20040191780.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distribution and Formation of Chlorides and Phyllosilicates in Terra Sirenum, Mars Timothy D
GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L16202, doi:10.1029/2010GL044557, 2010 Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars Timothy D. Glotch,1 Joshua L. Bandfield,2 Livio L. Tornabene,3 Heidi B. Jensen,1 and Frank P. Seelos4 Received 1 July 2010; accepted 15 July 2010; published 24 August 2010. [1] The Terra Sirenum region of Mars, located in the [3] This study focuses on the geology of Terra Sirenum, Noachian southern highlands, is mineralogically diverse, which contains the largest known co‐occurrence of chlor- providing unique insight into ancient aqueous processes. ides and phyllosilicates on Mars. Based on data from the Analyses of remote sensing data over the region indicate Compact Reconnaissance Imaging Spectrometer for Mars thepresenceofbothFe‐ or Mg‐rich phyllosilicates and (CRISM), phyllosilicates in this region are dominated by a spectrally unique deposit interpreted to be rich in Fe‐ or Mg‐rich smectites and are commonly found on chloride salts. The stratigraphic relationships indicate Noachian plains, and occasionally on crater floors [Murchie that the phyllosilicates are part of the ancient highland et al., 2009; Wray et al., 2009], as well as channel‐fill crust and that the salts were deposited at a later time. In materials. The presence of smectites and a variety of other some instances, there is clear morphological evidence that aqueous minerals indicates that the Noachian crust, at least salts were mobilized and deposited by near‐surface waters. in places, was altered by liquid water [Wray et al., 2009]. Citation: Glotch, T. D., J. L. Bandfield, L. L. Tornabene, H. B. -
Geomorphological Evidence of Local Presence of Ice-Rich Deposits in Terra Cimmeria, Mars
Mars Workshop on Amazonian Climate 2018 (LPI Contrib. No. 2086) 4010.pdf Geomorphological Evidence of Local Presence of Ice-Rich Deposits in Terra Cimmeria, Mars. S. Adeli1, E. Hauber1, G. Michael2, P. Fawdon3, I. B. Smith4, and R. Jaumann1,2. 1Deutsches Zentrum fuer Luft- und Raum- fahrt (DLR), Institute für Planetenforschung, Rutherfordstr. 2, 12489 Berlin, Germany ([email protected]). 2Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12249 Berlin, Germany. 3Birkbeck, University of London, Malet St, London WC1E 7HX. 4Planetary Science Institute, 1546 Cole Blvd Ste 120, Lake- wood, Colorado, USA. Introduction: Global circulation models suggest a) that obliquity oscillations caused the mobilization of ice from polar regions and its re-deposition at lower latitudes [1, 2]. They show that during high obliquity periods, ice can be deposited almost anywhere in the mid-latitudes and during low obliquity ice is transport- ed back to the poles [2-4]. Although the obliquity vari- Tarq b ations are not predictable for periods more than 20 Ma Crater ago [6], it is likely that the surface of Mars, during Amazonian, has repeatedly undergone such climate changes leading to deposition and sublima- tion/evaporation of ice-rich material [e.g., 3, 6, 7]. Evidence of shallow ground ice has been widely ob- served in the north and south mid-latitude regions of Mars such as: geomorphological evidence of debris- covered glaciers [e.g., 8, 9] and SHARAD observation [e.g., 10] of ~70 m thick ice deposits. This study de- scribes well-preserved glacial-like deposits in Terra Cimmeria, which are defined here as valley fill depos- b) c) its (VFD) (Fig. -
Terra Sirenum, Mars
