Geologic History of Water on Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formation of Mangala Valles Outflow Channel, Mars: Morphological Development and Water Discharge and Duration Estimates Harald J
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E08003, doi:10.1029/2006JE002851, 2007 Click Here for Full Article Formation of Mangala Valles outflow channel, Mars: Morphological development and water discharge and duration estimates Harald J. Leask,1 Lionel Wilson,1 and Karl L. Mitchell1,2 Received 24 October 2006; revised 3 April 2007; accepted 24 April 2007; published 4 August 2007. [1] The morphology of features on the floor of the Mangala Valles suggests that the channel system was not bank-full for most of the duration of its formation by water being released from its source, the Mangala Fossa graben. For an estimated typical 50 m water depth, local slopes of sin a = 0.002 imply a discharge of 1 Â 107 m3 sÀ1, a water flow speed of 9msÀ1, and a subcritical Froude number of 0.7–0.8. For a range of published estimates of the volume of material eroded from the channel system this implies a duration of 17 days if the sediment carrying capacity of the 15,000 km3 of water involved had been 40% by volume. If the sediment load had been 20% by volume, the duration would have been 46 days and the water volume required would have been 40,000 km3. Implied bed erosion rates lie in the range 1to12 m/day. If the system had been bank-full during the early stages of channel development the discharge could have been up to 108 m3 sÀ1, with flow speeds of 15 m sÀ1 and a subcritical Froude number of 0.4–0.5. -
Distribution and Formation of Chlorides and Phyllosilicates in Terra Sirenum, Mars Timothy D
GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L16202, doi:10.1029/2010GL044557, 2010 Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars Timothy D. Glotch,1 Joshua L. Bandfield,2 Livio L. Tornabene,3 Heidi B. Jensen,1 and Frank P. Seelos4 Received 1 July 2010; accepted 15 July 2010; published 24 August 2010. [1] The Terra Sirenum region of Mars, located in the [3] This study focuses on the geology of Terra Sirenum, Noachian southern highlands, is mineralogically diverse, which contains the largest known co‐occurrence of chlor- providing unique insight into ancient aqueous processes. ides and phyllosilicates on Mars. Based on data from the Analyses of remote sensing data over the region indicate Compact Reconnaissance Imaging Spectrometer for Mars thepresenceofbothFe‐ or Mg‐rich phyllosilicates and (CRISM), phyllosilicates in this region are dominated by a spectrally unique deposit interpreted to be rich in Fe‐ or Mg‐rich smectites and are commonly found on chloride salts. The stratigraphic relationships indicate Noachian plains, and occasionally on crater floors [Murchie that the phyllosilicates are part of the ancient highland et al., 2009; Wray et al., 2009], as well as channel‐fill crust and that the salts were deposited at a later time. In materials. The presence of smectites and a variety of other some instances, there is clear morphological evidence that aqueous minerals indicates that the Noachian crust, at least salts were mobilized and deposited by near‐surface waters. in places, was altered by liquid water [Wray et al., 2009]. Citation: Glotch, T. D., J. L. Bandfield, L. L. Tornabene, H. B. -
Geomorphological Evidence of Local Presence of Ice-Rich Deposits in Terra Cimmeria, Mars
Mars Workshop on Amazonian Climate 2018 (LPI Contrib. No. 2086) 4010.pdf Geomorphological Evidence of Local Presence of Ice-Rich Deposits in Terra Cimmeria, Mars. S. Adeli1, E. Hauber1, G. Michael2, P. Fawdon3, I. B. Smith4, and R. Jaumann1,2. 1Deutsches Zentrum fuer Luft- und Raum- fahrt (DLR), Institute für Planetenforschung, Rutherfordstr. 2, 12489 Berlin, Germany ([email protected]). 2Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12249 Berlin, Germany. 3Birkbeck, University of London, Malet St, London WC1E 7HX. 4Planetary Science Institute, 1546 Cole Blvd Ste 120, Lake- wood, Colorado, USA. Introduction: Global circulation models suggest a) that obliquity oscillations caused the mobilization of ice from polar regions and its re-deposition at lower latitudes [1, 2]. They show that during high obliquity periods, ice can be deposited almost anywhere in the mid-latitudes and during low obliquity ice is transport- ed back to the poles [2-4]. Although the obliquity vari- Tarq b ations are not predictable for periods more than 20 Ma Crater ago [6], it is likely that the surface of Mars, during Amazonian, has repeatedly undergone such climate changes leading to deposition and sublima- tion/evaporation of ice-rich material [e.g., 3, 6, 7]. Evidence of shallow ground ice has been widely ob- served in the north and south mid-latitude regions of Mars such as: geomorphological evidence of debris- covered glaciers [e.g., 8, 9] and SHARAD observation [e.g., 10] of ~70 m thick ice deposits. This study de- scribes well-preserved glacial-like deposits in Terra Cimmeria, which are defined here as valley fill depos- b) c) its (VFD) (Fig. -
