Discrete Element Modelling of Pit Crater Formation on Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hawaii Volcanoes National Park Geologic Resources Inventory Report
National Park Service U.S. Department of the Interior Natural Resource Program Center Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 THIS PAGE: Geologists have lloongng been monimonittoorriing the volcanoes of Hawai‘i Volcanoes National Park. Here lalava cascades durduriingng the 1969-1971 Mauna Ulu eruption of Kīlauea VolVolcano. NotNotee the Mauna Ulu fountountaiain in the background. U.S. Geologiogicalcal SurSurvveyey PhotPhotoo by J. B. Judd (12/30/1969). ON THE COVER: ContContiinuouslnuouslyy eruptuptiingng since 1983, Kīllaueaauea Volcano contcontiinues to shapshapee Hawai‘Hawai‘i VoVollccanoes NatiNationalonal ParkPark.. Photo courtesy Lisa Venture/UniversiUniversitty of Cincinnati. Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein
Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein To cite this version: David Aubin, Catherine Goldstein. Placing World War I in the History of Mathematics. 2013. hal- 00830121v1 HAL Id: hal-00830121 https://hal.sorbonne-universite.fr/hal-00830121v1 Preprint submitted on 4 Jun 2013 (v1), last revised 8 Jul 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Placing World War I in the History of Mathematics David Aubin and Catherine Goldstein Abstract. In the historical literature, opposite conclusions were drawn about the impact of the First World War on mathematics. In this chapter, the case is made that the war was an important event for the history of mathematics. We show that although mathematicians' experience of the war was extremely varied, its impact was decisive on the life of a great number of them. We present an overview of some uses of mathematics in war and of the development of mathematics during the war. We conclude by arguing that the war also was a crucial factor in the institutional modernization of mathematics. Les vrais adversaires, dans la guerre d'aujourd'hui, ce sont les professeurs de math´ematiques`aleur table, les physiciens et les chimistes dans leur laboratoire. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Impact Craters on Earth and in the Solar System Christian KOEBERL
Impact Craters on Earth and in the Solar System Christian KOEBERL Natural History Museum & University of Vienna, Austria • The importance of impact cratering on terrestrial planets is obvious from the abundance of craters on their surfaces Studying Impact Craters on Earth: • Only source for ground/truthing impact processes in the solar system • Connection with early Earth processes – importance for origin and evolution of life • Importance for, and connection with, mass extinction events • Exposure of deep crust at central uplifts of large impact structures Mercury Mariner 10 (1974) Messenger (2008) Venus – 30 km crater A comparison of ~30-km diameter impact craters on several planetary bodies. All craters are shown at the same scale and have been rotated so that the light source is from the left. This rotation puts north at the bottom of the images of the lunar crater and the Ganymede crater. Names and locations of the four craters are as follows: Golubkhina (Venus), 60.30N, 286.40E; Kepler (Moon), 8.10N, 38.10W; (Mars), 20.80S, 53.60E; (Ganymede), 29.80S, 136.00W. Mars Small simple crater on Mars Mars – crater in stream New impact craters observed on Mars new impact crater south of Echus Chasma, Mars (2011 image; not in 2009 image) Ice in Pair of Fresh Craters on Mars Fades with Time This series of HiRISE images (75 m wide) spanning a period of 15 weeks shows a pair of fresh, middle-latitude craters on Mars in which ice apparent in the earliest images disappears by the later ones. The two craters are each about 4 m in diameter and half a meter deep. -
Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars
Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars: A Case Study for Local versus Regional Stress Fields. (Under the direction of Dr. Paul K. Byrne). Alba Mons is a large shield volcano on Mars, the development of which appears to be responsible for tectonic landforms oriented radially and circumferentially to the shield. These landforms include those interpreted as extensional structures, such as normal faults and systems of graben. These structures, however, may also be associated with broader, regional stress field emanating from the volcano-tectonic Tharsis Rise, to the south of Alba Mons and centered on the equator. In this study, I report on structural and statistical analyses for normal faults proximal to Alba Mons (in a region spanning 95–120° W and 14–50° N) and test for systematic changes in fault properties with distance from the volcano and from Tharsis. A total of 11,767 faults were mapped for this study, and these faults were all measured for strike, length, and distance from Alba Mons and Tharsis. Additional properties were qualitatively and quantitatively analyzed within a subset of 62 faults, and model ages were obtained for two areas with crater statistics. Distinguishing traits for each structure population include fault properties such as strike, vertical displacement (i.e., throw) distribution profiles, displacement–length (Dmax/L) scaling, and spatial (i.e., cross-cutting) relationships with adjacent faults with different strikes. The only statistically significant correlation in these analyses was between study fault strike with distance from Tharsis. The lack of trends in the data suggest that one or more geological processes is obscuring the expected similarities in properties for these fault systems, such as volcanic resurfacing, mechanical restriction, or fault linkage. -