51st Lunar and Planetary Science Conference (2020) 2226.pdf POTENTIAL CORRELATION BETWEEN COMPOSITION AND CRUSTAL MAGNETISM IN TERRA SIRENUM, MARS. J. Buz,1 A. Alhantoobi2, J.G. O’Rourke3, C.S. Edwards1, B. Langlais4,1Northern Arizona Uni- versity, Department of Astronomy and Planetary Science, Flagstaff, AZ 86001 ([email protected]), 2Khalifa Uni- versity, Abu Dhabi, United Arab Emirates, 3Arizona State University, School of Earth and Space Exploration, Tempe, AZ, 4Lab Planetologie Geodynamique, Nantes, France Introduction: Mars has no dynamo and thus no made on the Martian surface (e.g.,[7]), and the compo- global magnetic field today. However, scientists learned sition of some (albeit few) Martian meteorites [8]. that a significant magnetic field once existed, at least lo- While the basic existence of magnetic anomalies has cally, from the remanent magnetization in Martian me- been explained in theory through modeling and litho- teorite ALH84001 [1]. Evidence for an ancient global logic observations, the relationship between the mag- magnetic field came when Mars Global Surveyor netization and the composition on the surface of Mars (MGS) discovered large regions of magnetized crust in has not previously been explored. This study compares Magnetic field experiment/Electron Reflectometer various compositional datasets for the Martian crust in- (Mag/ER) data [2]. An internally generated magnetic cluding elemental abundance, mineralogical indicators, field, which is now extinct, is required to explain how a and thermophysical properties with magnetic field steady ambient field persisted for a few hundred million measurements to quantify any potential relationships. years to produce the observed large-scale distribution of Methods and datasets: The Langlais et al. -
Geological Map of Terra Cimmeria, Mars
51st Lunar and Planetary Science Conference (2020) 2766.pdf GEOLOGIC MAP OF TERRA CIMMERIA, MARS. A. G. Siwabessy1,2, C. M. Rodrigue1, and R. C. Ander- son2, 1Department of Geography, California State University-Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840 ([email protected]), 2Geophysics and Planetary Geosciences Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 Introduction: The Tharsis Rise dominates the ping area, trending into Hesperia Planum. Further to tectonic geomorphology of the western hemisphere of the northwest, a third type of basin – by far the least Mars. Anderson et al. [1] challenged the premise of mature of the three observed types – is observed. They [2], a prior study that presupposed that Tharsis uplift- are sometimes clearly associated with antecedent im- ed in a single event centered near Pavonis Mons. [1] pact structures. As they are occasionally connected by found instead that compressional and extensional fea- cascading sequences of downslope-incising valleys, tures across the western hemisphere are controlled by fluvial erosion may have occurred coevally with the five primary tectonic centers, of which the most an- regional uplift at [6]'s Hadriarca-Tyrrhena center. cient lies near the Claritas Rise. More recently, [3,4] Other than globally-distributed wrinkle ridge sets [8], studied putative basin and range topography on the explicit tectonic signatures associating Terra Cimme- southwest margin of the Tharsis Rise. [4] correlated ria to regional forcers (such as Tharsis) are not ob- the orientation of these features to predicted extension served. However, this does not necessarily limit forc- modeled by [5], but only if their model is rotated by ing effects of far-field activity – particularly from 12o and then re-centered not on the predicted regime Tharsis – from controlling the basin’s subsurface ge- by [2] but on the Stage 1 Claritas center of [1]. -
Small-Scale Post-Noachian Volcanism in the Martian Highlands? Insights from Terra Sirenum P
