Transverse Aeolian Ridges on Mars: First Results from Hirise Images
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distribution and Formation of Chlorides and Phyllosilicates in Terra Sirenum, Mars Timothy D
GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L16202, doi:10.1029/2010GL044557, 2010 Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars Timothy D. Glotch,1 Joshua L. Bandfield,2 Livio L. Tornabene,3 Heidi B. Jensen,1 and Frank P. Seelos4 Received 1 July 2010; accepted 15 July 2010; published 24 August 2010. [1] The Terra Sirenum region of Mars, located in the [3] This study focuses on the geology of Terra Sirenum, Noachian southern highlands, is mineralogically diverse, which contains the largest known co‐occurrence of chlor- providing unique insight into ancient aqueous processes. ides and phyllosilicates on Mars. Based on data from the Analyses of remote sensing data over the region indicate Compact Reconnaissance Imaging Spectrometer for Mars thepresenceofbothFe‐ or Mg‐rich phyllosilicates and (CRISM), phyllosilicates in this region are dominated by a spectrally unique deposit interpreted to be rich in Fe‐ or Mg‐rich smectites and are commonly found on chloride salts. The stratigraphic relationships indicate Noachian plains, and occasionally on crater floors [Murchie that the phyllosilicates are part of the ancient highland et al., 2009; Wray et al., 2009], as well as channel‐fill crust and that the salts were deposited at a later time. In materials. The presence of smectites and a variety of other some instances, there is clear morphological evidence that aqueous minerals indicates that the Noachian crust, at least salts were mobilized and deposited by near‐surface waters. in places, was altered by liquid water [Wray et al., 2009]. Citation: Glotch, T. D., J. L. Bandfield, L. L. Tornabene, H. B. -
Terra Sirenum, Mars
51st Lunar and Planetary Science Conference (2020) 2226.pdf POTENTIAL CORRELATION BETWEEN COMPOSITION AND CRUSTAL MAGNETISM IN TERRA SIRENUM, MARS. J. Buz,1 A. Alhantoobi2, J.G. O’Rourke3, C.S. Edwards1, B. Langlais4,1Northern Arizona Uni- versity, Department of Astronomy and Planetary Science, Flagstaff, AZ 86001 ([email protected]), 2Khalifa Uni- versity, Abu Dhabi, United Arab Emirates, 3Arizona State University, School of Earth and Space Exploration, Tempe, AZ, 4Lab Planetologie Geodynamique, Nantes, France Introduction: Mars has no dynamo and thus no made on the Martian surface (e.g.,[7]), and the compo- global magnetic field today. However, scientists learned sition of some (albeit few) Martian meteorites [8]. that a significant magnetic field once existed, at least lo- While the basic existence of magnetic anomalies has cally, from the remanent magnetization in Martian me- been explained in theory through modeling and litho- teorite ALH84001 [1]. Evidence for an ancient global logic observations, the relationship between the mag- magnetic field came when Mars Global Surveyor netization and the composition on the surface of Mars (MGS) discovered large regions of magnetized crust in has not previously been explored. This study compares Magnetic field experiment/Electron Reflectometer various compositional datasets for the Martian crust in- (Mag/ER) data [2]. An internally generated magnetic cluding elemental abundance, mineralogical indicators, field, which is now extinct, is required to explain how a and thermophysical properties with magnetic field steady ambient field persisted for a few hundred million measurements to quantify any potential relationships. years to produce the observed large-scale distribution of Methods and datasets: The Langlais et al. -
Aeolian Processes and Landforms