Diamond Craters Oregon's Geologic
Text by Ellen M. Benedict, 1985 Features at stops correspond to points on a clock ago, a huge mass of hot gases, volcanic ashes, bits face. Imagine that you are standing in the middle of a of pumice and other pyroclastics (fire-broken rock) Travel And Hiking Hints clock face. Twelve o’clock is the road in front of you violently erupted. The blast – greater than the May and 6 o’clock the road behind. If you always align the 18, 1980, eruption of Mt. St. Helens – deposited a Diamond Craters is located in the high desert country clock face with the road, you should be able to locate layer of pyroclastics 30 to 130 feet thick over an area about 55 miles southeast of Burns, Oregon. It’s an the features. almost 7,000 square miles! isolated place and some precautions should be taken . when traveling in the area. Start Tour. Mileage begins halfway Pyroclastics are between milepost 40 and 41 on State normal behavior Diamond Craters has no tourist facilities. The nearest Highway 205 at the junction to Diamond. for magmas place where gasoline is sold is at Frenchglen. Turn left. (subsurface That’s the opinion held by scores of molten rocks) Keep your scientists and educators who have visited Diamond, Oregon, a small ranching community, was of rhyolitic (a vehicle on named in 1874 for Mace McCoy’s Diamond brand. volcanic material and studied the area. It has the “best and hard-packed The nearby craters soon became known as Diamond related to granite) most diverse basaltic volcanic features in the road surfaces Craters. -
Long-Term Historical and Projected Herbivore Population Dynamics in Ngorongoro Crater, Tanzania
PLOS ONE RESEARCH ARTICLE Long-term historical and projected herbivore population dynamics in Ngorongoro crater, Tanzania 1³ 2³ 2 3 Patricia D. Moehlman , Joseph O. OgutuID *, Hans-Peter Piepho , Victor A. Runyoro , Michael B. Coughenour4, Randall B. Boone5 1 IUCN/SSC Equid Specialist Group, Arusha, Arusha, Tanzania, 2 Institute for Crop Science-340, University of Hohenheim, Stuttgart, Germany, 3 Environmental Reliance Consultants Limited, Arusha, Tanzania, 4 Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, United States of America, 5 Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, a1111111111 Colorado, United States of America a1111111111 a1111111111 ³ PDM and JOO are joint first authors on this work. a1111111111 * [email protected] a1111111111 Abstract The Ngorongoro Crater is an intact caldera with an area of approximately 310 km2 located OPEN ACCESS within the Ngorongoro Conservation Area (NCA) in northern Tanzania. It is known for the Citation: Moehlman PD, Ogutu JO, Piepho H-P, abundance and diversity of its wildlife and is a UNESCO World Heritage Site and an Interna- Runyoro VA, Coughenour MB, Boone RB (2020) tional Biosphere Reserve. Long term records (1963±2012) on herbivore populations, vege- Long-term historical and projected herbivore population dynamics in Ngorongoro crater, tation and rainfall made it possible to analyze historic and project future herbivore population Tanzania. PLoS ONE 15(3): e0212530. https://doi. dynamics. NCA was established as a multiple use area in 1959. In 1974 there was a pertur- org/10.1371/journal.pone.0212530 bation in that resident Maasai and their livestock were removed from the Ngorongoro Crater. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
The Very Forward CASTOR Calorimeter of the CMS Experiment
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-180 2021/02/11 CMS-PRF-18-002 The very forward CASTOR calorimeter of the CMS experiment The CMS Collaboration* Abstract The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS exper- iment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of −6.6 < h < −5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC. ”Published in the Journal of Instrumentation as doi:10.1088/1748-0221/16/02/P02010.” arXiv:2011.01185v2 [physics.ins-det] 10 Feb 2021 © 2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license *See Appendix A for the list of collaboration members Contents 1 Contents 1 Introduction . .1 2 Physics motivation . .3 2.1 Forward physics in proton-proton collisions . .3 2.2 Ultrahigh-energy cosmic ray air showers . .5 2.3 Proton-nucleus and nucleus-nucleus collisions . .5 3 Detector design . .6 4 Triggers and operation . .9 5 Event reconstruction and calibration . 12 5.1 Noise and baseline . 13 5.2 Gain correction factors . 15 5.3 Channel-by-channel intercalibration . -