45th Lunar and Planetary Science Conference (2014) 1104.pdf SMALL-SCALE POST-NOACHIAN VOLCANISM IN THE MARTIAN HIGHLANDS? INSIGHTS FROM TERRA SIRENUM P. Brož1,2 and E. Hauber3 1Institute of Geophysics ASCR, v.v.i., Prague, Czech Republic, [email protected], 2Institute of Petrology and Structural Geology, Charles University, Czech Republic 3Institute of Planetary Research, DLR, Berlin, Germany, [email protected]. Introduction: Volcanism was globally widespread on Mars in the early history of the planet, but focused with ongoing evolution on two main provinces in Tharsis and Elysium [1]. On the other hand, evidence for post-Noachian volcanism in the Martian highlands is rare outside some isolated regions (e.g., Tyrrhena and Hadriaca Montes) and, to our knowledge, few, if any, such volcanic edifices have been reported so far. It is generally thought that highland volcanism oc- curred early in Mars` history and stopped not later than ~1 Ga after planet formation [2, 3]. Several candidate locations were suggested as volcanic centers in western Gorgonum and south-eastern Atlantis basins [4], where extensive accumulations of possible volcanic deposits exist, however, these volcanic centers were not con- firmed by later studies [5, 6]. Based on our observations we report several prom- ising edifices in Terra Sirenum that might change this view. The study area is situated south of Gorgonum Fig. 1: Themis-IR day-time (upper image), night-time (mid- basin and is about 150x50 km wide. It contains two dle), and interpretational map of the study area. The thermal spectacular cones with outgoing flow-like features and contrast between the two upper images suggests the presence 3 dome-like structures (Fig. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1). -
Journal of Geophysical Research
Journal Code Article ID Dispatch: 05.12.18 CE: MAS Revised proofs are sent only in the case of J G R E 21053No.ofPages: 21 ME: extensive corrections upon request 1 2 3 4 5 Journal of Geophysical Research: Planets 6 7 RESEARCH ARTICLE Evolution of Escarpments, Pediments, and Plains 8 9 10.1029/2018JE005681 in the Noachian Highlands of Mars 10 11 1 1 Key Points: Jon C. Cawley and Rossman P. Irwin III Q212 Q3 • Debris-mantled escarpments, Q5 13 regolith pediments, sloping 1Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA aggradational surfaces, and 14 depositional plains formed on 15 Martian cratered terrain 16 • Noachian arid-zone geomorphology Abstract Extensive Noachian-aged intercrater planation surfaces comprise much of the southern included aqueous weathering of highlands of Mars. We mapped aggradational and stable to degradational surfaces in three study areas 17 basalt to fines, low-intensity fluvial with diverse relief elements and ages: the high and rugged relief of Libya Montes, the well-preserved 18 erosion, and deposition in basins 19 intercrater plains of Noachis Terra, and the rolling relief with more drainage development in Terra Cimmeria. • These processes smoothed and 20 sealed Noachian ejecta blankets, Here we describe four major geomorphic features that formed in these regions: debris-mantled escarpments, 21 which required little geomorphic regolith pediments, sloping aggradational surfaces, and depositional plains. We interpret that with tectonic work to form stable pediments 22 stability and an arid paleoclimate, these features supported slow pedogenesis, sediment transport, and 23 diagenesis over hundreds of millions of years during heavy impact bombardment. -
Geologic History of Water on Mars
GEOLOGIC HISTORY OF WATER ON MARS: REGIONAL EVOLUTION OF AQUEOUS AND GLACIAL PROCESSES IN THE SOUTHERN HIGHLANDS, THROUGH TIME Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat) vorgelegt als kumulative Arbeit am Fachbereich Geowissenschaften der Freien Universität Berlin von SOLMAZ ADELI Berlin, 2016 Erstgutachter: Prof. Dr. Ralf Jaumann Freie Universität Berlin Institut für Geologische Wissenschaften Arbeitsbereich Planetologie sowie Deutsches Zentrum für Luft- und Raumfahrt Institut für Planetenforschung, Abteilung Planetengeologie Zweitgutachter: Prof. Dr. Michael Schneider Freie Universität Berlin Institut für Geologische Wissenschaften Arbeitsbereich Hydrogeologie Tag der Disputation: 22 July 2016 i To my mother and my grandmother, the