Aeolian Processes and Landforms Ms. Deithra L. Archie, New Mexico State University Abstract I will present an overview of Aeolian processes and landforms on Mars. The overview will consist of two components. Component one is an overview of Aeolian processes and landforms on Earth and Mars, where the two planetary bodies are shown in Figures 1a and 1b respectively The second part of this paper will consist of image comparisons using satellite and MOC (Mars Orbiter Camera) images. Figure 1a Figure 1b Introduction Understanding the aeolian activity on the planet Mars and other planets begins with the study and knowledge of similar processes on Earth. Therefore, I will discuss the following: wind, particle entrainment and landforms found in the aeolian environment. This discussion will lead into my later discussion of the Martian sand seas and sand dunes. See Table 1 for a glossary of the terms used throughout this paper. In aeolian processes, wind transports and deposits particles of sediment. Aeolian features form in areas where wind is the primary source of erosion. The particles deposited are of sand, silt and clay size (see Table 2). The particles are entrained in by one of four processes. Creep is when a particle rolls or slides across the surface. Lift is when a particle rises off the surface due to the Bernoulli effect, the same mechanism which causes aircraft to rise. If the airflow is turbulent, larger particles are trajected by a process known as saltation. Finally, impact transport occurs which one particle strikes another causing the second particle to move. Erosional Landforms Wind eroded landforms are rarely preserved on the surface of the Earth except in arid regions. -
Small-Scale Post-Noachian Volcanism in the Martian Highlands? Insights from Terra Sirenum P
45th Lunar and Planetary Science Conference (2014) 1104.pdf SMALL-SCALE POST-NOACHIAN VOLCANISM IN THE MARTIAN HIGHLANDS? INSIGHTS FROM TERRA SIRENUM P. Brož1,2 and E. Hauber3 1Institute of Geophysics ASCR, v.v.i., Prague, Czech Republic, [email protected], 2Institute of Petrology and Structural Geology, Charles University, Czech Republic 3Institute of Planetary Research, DLR, Berlin, Germany, [email protected]. Introduction: Volcanism was globally widespread on Mars in the early history of the planet, but focused with ongoing evolution on two main provinces in Tharsis and Elysium [1]. On the other hand, evidence for post-Noachian volcanism in the Martian highlands is rare outside some isolated regions (e.g., Tyrrhena and Hadriaca Montes) and, to our knowledge, few, if any, such volcanic edifices have been reported so far. It is generally thought that highland volcanism oc- curred early in Mars` history and stopped not later than ~1 Ga after planet formation [2, 3]. Several candidate locations were suggested as volcanic centers in western Gorgonum and south-eastern Atlantis basins [4], where extensive accumulations of possible volcanic deposits exist, however, these volcanic centers were not con- firmed by later studies [5, 6]. Based on our observations we report several prom- ising edifices in Terra Sirenum that might change this view. The study area is situated south of Gorgonum Fig. 1: Themis-IR day-time (upper image), night-time (mid- basin and is about 150x50 km wide. It contains two dle), and interpretational map of the study area. The thermal spectacular cones with outgoing flow-like features and contrast between the two upper images suggests the presence 3 dome-like structures (Fig. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1). -
20040191780.Pdf
Second Conference on Early Mars (2004) 8013.pdf EROSIONAL HISTORY OF THE MARTIAN HIGHLANDS DURING THE NOACHIAN AND HESPERIAN. A. D. Howard1, J. M. Moore2, R. A. Craddock 3, and R. P. Irwin, III3, 1Department of Environmental Sciences, P.O. Box 400123, University of Virginia, Charlottesville, VA 22904-4123, [email protected]. 