Cambridge University Press 978-1-107-03629-1 — the Atlas of Mars Kenneth S

Total Page:16

File Type:pdf, Size:1020Kb

Cambridge University Press 978-1-107-03629-1 — the Atlas of Mars Kenneth S Cambridge University Press 978-1-107-03629-1 — The Atlas of Mars Kenneth S. Coles, Kenneth L. Tanaka, Philip R. Christensen Index More Information Index Note: page numbers in italic indicates figures or tables Acheron Fossae 76, 76–77 cuesta 167, 169 Hadriacus Cavi 183 orbit 1 Acidalia Mensa 86, 87 Curiosity 9, 32, 62, 195 Hadriacus Palus 183, 184–185 surface gravity 1, 13 aeolian, See wind; dunes Cyane Catena 82 Hecates Tholus 102, 103 Mars 3 spacecraft 6, 201–202 Aeolis Dorsa 197 Hellas 30, 30, 53 Mars Atmosphere and Volatile Evolution (MAVEN) 9 Aeolis Mons, See Mount Sharp Dao Vallis 227 Hellas Montes 225 Mars Chart 1 Alba Mons 80, 81 datum (zero elevation) 2 Hellas Planitia 220, 220, 226, 227 Mars Exploration Rovers (MER), See Spirit, Opportunity albedo 4, 5,6,10, 56, 139 deformation 220, See also contraction, extension, faults, hematite 61, 130, 173 Mars Express 9 alluvial deposits 62, 195, 197, See also fluvial deposits grabens spherules 61,61 Mars Global Surveyor (MGS) 9 Amazonian Period, history of 50–51, 59 Deimos 62, 246, 246 Henry crater 135, 135 Mars Odyssey (MO) 9 Amenthes Planum 143, 143 deltas 174, 175, 195 Herschel crater 188, 189 Mars Orbiter Mission (MOM) 9 Apollinaris Mons 195, 195 dikes, igneous 82, 105, 155 Hesperia Planum 188–189 Mars Pathfinder 9, 31, 36, 60,60 Aram Chaos 130, 131 domical mound 135, 182, 195 Hesperian Period, history of 50, 188 Mars Reconnaissance Orbiter (MRO) 9 Ares Vallis 129, 130 Dorsa Argentea 239, 240 Huygens crater 183, 185 massif 182, 224 Argyre Planitia 213 dunes 56, 57,69–70, 71, 168, 185, hydrothermal activity 195 Mawrth Vallis 130, 130 Ariadnes Colles 231, 231, 232 213–214 MC, See Mars Chart Arsia Mons 159, 160 dust 18, 56 igneous rocks 19–21, 59, See also lava, volcanic rock Medusae Fossae Formation 147, 152, 153, 195, 197 Astapus Colles 99 impact basin 28–29, 30,52–53, 53, 139, 178, 179, 182, Meridiani Planum 32, 37,61 Athabasca Valles 147 Eberswalde crater 174, 175 212, 218, 219, 219, 239 Meroe Patera 139 Atlantis Chaos 201 elevation 2, 11, 12,26 infrared image, contrast with visible 1 meteorites, Mars 59, 59,61 aureole 109 highest 29 interior layered deposits 168 Milankovič crater 75, 75 aureole deposits 111 lowest 224 Isidis basin 139 minerals 19–21, 24, 59, 62, 185, 196, See also Elysium 30, 32, 53, 146 carbonate, clay, hematite, serpentine bars, fluvial 87, 87, 128, 129, 155 Elysium Fossae 147 Kasei Valles 122, 123 moons, See Deimos, Phobos basin and range topography 152, 153–154 Elysium Mons 147, 149 knobs 99, 142–143, 143, 226, 227, 231, Mount Sharp (Aeolis Mons) 62, 195, 196 eolian, See wind; dunes 231, 232 mud volcanoes 70, 70, 87, 89, 142–143, 