Plains Volcanism on Mars Revisited: the Topography and Morphology of Low Shields and Related Landforms
Seventh International Conference on Mars 3287.pdf PLAINS VOLCANISM ON MARS REVISITED: THE TOPOGRAPHY AND MORPHOLOGY OF LOW SHIELDS AND RELATED LANDFORMS. E. Hauber1, 1Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany ([email protected]). Introduction: The morphometry of Martian vol- cent study [1] used MOLA topography to measure the canoes provides critical input to the investigation of morphometric properties of several large Martian vol- their tectonic setting and the rheology of their eruption canoes. However, images of the Viking Orbiter mis- products. It is also an important prerequisite for studies sion showed that there are also numerous small and of comparative planetology, e.g., the comparison be- low shield volcanoes on Mars [2-7]. Almost all of tween terrestrial and planetary surface features. A re- these low shields are located within Tharsis and Ely- sium, the major volcanic provinces on Mars. A com- prehensive description of low shields in Tempe Terra based on Viking Orbiter images is given by [5], who describes shield fields with broad, very low shields, often associated with linear fissure vents, and several steeper edifices (Fig. 1). Many of the low shields have one or more summit craters. The craters are relatively small as compared to the basal diameter, and their form may be circular or elongated along the dominant tectonic trend. Plescia [ref. 5] compared low shields in the Tempe Terra region with terrestrial volcanoes and found that they are similar in many aspects to low shields in the eastern Snake River Plains in Idaho (USA; hereafter referred to as ESRP). -
The Tharsis Montes, Mars: Comparison of Volcanic and Modified Landforms
I)oceamngs of Lunar and Pkmetmy Sdence, VVdume 22, pp. 31 -44 Lunar and Planetary INtihlte, Houston, 1992 The Tharsis Montes, Mars: Comparison of Volcanic and Modified Landforms James R Zimbelrnan Center for Eurtb and Planetary Studies, National Air and Space Museum, Smitbsonian Washington DC 20560 Kenneth S. Edgett The three 'Iharsis Montes shield volcanos, Arsia Mons, Pavonis Mons, and Axraeus Mons, have broad similarities that have been recognized since the Mariner 9 reconnaissance in 1972. Upon closer examination the volcanos are seen to have significant differences that are due to individual volcanic histories. AU three volcanos exhibit the following characteristics gentle (<5O) fkmk slopes, entrants in the northwestern and southeastern flanks that were the source for lavas extending away from each shield, summit caldera(s), and enigmatic lobe-shaped features extending over the plains to the west of each volcano. Zhe three volcanos display different degrees of circumferential graben and trough development in the summit regions, complexity of preserved caldera collapse events, secondary summit-region volcanic consuuction, and erosion on the lower western flanks due to mass wasting and the processes that formed the large lobe-shaped features. AU three lobe-shaped features start at elevations of 10 to 11 Ian and terminate at 6 km. The complex morphology of the lobe deposits appear to involve some form of catastrophic mass movement followed by efhsive and perhaps pyroclastic volcanism. subsequent materials (Scott and Tanuka, 1981). AU the rnate- rials on and around the Tharsis Montes are mapped as Upper The Tharsii Montes consist of three large shield volcanos Hesperian to Upper AInaZonian in age (Scott and Tanuka, named (firom south to north) Arsia Mom, Pavonis Mom, and 1986). -
Ancient Drainage Basin of the Tharsis Region, Mars: Potential Source for Outflow Channel Systems and Putative Oceans Or Paleolakes
University of Central Florida STARS Faculty Bibliography 2000s Faculty Bibliography 1-1-2001 Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes J. M. Dohm J. C. Ferris V. R. Baker R. C. Anderson T. M. Hare FindSee next similar page works for additional at: https:/ authors/stars.libr ary.ucf.edu/facultybib2000 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Dohm, J. M.; Ferris, J. C.; Baker, V. R.; Anderson, R. C.; Hare, T. M.; Strom, R. G.; Barlow, N. G.; Tanaka, K. L.; Klemaszewski, J. E.; and Scott, D. H., "Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes" (2001). Faculty Bibliography 2000s. 7973. https://stars.library.ucf.edu/facultybib2000/7973 Authors J. M. Dohm, J. C. Ferris, V. R. Baker, R. C. Anderson, T. M. Hare, R. G. Strom, N. G. Barlow, K. L. Tanaka, J. E. Klemaszewski, and D. H. Scott This article is available at STARS: https://stars.library.ucf.edu/facultybib2000/7973 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. El2, PAGES 32,943-32,958, DECEMBER 25, 2001 Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes J. M. Dohm, • J.