2NASA Ames Research Center, MS 245-3, Moffett Field, CA, 94035-100, 3Center for Earth and Planetary Studies, NASA Air and Space Museum, Washington, D.C. 20560. Introduction: The environment and erosional [12]). The statistics of degraded crater infilling and history of Mars early in its history has been a subject crater counts in the highlands are consistent with of debate since the first global imaging from Mariner degradation primarily by fluvial processes at a rate that 9. We present a synthesis that reflects our conclusion was proportional to the rate of new impacts [13], that fluvial erosion was widespread and intensive implying a gradual decline in fluvial activity. throughout the Noachian, extending into the Noachian environment. The environment that Hesperian. supported such intensive erosion during the Noachian Earliest Noachian: Frey and colleagues [1, 2] erosion is controversial [4], but the prevailing have identified numerous muted basins in the interpretation is that widespread, although episodic, highlands and lowlands constituting a population of precipitation (as snow or rain) occurred with associated highly degraded earliest Noachian impacts. They runoff and groundwater seepage. The abundance of interpret the basins to be buried by later deposits, with alluvial plains at the base of crater walls and the small much of the extant relief due to differential compaction number of breached crater rims suggests an arid [3]. -
Geologic History of Water on Mars
GEOLOGIC HISTORY OF WATER ON MARS: REGIONAL EVOLUTION OF AQUEOUS AND GLACIAL PROCESSES IN THE SOUTHERN HIGHLANDS, THROUGH TIME Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat) vorgelegt als kumulative Arbeit am Fachbereich Geowissenschaften der Freien Universität Berlin von SOLMAZ ADELI Berlin, 2016 Erstgutachter: Prof. Dr. Ralf Jaumann Freie Universität Berlin Institut für Geologische Wissenschaften Arbeitsbereich Planetologie sowie Deutsches Zentrum für Luft- und Raumfahrt Institut für Planetenforschung, Abteilung Planetengeologie Zweitgutachter: Prof. Dr. Michael Schneider Freie Universität Berlin Institut für Geologische Wissenschaften Arbeitsbereich Hydrogeologie Tag der Disputation: 22 July 2016 i To my mother and my grandmother, the two strong women who inspired me the most, to follow my dreams, and to never give up. تقديم به مادر و مادر بزرگم به دو زن قوى كه الهام دهنده ى من بودند تا آرزو هايم را دنبال كنم و هرگز تسليم نشوم ii iii EIDESSTATTLICHE ERKLAERUNG Hiermit versichere ich, die vorliegende Arbeit selbstständig angefertigt und keine anderen als die angeführten Quellen und Hilfsmittel benutzt zu haben. Solmaz Adeli Berlin, 2016 iv v Acknowledgement First of all, I would like to thank my supervisor Prof. Dr. Ralf Jaumann for giving me the opportunity of working at the Deutsches Zentrum für Luft- und Raumfahrt (DLR). I wish to thank him particularly for standing behind me in all the ups and downs. Herr Jaumann, I am so deeply grateful for your support and your trust. Danke schön! This work would have not been achieved without the support of Ernst Hauber, my second supervisor. I have also been most fortunate to be able to work with him, and I have greatly appreciated the countless hours of discussions, all his advice regarding scientific issues, his feedbacks on my manuscripts, and everything. -
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014 Edited by: James A. Skinner, Jr. U. S. Geological Survey, Flagstaff, AZ David Williams Arizona State University, Tempe, AZ NOTE: Abstracts in this volume can be cited using the following format: Graupner, M. and Hansen, V.L., 2014, Structural and Geologic Mapping of Tellus Region, Venus, in Skinner, J. A., Jr. and Williams, D. A., eds., Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, June 23-25, 2014. SCHEDULE OF EVENTS Monday, June 23– Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up – 2255 N. Gemini Drive (USGS) 9:00 Welcome/Logistics 9:10 NASA HQ and Program Remarks (M. Kelley) 9:30 USGS Map Coordinator Remarks (J. Skinner) 9:45 GIS and Web Updates (C. Fortezzo) 10:00 RPIF Updates (J. Hagerty) 10:15 BREAK / POSTERS 10:40 Venus Irnini Mons (D. Buczkowski) 11:00 Moon Lunar South Pole (S. Mest) 11:20 Moon Copernicus Quad (J. Hagerty) 11:40 Vesta Iterative Geologic Mapping (A. Yingst) 12:00 pm LUNCH / POSTERS 1:30 Vesta Proposed Time-Stratigraphy (D. Williams) 1:50 Mars Global Geology (J. Skinner) 2:10 Mars Terra Sirenum (R. Anderson) 2:30 Mars Arsia/Pavonis Montes (B. Garry) 2:50 Mars Valles Marineris (C. Fortezzo) 3:10 BREAK / POSTERS 3:30 Mars Candor Chasma (C. Okubo) 3:50 Mars Hrad Vallis (P. Mouginis-Mark) 4:10 Mars S. Margaritifer Terra (J. Grant) 4:30 Mars Ladon basin (C. Weitz) 4:50 DISCUSSION / POSTERS ~5:15 ADJOURN Tuesday, June 24 - Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up/Logistics 9:00 Mars Upper Dao and Niger Valles (S. -