Terra Sirenum, Mars
51st Lunar and Planetary Science Conference (2020) 2226.pdf POTENTIAL CORRELATION BETWEEN COMPOSITION AND CRUSTAL MAGNETISM IN TERRA SIRENUM, MARS. J. Buz,1 A. Alhantoobi2, J.G. O’Rourke3, C.S. Edwards1, B. Langlais4,1Northern Arizona Uni- versity, Department of Astronomy and Planetary Science, Flagstaff, AZ 86001 ([email protected]), 2Khalifa Uni- versity, Abu Dhabi, United Arab Emirates, 3Arizona State University, School of Earth and Space Exploration, Tempe, AZ, 4Lab Planetologie Geodynamique, Nantes, France Introduction: Mars has no dynamo and thus no made on the Martian surface (e.g.,[7]), and the compo- global magnetic field today. However, scientists learned sition of some (albeit few) Martian meteorites [8]. that a significant magnetic field once existed, at least lo- While the basic existence of magnetic anomalies has cally, from the remanent magnetization in Martian me- been explained in theory through modeling and litho- teorite ALH84001 [1]. Evidence for an ancient global logic observations, the relationship between the mag- magnetic field came when Mars Global Surveyor netization and the composition on the surface of Mars (MGS) discovered large regions of magnetized crust in has not previously been explored. This study compares Magnetic field experiment/Electron Reflectometer various compositional datasets for the Martian crust in- (Mag/ER) data [2]. An internally generated magnetic cluding elemental abundance, mineralogical indicators, field, which is now extinct, is required to explain how a and thermophysical properties with magnetic field steady ambient field persisted for a few hundred million measurements to quantify any potential relationships. years to produce the observed large-scale distribution of Methods and datasets: The Langlais et al. -
Geological Map of Terra Cimmeria, Mars
51st Lunar and Planetary Science Conference (2020) 2766.pdf GEOLOGIC MAP OF TERRA CIMMERIA, MARS. A. G. Siwabessy1,2, C. M. Rodrigue1, and R. C. Ander- son2, 1Department of Geography, California State University-Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840 ([email protected]), 2Geophysics and Planetary Geosciences Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 Introduction: The Tharsis Rise dominates the ping area, trending into Hesperia Planum. Further to tectonic geomorphology of the western hemisphere of the northwest, a third type of basin – by far the least Mars. Anderson et al. [1] challenged the premise of mature of the three observed types – is observed. They [2], a prior study that presupposed that Tharsis uplift- are sometimes clearly associated with antecedent im- ed in a single event centered near Pavonis Mons. [1] pact structures. As they are occasionally connected by found instead that compressional and extensional fea- cascading sequences of downslope-incising valleys, tures across the western hemisphere are controlled by fluvial erosion may have occurred coevally with the five primary tectonic centers, of which the most an- regional uplift at [6]'s Hadriarca-Tyrrhena center. cient lies near the Claritas Rise. More recently, [3,4] Other than globally-distributed wrinkle ridge sets [8], studied putative basin and range topography on the explicit tectonic signatures associating Terra Cimme- southwest margin of the Tharsis Rise. [4] correlated ria to regional forcers (such as Tharsis) are not ob- the orientation of these features to predicted extension served. However, this does not necessarily limit forc- modeled by [5], but only if their model is rotated by ing effects of far-field activity – particularly from 12o and then re-centered not on the predicted regime Tharsis – from controlling the basin’s subsurface ge- by [2] but on the Stage 1 Claritas center of [1]. -
Gondwana Large Igneous Provinces (Lips): Distribution, Diversity and Significance
Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Gondwana Large Igneous Provinces (LIPs): distribution, diversity and significance SARAJIT SENSARMA1*, BRYAN C. STOREY2 & VIVEK P. MALVIYA3 1Centre of Advanced Study in Geology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India 2Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand 324E Mayur Residency Extension, Faridi Nagar, Lucknow, Uttar Pradesh 226016, India *Correspondence: [email protected] Abstract: Gondwana, comprising >64% of the present-day continental mass, is home to 33% of Large Igneous Provinces (LIPs) and is key to unravelling the lithosphere–atmosphere system and related tectonics that mediated global climate shifts and sediment production conducive for life on Earth. Increased recognition of bimodal LIPs in Gondwana with significant, sometimes subequal, proportions of synchronous silicic volcanic