143 calderas 46, 118, 118, 139, 191 Eridania Scopulus 231, 233 multi-ring crater 94, 95, 139, 178, 179, 182, 207, 209, canals 4–6 eskers 213, 215, 239 lahars 103–104, 103, 104, 146, 148, 149 212, 221, See also impact basin carbonate 184, 185 Eumenides Dorsum 111 lakes 62, 98, 130, 139, 189, 213, 220, 225, 231 catenae 81, 82, 167 ExoMars 9 landslides 70, 71, 110, 166 Naktong Vallis 134, 135 caves 159–161, 160–161 extension 152, 159, 208 lava coils 147, 147 Nectaris Fossae 167, 169 Cavi Angusti 239, 241 lava flow 82, 99, 99, 117, 147, 147, 166 Nepenthes Planum 142 Ceraunius Fossae 117 faults 155, 166, 168, 174, 208 lava tube 159, 160 Nereidum Montes 214 Channeled Scablands 54, 54–55 thrust 207 layered strata 135, 135, 178, 179, 182, 183, 189, 195, Niger Vallis 225, 227 chaotic terrain 124, 124, 130, 131, 155, 172, 174, floods 153 196, 202, 202, 213, 220 Nili Patera 139 201, 201 flow, liquified 75, 103–104, 142, 148 life, conditions for 59, 60, 161 Noachis Terra 219, 219 Charybdis Scopulus 179, 179 fluvial deposits 60, 62, 95, 104, 125, 125, 183, lithosphere 54, 118 Nochian Period, history of 50, 59, 219–221, 219 chasma 68, 238, 240 185, 239 lobate flows 82, 83, 93, 105, 143, 225 Noctis Labyrinthus 8 chemical conditions over time 59 fractures 76, 76, 105, 117, 169, 207, 208 Loire Valles 173, 175 northern lowlands 26, 28, 28, 52 Chryse Planitia 31, 35 frost, CO2, seasonal 209 Lowell crater 209 Claritas rise (informal term) 158, 159 Ls 1 obliquity 1, 69, 117, 159, 239 clay minerals 61, 130, 130 Galaxias Fossae 104, 105 Lucaya crater 183–184, 185 oceans 55, 98 coils, See lava coils Gale crater 62 Lyot crater 94,95 northern 69, 95 columnar joints 183, 184, 185 geologic map units 39, 42, 43, 247, 248 Olympica Fossae 117 cone-shaped landforms 142–143, See also mud volcanoes geologic timescale, Mars 49, 49, See also individual Ma’adim Vallis 54, 231 Olympus Mons 117, 118, 119 contraction 102, 159, 207 Periods magnetization, crustal 15, 52, 230 moat 118, 119 Coprates Chasma 166 glaciers 55, 93, 104, 105, 110, 117, 117, 159, 214, Maja Valles 125, 125 Olympus Rupes 111, 111, 119 Coprates rise 167 225–226, 225 Mamers Valles 93 Opportunity (MER-B) 9, 32, 37, 61, 173 coronae 76, 80, 159 global dichotomy 14, 26–27, 52, 54 Mangala Fossa 154 Orcus Patera 148, 149 craters Gordii Dorsum 111 Mangala Valles 153, 154 outflow channels 27, 47, 122, 123, 124, 125, 128, distribution 48 grabens 45, 54, 77,80–81, 143, 147, 159, 161, 164, Mariner crater 7, 201 129, 153 elongated 149 179, 179, 207, 208 Mariner spacecraft (4, 6, 7, 9) 6 features 52,52 Granicus Valles 148, 149 Mars Palos crater 189, 190 fresh 105 Greeley crater 221, 221 atmospheric pressure 1 Paraná Valles 173, 174, 175 highland forms 27 Green, Nathaniel 4 day, sidereal 1 Peneus Patera 219 wet flow 113, 113 grooves 245, 245 day, solar 1 periglacial features 