two strong women who inspired me the most, to follow my dreams, and to never give up. تقديم به مادر و مادر بزرگم به دو زن قوى كه الهام دهنده ى من بودند تا آرزو هايم را دنبال كنم و هرگز تسليم نشوم ii iii EIDESSTATTLICHE ERKLAERUNG Hiermit versichere ich, die vorliegende Arbeit selbstständig angefertigt und keine anderen als die angeführten Quellen und Hilfsmittel benutzt zu haben. Solmaz Adeli Berlin, 2016 iv v Acknowledgement First of all, I would like to thank my supervisor Prof. Dr. Ralf Jaumann for giving me the opportunity of working at the Deutsches Zentrum für Luft- und Raumfahrt (DLR). I wish to thank him particularly for standing behind me in all the ups and downs. Herr Jaumann, I am so deeply grateful for your support and your trust. Danke schön! This work would have not been achieved without the support of Ernst Hauber, my second supervisor. I have also been most fortunate to be able to work with him, and I have greatly appreciated the countless hours of discussions, all his advice regarding scientific issues, his feedbacks on my manuscripts, and everything. -
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014 Edited by: James A. Skinner, Jr. U. S. Geological Survey, Flagstaff, AZ David Williams Arizona State University, Tempe, AZ NOTE: Abstracts in this volume can be cited using the following format: Graupner, M. and Hansen, V.L., 2014, Structural and Geologic Mapping of Tellus Region, Venus, in Skinner, J. A., Jr. and Williams, D. A., eds., Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, June 23-25, 2014. SCHEDULE OF EVENTS Monday, June 23– Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up – 2255 N. Gemini Drive (USGS) 9:00 Welcome/Logistics 9:10 NASA HQ and Program Remarks (M. Kelley) 9:30 USGS Map Coordinator Remarks (J. Skinner) 9:45 GIS and Web Updates (C. Fortezzo) 10:00 RPIF Updates (J. Hagerty) 10:15 BREAK / POSTERS 10:40 Venus Irnini Mons (D. Buczkowski) 11:00 Moon Lunar South Pole (S. Mest) 11:20 Moon Copernicus Quad (J. Hagerty) 11:40 Vesta Iterative Geologic Mapping (A. Yingst) 12:00 pm LUNCH / POSTERS 1:30 Vesta Proposed Time-Stratigraphy (D. Williams) 1:50 Mars Global Geology (J. Skinner) 2:10 Mars Terra Sirenum (R. Anderson) 2:30 Mars Arsia/Pavonis Montes (B. Garry) 2:50 Mars Valles Marineris (C. Fortezzo) 3:10 BREAK / POSTERS 3:30 Mars Candor Chasma (C. Okubo) 3:50 Mars Hrad Vallis (P. Mouginis-Mark) 4:10 Mars S. Margaritifer Terra (J. Grant) 4:30 Mars Ladon basin (C. Weitz) 4:50 DISCUSSION / POSTERS ~5:15 ADJOURN Tuesday, June 24 - Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up/Logistics 9:00 Mars Upper Dao and Niger Valles (S. -
MARS ORBITAL DATA — METHODS and INTERPRETATION 6:30 P.M
Lunar and Planetary Science XXXIX (2008) sess614.pdf Thursday, March 13, 2008 POSTER SESSION II: MARS ORBITAL DATA — METHODS AND INTERPRETATION 6:30 p.m. Fitness Center Farrand W. H. Johnson J. R. Schmidt M. E. Bell J. F. III VNIR Spectral Differences on Natural and Brushed/Wind-abraded Surfaces on Home Plate, Gusev Crater, Mars: Spirit Pancam and HiRISE Color Observations [#1774] Color differences between the eastern and western rims of Home Plate are examined using Spirit Pancam and HiRISE color observations. Differences between near-field and remote observations are considered. Rice M. S. Bell J. F. III Wang A. Cloutis E. A. Vis-NIR Spectral Characterization of Si-rich Deposits at Gusev Crater, Mars [#2138] The Spirit rover has discovered high concentrations of silica at Gusev Crater, and a distinct spectral feature near 1000 nm appears to be diagnostic of these materials. We hypothesize that the presence of H2O or OH may be responsible for this feature. Combe J.-Ph. McCord T. B. Mars-Express/HRSC Spectral Data of MER Landing Sites Analyzed by a Multiple-Endmember Linear Spectral Linear Unmixing Model (MELSUM) [#2381] HRSC multispectral data are analyzed for mapping the main surface spectral components and photometric properties of Mars. The unique geometry of observation of this dataset is investigated. Results will be compared to field observations from the MERs. Hauber E. Gwinner K. Gendrin A. Fueten F. Stesky R. Pelkey S. Reiss D. Zegers T. E. MacKinnon P. Jaumann R. Bibring J.-P. Neukum G. Hebes Chasma, Mars: Slopes and Stratigraphy of Interior Layered Deposits [#2375] We present new data from HRSC and CTX on the topography, stratigraphy, and structure of Interior Layered Deposits in Hebes Chasma, Valles Marineris, Mars. -