rocks, mostly rhyolites to high silica rhyolites (±associ- ated granitoids) to mafic volcanic rocks is a major frontier, not considered in mantle plume or plate process hypotheses. On a δ18O v. initial 87Sr/86Sr plot for silicic rocks in Gondwana LIPs there is a remarkable spread between continental crust and mantle values, signifying variable contributions of crust and mantle in their origins. Caldera-forming silicic LIP events were as large as their mafic counterparts, and erupted for a longer duration (>20 myr). Several Gondwana LIPs erupted near the active continental margins, in addition to within-continents; rifting, however, continued even after LIP emplacements in several cases or was aborted and did not open into ocean by coeval com- pression. Gondwana LIPs had devastating consequences in global climate shifts and are major global sediment sources influencing upper continental crust compositions. -
THE CURIOUS SHORELINES of GORGONUM CHAOS. A. D. Howard1 and J
Sixth International Conference on Mars (2003) 3190.pdf THE CURIOUS SHORELINES OF GORGONUM CHAOS. A. D. Howard1 and J. M. Moore2, 1Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904 ([email protected]), 2NASA Ames Re- search Center, MS 245-3, Moffett Field, CA 94035 ([email protected]). Introduction: Level, bench-like platforms in the The center of the concave basin is partially occu- interior of the Gorgonum Chaos basin appear to be pied by the knobby “chaos”. These are generally flat- shorelines associated with an ancient lake. These topped mesas that appear at one time to have been a shorelines, however, seem to lack the typical features continuous deposit that has been dissected into isolated of shorelines associated with wave and current trans- mesas along linear trends. We have interpreted such port and erosion, such as crescentic embayments, spits, deposits in this and other basins in the region to be barrier islands, and wave-cut cliffs. Rather, the lake- lake-related deposits, possibly evaporates that have facing platform edges are commonly rounded and cu- been partially dissolved [5]. These deposits were em- mulate in planform, often evenly encircling presumed placed and eroded prior to the features discussed here. islands. We interpret these shorelines to have been Shoreline Features: The center of Gorgonum ba- formed by outward growth in a quiescent environment, sin is relatively free of chaos knobs (Fig. 1) and is a possibly in ice-covered bodies of water and possibly, in relatively level plain at an elevation of about -350 to - part, as chemical precipitates. -
Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars
Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars: A Case Study for Local versus Regional Stress Fields. (Under the direction of Dr. Paul K. Byrne). Alba Mons is a large shield volcano on Mars, the development of which appears to be responsible for tectonic landforms oriented radially and circumferentially to the shield. These landforms include those interpreted as extensional structures, such as normal faults and systems of graben. These structures, however, may also be associated with broader, regional stress field emanating from the volcano-tectonic Tharsis Rise, to the south of Alba Mons and centered on the equator. In this study, I report on structural and statistical analyses for normal faults proximal to Alba Mons (in a region spanning 95–120° W and 14–50° N) and test for systematic changes in fault properties with distance from the volcano and from Tharsis. A total of 11,767 faults were mapped for this study, and these faults were all measured for strike, length, and distance from Alba Mons and Tharsis. Additional properties were qualitatively and quantitatively analyzed within a subset of 62 faults, and model ages were obtained for two areas with crater statistics. Distinguishing traits for each structure population include fault properties such as strike, vertical displacement (i.e., throw) distribution profiles, displacement–length (Dmax/L) scaling, and spatial (i.e., cross-cutting) relationships with adjacent faults with different strikes. The only statistically significant correlation in these analyses was between study fault strike with distance from Tharsis. The lack of trends in the data suggest that one or more geological processes is obscuring the expected similarities in properties for these fault systems, such as volcanic resurfacing, mechanical restriction, or fault linkage. -
Small-Scale Post-Noachian Volcanism in the Martian Highlands? Insights from Terra Sirenum P