69 crust 50, 166, 202 gullies 231, 231 differentiation of interior 52 Phlegra Montes 104, 105 crustal thickness 14, 52 Gusev crater 32, 36, 60, 61 magnetic field 15,52 Phobos 62, 62, 245, 245 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03629-1 — The Atlas of Mars Kenneth S. Coles, Kenneth L. Tanaka, Philip R. Christensen Index More Information Phoenix 9, 32, 37, 61, 62 serpentine 159 thermokarst 153 volcanoes 53, 103, 219 pingos 213, 215 shield volcano 80, 117, 146, 159, 159, 160, 194 Tooting crater 113, 113 aligned 202 pit chains, See catenae shoreline 94, 95, 225, 227 transition terrain 93–95 subglacial 240, 243 pits 89, 159–161, 160, 161 Sisyphi Montes 240, 243 trough, spiral 59, 69, 69, 238 pixel (picture element) 3 slope processes 59 tsunami 94–95,95 Warrego Valles 207, 207 planetocentric latitude 2 Sojourner, See Mars Pathfinder Tyrrhena Patera 191 water planetographic latitude 2 southern highlands 26–27, 27, 219 Tyrrhenus Mons 189 features created by 54, 139, 155, 189, 197 plate tectonics 15, 54, 159 spacecraft freezing point on Mars 55 polar plateau orbital 6–9 unconformity 213 frost 60 – – – CO2 ice 55, 69, 239, 241, 242 surface 31 32, 34,60 61 Utopia Planitia 31 hydrated minerals 22, 55, 59, 61 62, 61, 69, 130, – – fl layered deposits 59, 69, 69, 70, 71, 239, 240 spiders, See polar plateau: CO2 ice Uzboi Ladon Morava (out ow channel) 172, 212 159, 167, 195, 231 Planum Australe 30, 238, 239 Spirit (MER-A) 9, 32, 60, 195 ice 16, 55, 61, 62, 105, 105, 155 Planum Boreum 30–31, 33, 68, 69 streaks 58, 59, See also gullies, landslides Valles Marineris 30, 54, 164–165, 165 precipitation 62, 207 polygons 32, 37, 61, 87, 89, 220 Syria Planum 159, 159 valley networks 27, 81, 81, 134, 173, 175, slope streaks 55 Promethei Rupes 239, 239 Syrtis Major 139 207, 214 subsurface 164–165 Promethei Terra 225, 225 valleys 27, 47, 103, 117, 134–135, 135, 139, 143, 225, waterfalls 122, 123 Tempe Fossae 82 226, 227 wind, See also dunes Ravius Valles 81 Terby crater 182, 183 Vastitas Borealis 68 deposits 61, 70, 135, 135, 139, 189, 190 recurring slope lineae 55, 58, See also streaks Terra Sirenum 152, 153 Viking spacecraft (1, 2) dust devil (vortex) 56 Reull Vallis 225, 226 Tharsis 29, 31, 53, 158 lander 1 31, 35, 60 dust storms 56,56 rille 147, 159 Tharsis ridge belt 152, 207 lander 2 31, 35, 60 erosion 109, 110, 111, 111, 153, rock units 23, 23 Thaumasia highlands (informal term) 207 orbiter 6–9 190, 195 Thaumasia Planum 165 volcanic ash 195 wrinkle ridges 27, 44, 54, 169, 189, Schiaparelli crater 178, 179 Thaumasia plateau (informal term) 31, 53, volcanic channel 191 189, 231 Scylla Scopulus 179 164 volcanic rock 23, 54, 188, 219 sediment 87, 88, 98, 220 thermal inertia 17 volcanic uplift 76 yardangs 47, 109, 213 Index289 Index © in this web service Cambridge University Press www.cambridge.org.
