substrate properties. volcano in the Tharsis region. We utilize geologic 2) Alba Mons’ western flank is dominated by lava mapping of Alba Mons’ summit region (245-255°E, flows and lava tube systems [24-26]. Their distribution 32.5-47.5°N) and western flank (230-245°E, 37.5- is consistent with the broad shape of the volcano and 47.5°N) to characterize volcanic, tectonic, and local slopes (i.e., at 50 km scale), although some lava erosional processes and derive age constraints from flow paths have been deflected by local obstacles, cross-cutting relationships and crater size-frequency including pre-existing craters and volcanic flows. distributions. Although local relationships are complex, lava flows Mapping Methodology and Datasets: Geologic generally seem to post-date adjacent lava tube systems. mapping uses THEMIS, HRSC, CTX, and HiRISE 3) Individual lava flows are typically elongate with images supported by HRSC and MOLA topography. -
FROM WET PLANET to RED PLANET Current and Future Exploration Is Shaping Our Understanding of How the Climate of Mars Changed
FROM WET PLANET TO RED PLANET Current and future exploration is shaping our understanding of how the climate of Mars changed. Joel Davis deciphers the planet’s ancient, drying climate 14 DECEMBER 2020 | WWW.GEOLSOC.ORG.UK/GEOSCIENTIST WWW.GEOLSOC.ORG.UK/GEOSCIENTIST | DECEMBER 2020 | 15 FEATURE GEOSCIENTIST t has been an exciting year for Mars exploration. 2020 saw three spacecraft launches to the Red Planet, each by diff erent space agencies—NASA, the Chinese INational Space Administration, and the United Arab Emirates (UAE) Space Agency. NASA’s latest rover, Perseverance, is the fi rst step in a decade-long campaign for the eventual return of samples from Mars, which has the potential to truly transform our understanding of the still scientifi cally elusive Red Planet. On this side of the Atlantic, UK, European and Russian scientists are also getting ready for the launch of the European Space Agency (ESA) and Roscosmos Rosalind Franklin rover mission in 2022. The last 20 years have been a golden era for Mars exploration, with ever increasing amounts of data being returned from a variety of landed and orbital spacecraft. Such data help planetary geologists like me to unravel the complicated yet fascinating history of our celestial neighbour. As planetary geologists, we can apply our understanding of Earth to decipher the geological history of Mars, which is key to guiding future exploration. But why is planetary exploration so focused on Mars in particular? Until recently, the mantra of Mars exploration has been to follow the water, which has played an important role in shaping the surface of Mars. -
Plains Volcanism on Mars Revisited: the Topography and Morphology of Low Shields and Related Landforms
Seventh International Conference on Mars 3287.pdf PLAINS VOLCANISM ON MARS REVISITED: THE TOPOGRAPHY AND MORPHOLOGY OF LOW SHIELDS AND RELATED LANDFORMS. E. Hauber1, 1Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany ([email protected]). Introduction: The morphometry of Martian vol- cent study [1] used MOLA topography to measure the canoes provides critical input to the investigation of morphometric properties of several large Martian vol- their tectonic setting and the rheology of their eruption canoes. However, images of the Viking Orbiter mis- products. It is also an important prerequisite for studies sion showed that there are also numerous small and of comparative planetology, e.g., the comparison be- low shield volcanoes on Mars [2-7]. Almost all of tween terrestrial and planetary surface features. A re- these low shields are located within Tharsis and Ely- sium, the major volcanic provinces on Mars. A com- prehensive description of low shields in Tempe Terra based on Viking Orbiter images is given by [5], who describes shield fields with broad, very low shields, often associated with linear fissure vents, and several steeper edifices (Fig. 1). Many of the low shields have one or more summit craters. The craters are relatively small as compared to the basal diameter, and their form may be circular or elongated along the dominant tectonic trend. Plescia [ref. 5] compared low shields in the Tempe Terra region with terrestrial volcanoes and found that they are similar in many aspects to low shields in the eastern Snake River Plains in Idaho (USA; hereafter referred to as ESRP). -
Geologic History of Water on Mars
GEOLOGIC HISTORY OF WATER ON MARS: REGIONAL EVOLUTION OF AQUEOUS AND GLACIAL PROCESSES IN THE SOUTHERN HIGHLANDS, THROUGH TIME Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat) vorgelegt als kumulative Arbeit am Fachbereich Geowissenschaften der Freien Universität Berlin von SOLMAZ ADELI Berlin, 2016 Erstgutachter: Prof. Dr. Ralf Jaumann Freie Universität Berlin Institut für Geologische Wissenschaften Arbeitsbereich Planetologie sowie Deutsches Zentrum für Luft- und Raumfahrt Institut für Planetenforschung, Abteilung Planetengeologie Zweitgutachter: Prof. Dr. Michael Schneider Freie Universität Berlin Institut für Geologische Wissenschaften Arbeitsbereich Hydrogeologie Tag der Disputation: 22 July 2016 i To my mother and my grandmother, the two strong women who inspired me the most, to follow my dreams, and to never give up. تقديم به مادر و مادر بزرگم به دو زن قوى كه الهام دهنده ى من بودند تا آرزو هايم را دنبال كنم و هرگز تسليم نشوم ii iii EIDESSTATTLICHE ERKLAERUNG Hiermit versichere ich, die vorliegende Arbeit selbstständig angefertigt und keine anderen als die angeführten Quellen und Hilfsmittel benutzt zu haben. Solmaz Adeli Berlin, 2016 iv v Acknowledgement First of all, I would like to thank my supervisor Prof. Dr. Ralf Jaumann for giving me the opportunity of working at the Deutsches Zentrum für Luft- und Raumfahrt (DLR). I wish to thank him particularly for standing behind me in all the ups and downs. Herr Jaumann, I am so deeply grateful for your support and your trust. Danke schön! This work would have not been achieved without the support of Ernst Hauber, my second supervisor. I have also been most fortunate to be able to work with him, and I have greatly appreciated the countless hours of discussions, all his advice regarding scientific issues, his feedbacks on my manuscripts, and everything. -