Compressional Tectonism on Mars
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. E9, PAGES 17,049-17,060, SEPTEMBER 25, 1993 Compressional Tectonism on Mars THOMAS R. WATTERS Centerfor Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington,D.C. Contractional features on Mars were identified on the basis of photogeologic evidence of crustal shortening and comparison with terrestrial and planetary analogs. Three classes of structures, wrinkle ridges. lobate scarps and high-relief ridges. were mapped and their spatial and temporal distribution assessed. Wrinkle ridges account for over 80% of the total cumulative length of the mapped contractional features and occur in smooth plains material interpreted to be volcanic in origin. Lobate scarps, not wrinkle ridges, are the dominant contractional feature in Martian highland material. The pattern of contractional features in the western hemisphere reflects the hemispheric-scale iduence of the Tharsis rise. Although no comparable hemispheric- scale pattern is observed in the eastern hemisphere, prominent regional-scale patterns exist, the most notable of which occurs in Hesperia Planum. Contractional features that locally parallel the trend of the cmstal dichotomy boundary in the eastern hemisphere suggest the influence of stresses related to the evolution of the dichotomy. Compressional deformation apparently peaked during the Early Hesperia, if the tectonic features are roughly the same age as the units in which they occur. This peak in compressional deformation corresponds with Early Hesperian volcanic resurfacing of a large portion of the planet. Thermal history models for Mars, based on an initially hot planet, are inconsistent with estimates of the timing of peak compressional tectonism and the rate of volcanism. -
Ross Irwin's CV
Rossman Philip Irwin III Smithsonian Institution, National Air and Space Museum Center for Earth and Planetary Studies, MRC 315, Independence Ave. at 6th St. SW, Washington DC 20013 (p) 202.633.3632 (f) 202.633.4225 (e) [email protected] https://airandspace.si.edu/people/staff/ross-irwin EMPLOYMENT 2012–pres. & Smithsonian Institution, National Air and Space Museum, Washington, DC 2001-2010 CEPS Chair: 2019–pres. Geologist: Research on Martian and terrestrial desert geomorphology and paleohydrology, 2012–pres. Geologist: Pre- and post-doctoral research, 2001–2010. 2010–2012 Planetary Science Institute, Tucson, AZ Research Scientist: Fluvial geomorphology of early Mars and Titan, planetary geologic mapping, landing site characterization, and field studies of Mars-analog landforms. Visiting Scientist: NASA Goddard Space Flight Center, Greenbelt, MD. 1999-2001 Science Applications International Corporation, McLean, VA GIS Analyst: Web design, technical editing, and GIS support for VMap1 Coproducer Working Group (National Imagery and Mapping Agency client). University of Virginia Department of Environmental Sciences, Charlottesville, VA 2001 Teaching Assistant: Orphaned Lands Assessment (abandoned mineral mines and quarries) 1997-1999 Teaching Assistant: GIS, Physical Geology, Rocks and Minerals, Structural Geology Labs 1998-1999 Research Assistant: Viking spacecraft image processing and photomosaics 1997-1998 Southern Environmental Law Center, Charlottesville, VA Intern: research on non-point source pollution, environmental effects of suburban