Recommended publications
  • Prime Candidate Sites for the Astrobiological Exploration of Mars According to Its Hydrogeological Evolution
    PRIME CANDIDATE SITES FOR THE ASTROBIOLOGICAL EXPLORATION OF MARS ACCORDING TO ITS HYDROGEOLOGICAL EVOLUTION. Esther R. Uceda (1), Alberto G. Fairén (2), Javier Ruiz (3), James M. Dohm (4), Tayfun Öner (5), Dirk Schulze-Makuch (6), Miguel A. de Pablo (7), Jens Örmo (8), and Victor R. Baker (4,9). (1) Seminar on Planetary Sciences, Universidad Complutense de Madrid, (2) Centro de Biología Molecular, CSIC-Universidad Autónoma de Madrid, (3) Departamento de Geodinámica, Universidad Complutense de Madrid, (4) Department of Hydrology and Water Resources, University of Arizona, (5) TURKCELL Iletisim Hizmetleri A.S., Mesrutiyet Cad. No. 153, Tepebasi, Istanbul, (6) Department of Geological Sciences, University of Texas at El Paso, (7) Área de Geología, ESCET, Universidad Rey Juan Carlos, Madrid, (8) Centro de Astrobiología, CSIC-INTA, Madrid, (9) Lunar and Planetary Laboratory, University of Arizona ([email protected]) Different-sized bodies of water have been proposed to have occurred episodically in the lowlands of Mars throughout the planet’s history [1], largely related to major stages of development of Tharsis [1], [2]. These water bodies range from large oceans in the Noachian-Early Hesperian, to a minor sea in the Late Hesperian, and reduced lakes during the Amazonian. Assuming that the search for life is directly linked to the search for water, the possible biological history of Mars must have been largely influenced by the endogenetically-driven hydrogeological cycles. In consequence, terrestrial bi- ological and environmental analogues can now be placed in context with the model proposed, so contributing to draw a general approach for the history of life on Mars.
    [Show full text]
  • MODELED CATASTROPHIC OUTFLOW at ARAM CHAOS CHANNEL, MARS. DA Howard, Earth & Planetary Sciences, University of Tennessee
    40th Lunar and Planetary Science Conference (2009) 2179.pdf MODELED CATASTROPHIC OUTFLOW AT ARAM CHAOS CHANNEL, MARS. D. A. Howard, Earth & Planetary Sciences, University of Tennessee, 306 Earth & Planetary Sciences Bldg., 1412 Circle Drive, Knoxville, TN 37996, [email protected]. Introduction: The Aram Chaos channel located at tional algorithms relied on in this study were devel- 2.8°N, 18.5°W, is approximately 100 km long, ranges oped by Komar [1] and I have adapted them for use from 8 to 14 km wide, and has a maximum depth of with the Hydrologic Engineering Center’s River Anal- 2000 m (Figure 1). The confined innermost approx- ysis System (HEC-RAS) based on solution of the con- imately 67 km reach selected for this study includes tinuity and momentum equations [2]. HEC-RAS ad- the area of the channel where the trimline is evident justed for Mars’ gravitational acceleration was only for the stream head at the time of initial catastrophic applied to Mars channels once previously by Burr [3] flow and the outflow height at the channel’s mouth. at Athabasca Vallis and therefore provides the oppor- tunity to further develop the method here. The HEC- RAS model used for both Earth and Mars are identical except that the Mars version was adjusted for the gra- vitational acceleration and the specific weight of water differences between the two planets. Using the HEC- Ares Valles GeoRAS ArcGIS geospatial tool to generate the chan- nel geometry for input to the HEC-RAS flow model, Aram Chaos the hypothesized output potentially quantifies the hy- draulics of the channels more accurately than previous orders-of-magnitude estimates reported in the litera- ture.
    [Show full text]
  • Hip # 987-1088
    Hip No. Consigned by Tate Farms Hip No. 987 Jess Sizzlin SI 92 987 1997 Sorrel Mare Streakin La Jolla SI 99 {Streakin Six SI 104 Mr Jess Perry SI 113 { Bottom’s Up SI 82 Scoopie Fein SI 99 {Sinn Fein SI 98 Jess Sizzlin SI 92 Legs La Scoop SI 95 3654393 Easy Jet SI 100 {Jet Deck SI 100 Sizzlin Kim SI 86 Lena’s Bar TB SI 95 (1987) { Sun Spots {Double Bid SI 100 Winsum Miss SI 95 By MR JESS PERRY SI 113 (1992). Champion 2-year-old, $687,184 [G1]. Sire of 799 ROM, 107 stakes winners, $39,619,142, incl. champions APOL- LITICAL JESS SI 107 (world champion, $1,399,831, Los Alamitos Derby [G1]), ONE FAMOUS EAGLE SI 101 ($1,387,453 [G1]). Sire of the dams of 46 stakes winners, incl. BODACIOUS DASH SI 101 ($756,495 [G1]), JES A GAME SI 111 ($323,978 [G2]), TERRIFIC SYNERGY SI 92 ($288,066 [RG2]). 1st dam SIZZLIN KIM SI 86, by Easy Jet. Placed to 3. Dam of 7 foals, 6 to race, 3 winners, including– Jess Sizzlin SI 92 (f. by Mr Jess Perry). Stakes placed winner, below. Streakin Kim (f. by Streakin La Jolla). Unplaced. Dam of– Kims Corona SI 97 (g. by Corona Cocktail). 3 wins to 4, $38,666. 2nd dam SUN SPOTS, by Double Bid. Unraced. Dam of 13 starters, 7 ROM, incl.– SUN KISSES SI 102 (f. by Game Plan). 7 wins to 3, $68,935, Shebester Derby, Mystery Derby. Dam of Exquisite Expense SI 99 ($42,264 [G3]).