The Tharsis Montes, Mars: Comparison of Volcanic and Modified Landforms
I)oceamngs of Lunar and Pkmetmy Sdence, VVdume 22, pp. 31 -44 Lunar and Planetary INtihlte, Houston, 1992 The Tharsis Montes, Mars: Comparison of Volcanic and Modified Landforms James R Zimbelrnan Center for Eurtb and Planetary Studies, National Air and Space Museum, Smitbsonian Washington DC 20560 Kenneth S. Edgett The three 'Iharsis Montes shield volcanos, Arsia Mons, Pavonis Mons, and Axraeus Mons, have broad similarities that have been recognized since the Mariner 9 reconnaissance in 1972. Upon closer examination the volcanos are seen to have significant differences that are due to individual volcanic histories. AU three volcanos exhibit the following characteristics gentle (<5O) fkmk slopes, entrants in the northwestern and southeastern flanks that were the source for lavas extending away from each shield, summit caldera(s), and enigmatic lobe-shaped features extending over the plains to the west of each volcano. Zhe three volcanos display different degrees of circumferential graben and trough development in the summit regions, complexity of preserved caldera collapse events, secondary summit-region volcanic consuuction, and erosion on the lower western flanks due to mass wasting and the processes that formed the large lobe-shaped features. AU three lobe-shaped features start at elevations of 10 to 11 Ian and terminate at 6 km. The complex morphology of the lobe deposits appear to involve some form of catastrophic mass movement followed by efhsive and perhaps pyroclastic volcanism. subsequent materials (Scott and Tanuka, 1981). AU the rnate- rials on and around the Tharsis Montes are mapped as Upper The Tharsii Montes consist of three large shield volcanos Hesperian to Upper AInaZonian in age (Scott and Tanuka, named (firom south to north) Arsia Mom, Pavonis Mom, and 1986). -
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014 Edited by: James A. Skinner, Jr. U. S. Geological Survey, Flagstaff, AZ David Williams Arizona State University, Tempe, AZ NOTE: Abstracts in this volume can be cited using the following format: Graupner, M. and Hansen, V.L., 2014, Structural and Geologic Mapping of Tellus Region, Venus, in Skinner, J. A., Jr. and Williams, D. A., eds., Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, June 23-25, 2014. SCHEDULE OF EVENTS Monday, June 23– Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up – 2255 N. Gemini Drive (USGS) 9:00 Welcome/Logistics 9:10 NASA HQ and Program Remarks (M. Kelley) 9:30 USGS Map Coordinator Remarks (J. Skinner) 9:45 GIS and Web Updates (C. Fortezzo) 10:00 RPIF Updates (J. Hagerty) 10:15 BREAK / POSTERS 10:40 Venus Irnini Mons (D. Buczkowski) 11:00 Moon Lunar South Pole (S. Mest) 11:20 Moon Copernicus Quad (J. Hagerty) 11:40 Vesta Iterative Geologic Mapping (A. Yingst) 12:00 pm LUNCH / POSTERS 1:30 Vesta Proposed Time-Stratigraphy (D. Williams) 1:50 Mars Global Geology (J. Skinner) 2:10 Mars Terra Sirenum (R. Anderson) 2:30 Mars Arsia/Pavonis Montes (B. Garry) 2:50 Mars Valles Marineris (C. Fortezzo) 3:10 BREAK / POSTERS 3:30 Mars Candor Chasma (C. Okubo) 3:50 Mars Hrad Vallis (P. Mouginis-Mark) 4:10 Mars S. Margaritifer Terra (J. Grant) 4:30 Mars Ladon basin (C. Weitz) 4:50 DISCUSSION / POSTERS ~5:15 ADJOURN Tuesday, June 24 - Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up/Logistics 9:00 Mars Upper Dao and Niger Valles (S. -
The Formation History of Olympus Mons from Paleo-Topography
42nd Lunar and Planetary Science Conference (2011) 2202.pdf THE FORMATION HISTORY OF OLYMPUS MONS FROM PALEO-TOPOGRAPHY. L. M. Jozwiak1,2 R. J. Isherwood2, and J. C. Andrews-Hanna2, 1Dept. of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, MA, [email protected], 2Dept. of Geophysics, Colorado School of Mines, Golden, CO, [email protected]. Introduction: The Olympus Mons shield volcano on the northwestern edge of Mars’ Tharsis rise is the largest volcano in the solar system. Its volcanic his- tory is intimately tied with the volcanic and geody- namic history of Tharsis and of Mars as a whole. Pre- vious studies used crater counting to estimate the age of the flanks of Olympus, with typical values of ~200 Myr [1]. However, establishing the formation history for Olympus Mons is complicated by the fact that each volcanic eruption resurfaces the flanks, erasing the previous crater record. Here we place constraints on the bulk formation history of Olympus Mons by recon- structing the paleo-flexural history of the surrounding region. Crater retention ages from lava flows on the flexural trough surrounding the edifice that pre-date the trough are used to constrain the onset of volcanic loading. Crater retention ages from the aureole depos- its are used to constrain the age at which a significant fraction of the edifice was in place. These two ages bracket the main constructional period of Olympus. Paleo-topography of the Olympus Mons flexural trough. The concept of paleo-topography is used in terrestrial geodynamics to reconstruct the vertical mo- tions of the lithosphere [2], but has seen less use in planetary applications [3].