45th Lunar and Planetary Science Conference (2014) 1104.pdf SMALL-SCALE POST-NOACHIAN VOLCANISM IN THE MARTIAN HIGHLANDS? INSIGHTS FROM TERRA SIRENUM P. Brož1,2 and E. Hauber3 1Institute of Geophysics ASCR, v.v.i., Prague, Czech Republic, [email protected], 2Institute of Petrology and Structural Geology, Charles University, Czech Republic 3Institute of Planetary Research, DLR, Berlin, Germany, [email protected]. Introduction: Volcanism was globally widespread on Mars in the early history of the planet, but focused with ongoing evolution on two main provinces in Tharsis and Elysium [1]. On the other hand, evidence for post-Noachian volcanism in the Martian highlands is rare outside some isolated regions (e.g., Tyrrhena and Hadriaca Montes) and, to our knowledge, few, if any, such volcanic edifices have been reported so far. It is generally thought that highland volcanism oc- curred early in Mars` history and stopped not later than ~1 Ga after planet formation [2, 3]. Several candidate locations were suggested as volcanic centers in western Gorgonum and south-eastern Atlantis basins [4], where extensive accumulations of possible volcanic deposits exist, however, these volcanic centers were not con- firmed by later studies [5, 6]. Based on our observations we report several prom- ising edifices in Terra Sirenum that might change this view. The study area is situated south of Gorgonum Fig. 1: Themis-IR day-time (upper image), night-time (mid- basin and is about 150x50 km wide. It contains two dle), and interpretational map of the study area. The thermal spectacular cones with outgoing flow-like features and contrast between the two upper images suggests the presence 3 dome-like structures (Fig. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1). -
20040191780.Pdf
Second Conference on Early Mars (2004) 8013.pdf EROSIONAL HISTORY OF THE MARTIAN HIGHLANDS DURING THE NOACHIAN AND HESPERIAN. A. D. Howard1, J. M. Moore2, R. A. Craddock 3, and R. P. Irwin, III3, 1Department of Environmental Sciences, P.O. Box 400123, University of Virginia, Charlottesville, VA 22904-4123, [email protected]. 2NASA Ames Research Center, MS 245-3, Moffett Field, CA, 94035-100, 3Center for Earth and Planetary Studies, NASA Air and Space Museum, Washington, D.C. 20560. Introduction: The environment and erosional [12]). The statistics of degraded crater infilling and history of Mars early in its history has been a subject crater counts in the highlands are consistent with of debate since the first global imaging from Mariner degradation primarily by fluvial processes at a rate that 9. We present a synthesis that reflects our conclusion was proportional to the rate of new impacts [13], that fluvial erosion was widespread and intensive implying a gradual decline in fluvial activity. throughout the Noachian, extending into the Noachian environment. The environment that Hesperian. supported such intensive erosion during the Noachian Earliest Noachian: Frey and colleagues [1, 2] erosion is controversial [4], but the prevailing have identified numerous muted basins in the interpretation is that widespread, although episodic, highlands and lowlands constituting a population of precipitation (as snow or rain) occurred with associated highly degraded earliest Noachian impacts. They runoff and groundwater seepage. The abundance of interpret the basins to be buried by later deposits, with alluvial plains at the base of crater walls and the small much of the extant relief due to differential compaction number of breached crater rims suggests an arid [3]. -
A PRELIMINARY STUDY. MA De Pa
Lunar and Planetary Science XXXIII (2002) 1032.pdf DESCRIPTION, ORIGIN AND EVOLUTION OF A BASIN IN SIRENUM TERRAE, MARS, INCLUDING ATLANTIS CHAOS: A PRELIMINARY STUDY. M. A. de Pablo and M. Druet. Seminar on Planetary Sciences. Fac- ultad de Ciencias Geológicas. Universidad Complutense de Madrid. 28040 Madrid. Spain. [email protected]. INTRODUCTION The volcanic activity of the area is reflected Atlantis is the name proposed in this pre- in the presence of two volcanic constructs. The first liminary study for the basin where (at 35ºS, 177ºW) one, fissural in character, closes the basin by its NE the chaotic terrain Atlantis Chaos is located. We pro- edge. The second one, an ancient massive volcanic pose that this basin harbored a lake during one of the building, is located at the SSW. These two constructs ‘humid Mars’ epochs [1, 2]. The main evidences for have already been portrayed in some thematic maps this hypothesis are the circular morphology, the bor- [4]. dering fracture and ridge systems, the volcanic con- The center of Atlantis is occupied by a cha- structs, and a variety of erosive and sedimentary otic terrain that gives its name to the basin. The chaos landforms associated. Cross-cutting relationship of is extensively eroded, and partially covered by detritic these features permits the partial reconstruction of the sediments which cover the whole basin area, as well history of this basin, which could be one of the few as an impact crater located in it. These epiclastic lay- such basins not clearly housed in an impact crater. ers are probably related with the run-off areas that cover most of the North, South and East edges of the METHODOLOGY basin.