    [Show full text]
  • Workshop on the Martiannorthern Plains: Sedimentological,Periglacial, and Paleoclimaticevolution
    NASA-CR-194831 19940015909 WORKSHOP ON THE MARTIANNORTHERN PLAINS: SEDIMENTOLOGICAL,PERIGLACIAL, AND PALEOCLIMATICEVOLUTION MSATT ..V",,2' :o_ MarsSurfaceandAtmosphereThroughTime Lunar and PlanetaryInstitute 3600 Bay AreaBoulevard Houston TX 77058-1113 ' _ LPI/TR--93-04Technical, Part 1 Report Number 93-04, Part 1 L • DISPLAY06/6/2 94N20382"£ ISSUE5 PAGE2088 CATEGORY91 RPT£:NASA-CR-194831NAS 1.26:194831LPI-TR-93-O4-PT-ICNT£:NASW-4574 93/00/00 29 PAGES UNCLASSIFIEDDOCUMENT UTTL:Workshopon the MartianNorthernPlains:Sedimentological,Periglacial, and PaleoclimaticEvolution TLSP:AbstractsOnly AUTH:A/KARGEL,JEFFREYS.; B/MOORE,JEFFREY; C/PARKER,TIMOTHY PAA: A/(GeologicalSurvey,Flagstaff,AZ.); B/(NationalAeronauticsand Space Administration.GoddardSpaceFlightCenter,Greenbelt,MD.); C/(Jet PropulsionLab.,CaliforniaInst.of Tech.,Pasadena.) PAT:A/ed.; B/ed.; C/ed. CORP:Lunarand PlanetaryInst.,Houston,TX. SAP: Avail:CASIHC A03/MFAOI CIO: UNITEDSTATES Workshopheld in Fairbanks,AK, 12-14Aug.1993;sponsored by MSATTStudyGroupandAlaskaUniv. MAJS:/*GLACIERS/_MARSSURFACE/*PLAINS/*PLANETARYGEOLOGY/*SEDIMENTS MINS:/ HYDROLOGICALCYCLE/ICE/MARS CRATERS/MORPHOLOGY/STRATIGRAPHY ANN: Papersthathavebeen acceptedforpresentationat the Workshopon the MartianNorthernPlains:Sedimentological,Periglacial,and Paleoclimatic Evolution,on 12-14Aug. 1993in Fairbanks,Alaskaare included.Topics coveredinclude:hydrologicalconsequencesof pondedwateron Mars; morpho!ogical and morphometric studies of impact cratersin the Northern Plainsof Mars; a wet-geology and cold-climateMarsmodel:punctuation
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Crater Geometry and Ejecta Thickness of the Martian Impact Crater Tooting
    Meteoritics & Planetary Science 42, Nr 9, 1615–1625 (2007) Abstract available online at http://meteoritics.org Crater geometry and ejecta thickness of the Martian impact crater Tooting Peter J. MOUGINIS-MARK and Harold GARBEIL Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i, Honolulu, Hawai‘i 96822, USA (Received 25 October 2006; revision accepted 04 March 2007) Abstract–We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ~29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/ diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ~8120 km2 ejecta blanket. Because the pre-impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre-impact terrain) is ~380 km3 and the volume of materials above the pre-impact terrain is ~425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ~100 m of additional ejecta thickness being deposited down-range compared to the up-range value at the same radial distance from the rim crest.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • LAYERED SULFATE-BEARING TERRAINS on MARS: INSIGHTS from GALE CRATER and MERIDIANI PLANUM. K.E. Powell1,2, R.E. Arvidson3, and C.S
    Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6316.pdf LAYERED SULFATE-BEARING TERRAINS ON MARS: INSIGHTS FROM GALE CRATER AND MERIDIANI PLANUM. K.E. Powell1,2, R.E. Arvidson3, and C.S. Edwards1, 1Department of Physics & Astrono- my, Northern Arizona University, 2School of Earth & Space Exploration, Arizona State University, 3Department of Earth & Planetary Sciences, Washington University in St. Louis. Introduction: Sulfate species have been detected ronment, with episodes of diagenesis and weathering in late Noachian and Hesperian terrains on Mars lying to form a crystalline hematite lag deposit [4, 5]. The stratigraphically above clay minerals, which has been lag deposit masks the CRISM spectral signature of interpreted as documenting a shift from wetter to more sulfate in most locations. Sulfate minerals including arid environments on the surface. Sulfate detections kieserite and gypsum have been detected in impact are associated with layered deposits in numerous loca- crater walls and windswept regions [6]. The Oppor- tions including Gale Crater, Meridiani Planum, Vallis tunity rover explored southern Meridiani Planum Marineris, and Terra Sirenum, and Aram Chaos [1]. through a campaign of crater-hopping, using craters as These sulfates and clays been identified using their a natural drill to expose strata [6]. The deepest expo- diagnostic absorption features in visible and near- sures explored by Opportunity directly are ~10 meters infrared reflectance (VNIR) data acquired from Mars thick at Victoria Crater. Opportunity results indicate orbit. Additionally, two rover missions have explored that the top layers of Burns formation contain up to sites with massive sulfate deposits. The first, the MER 40% sulfate and included Mg, Ca, and Fe species.
    [Show full text]
  • The Geology of Aram Chaos. Timothy D
    Lunar and Planetary Science XXXIV (2003) 2046.pdf The Geology of Aram Chaos. Timothy D. Glotch1, and Philip R. Christensen1, 1Department of Geological Sciences, Arizona State University, Tempe, AZ 85287-6305 Introduction. The Thermal Emission Spectrometer wavelengths, THEMIS cannot detect the presence of (TES) instrument aboard the Mars Global Surveyor hematite. Three-band, decorrelation-stretched images (MGS) spacecraft located deposits of gray, crystalline can however, provide information about any hematite in Sinus Meridiani, Aram Chaos, and Valles additional mineralogical variability that may be Marineris [1-2]. Since the initial discovery, most present in the area. work has focused on the Sinus Meridiani site, Individual MOLA tracks were used to characterize primarily because of its large size and its probable the regional sloping and tilting occurring within the choice as a landing site for one of NASA’s 2003 crater. In addition to the individual tracks, a 100- Mars Excursion Rover (MER) rovers [3-5]. meter contour map created from the 128 ppd gridded Christensen et al., [1-2] provided five testable data set was overlayed onto a THEMIS daytime hypotheses regarding the formation of crystalline mosaic to understand regional topographic trends. hematite on Mars: 1) low-temperature precipitaion of Results and Discussion. The topmost stratigraphic Fe oxides/hydroxides from standing, oxygenated, Fe- unit in Aram Chaos covers roughly 20% of the rich water, followed by subsequent alteration to gray interior of Aram Chaos. It is unique among the units hematite, 2) low-temperature leaching of iron-bearing in Aram Chaos in that it has a relatively high thermal silicates and other materials leaving a Fe-rich residue inertia (550-700 J/m2Ks1/2), indicating a layer (laterite-style weathering) which is subsequently composed of sand and pebble-sized particles [6], or altered to gray hematite, 3) direct precipitation of alternatively, smaller particles cemented together.
    [Show full text]
  • Sinuous Ridges in Chukhung Crater, Tempe Terra, Mars: Implications for Fluvial, Glacial, and Glaciofluvial Activity
    This is a repository copy of Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166644/ Version: Published Version Article: Butcher, F.E.G. orcid.org/0000-0002-5392-7286, Balme, M.R., Conway, S.J. et al. (6 more authors) (2021) Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. Icarus, 357. 114131. ISSN 0019-1035 https://doi.org/10.1016/j.icarus.2020.114131 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Journal Pre-proof Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity Frances E.G. Butcher, Matthew R. Balme, Susan J. Conway, Colman Gallagher, Neil S. Arnold, Robert D. Storrar, Stephen R. Lewis, Axel Hagermann, Joel M. Davis PII: S0019-1035(20)30473-5 DOI: https://doi.org/10.1016/j.icarus.2020.114131 Reference: YICAR 114131 To appear in: Icarus Received date: 2 June 2020 Revised date: 19 August 2020 Accepted date: 28 September 2020 Please cite this article as: F.E.G.
    [Show full text]
  • Bio-Preservation Potential of Sediment in Eberswalde Crater, Mars
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Fall 2020 Bio-preservation Potential of Sediment in Eberswalde crater, Mars Cory Hughes Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Hughes, Cory, "Bio-preservation Potential of Sediment in Eberswalde crater, Mars" (2020). WWU Graduate School Collection. 992. https://cedar.wwu.edu/wwuet/992 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Bio-preservation Potential of Sediment in Eberswalde crater, Mars By Cory M. Hughes Accepted in Partial Completion of the Requirements for the Degree Master of Science ADVISORY COMMITTEE Dr. Melissa Rice, Chair Dr. Charles Barnhart Dr. Brady Foreman Dr. Allison Pfeiffer GRADUATE SCHOOL David L. Patrick, Dean Master’s Thesis In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files.
    [Show full text]
  • VIRVĖ SAVO KARTUVĖMS Kapitalistų Sandėriai Su Komunistais Vytautas Meškauskas
    T e oc. oi' 5 □ TL i r. s t r c ba š' 7243 So» Albanv fk., ' yi Chiccęp, III, ‘ 304.29 ; I0TEKA Į -----THE LITHUANIAN NATIONAL NEVVSPAPER -------- P.O. BOX 03206 > 6116 ST. CLAIR AVENUE > CLEVELAND, OHIO 44103 Vol.LXIV Balandis - April 19, 1979 Nr.16 *< TAUTINES MINTIES LIETUVIŲ LAIKRAŠTIS VIRVĖ SAVO KARTUVĖMS Kapitalistų sandėriai su komunistais Vytautas Meškauskas Turiu pasakyti, kad Leninas išpranašavo visą proce­ Konkrečiai kalbant, pereitų są. Leninas, kuris didesnę savo gyvenimo dalį praleido metų prekybos su sovietais Vakaruose, bet ne Rusijoje, kuris geriau pažinojo Vaka­ apyvarta siekė tik 2.8 biijonus rus kaip Rusiją, visados rašė ir sakė, jog Vakarų kapi­ dolerių, t.y. tik trečdalį pre­ talistai padarys viską, kad sustiprintų SSSR ekonomiją. kybos su ... Taiwanu. Biznie­ Jie konkuruos savo tarpe, kad mums parduoti gerybes rius tačiau vilioja ne tiek da­ pigiau ir greičiau, tik tam, kad sovietai jas pirktų ne iš bartinės, kiek ateities galimy­ bės. Šiaip ar taip, Sovietiją vieno, bet iš kito. Jis sakė: jie taip darys negalvodami sudaro rinką su 250 milijonų apie savo pačių ateitį. Vienu sunkiu momentu partijos gyventojų. posėdyje Maskvoje jis drąsino: "Draugai, nepasiduokit Nepaisant to, kad bolševi­ panikai, jei mums pasidarys labai sunku, mes duosime kai konfiskavo visus užsienie­ virvę buržuazijai, ir buržuazija pati pasikars." čių kapitalus, buvusius caro Tada, Kari Radek,... kuris buvo labai sąmojingas, Rusijoje - vien Singerio kom­ paklausė: Vladimire Iličiau, bet iš kur mes paimsime tiek panija prieš karą ten turėjo daug virvės buržuazijos pasikorimui?” Leninas nerūpes­ 27,000 tarnautojų. Vakarų tingai atsakė: "Jie mus ja aprūpins." kapitalistai padėjo sovietų (Iš Aleksandro Solženicyno 1975 m.
    [Show full text]