Water and Martian Habitability Results of an Integrative Study Of
Planetary and Space Science 98 (2014) 128–145 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Water and Martian habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance “Planetary Evolution and Life” R. Jaumann a,b,n, D. Tirsch a, E. Hauber a, G. Erkeling c, H. Hiesinger c, L. Le Deit a,d, M. Sowe b, S. Adeli a, A. Petau a, D. Reiss c a DLR, Institute of Planetary Research, Berlin, Germany b Freie Universität Berlin, Institute of Geosciences, Berlin, Germany c Institut für Planetologie, Westfälische Wilhelms-Universität, Münster, Germany d Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Nantes, France article info abstract Article history: A study in context with the Helmholtz Alliance ‘Planetary Evolution and Life’ focused on the (temporary) Received 11 March 2013 existence of liquid water, and the likelihood that Mars has been or even is a habitable planet. Both Received in revised form geomorphological and mineralogical evidence point to the episodic availability of liquid water at the 10 February 2014 surface of Mars, and physical modeling and small-scale observations suggest that this is also true for Accepted 21 February 2014 more recent periods. Habitable conditions, however, were not uniform over space and time. Several key Available online 5 March 2014 properties, such as the availability of standing bodies of water, surface runoff and the transportation of Keywords: nutrients, were not constant, resulting in an inhomogeneous nature of the parameter space that needs to Mars be considered in any habitability assessment. -
Quaternary Geomorphic Processes and Landform Development in the Thar Desert of Rajasthan
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/302902544 Quaternary Geomorphic Processes and Landform Development in the Thar Desert of Rajasthan Chapter · January 2011 CITATIONS READS 6 4,293 1 author: Amal Kar Central Arid Zone Research Institute (CAZRI) 90 PUBLICATIONS 1,166 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Thar Desert Natural resources and their management View project Late Quaternary paleoclimate of the Thar Desert View project All content following this page was uploaded by Amal Kar on 11 May 2016. The user has requested enhancement of the downloaded file. acb publications Landforms Processes & Environment Management Kolkata, India Editor: S. Bandyopadhyay et al. [email protected] ISBN 81-87500-58-1 2011 (223-254) Quaternary Geomorphic Processes and Landform Development in the Thar Desert of Rajasthan Amal Kar1 Abstract: Evolution of landforms in the Thar Desert of Rajasthan is very much influenced by the exogenic and endogenic processes operating in the region during the Quaternary period. Studies have revealed that several fluctuations in climate between drier and wetter phases and periodic earth movements decided the type and intensity of geomorphic processes. The paper describes the broad sedimentation pattern in the desert, known facets of Quaternary climate and landform characteristics. It also discusses the influence of Quaternary climate change, neotectonism and human activities on landform evolution. Introduction The Thar, or the Great Indian Sand Desert, is situated in the arid western part of Rajasthan state in India and the adjoining sandy terrain of Pakistan. -
Distribution, Morphology, and Morphometry of Circular Mounds in the Elongated Basin of Northern Terra Sirenum, Mars Ryodo Hemmi and Hideaki Miyamoto*
Hemmi and Miyamoto Progress in Earth and Planetary Science (2017) 4:26 Progress in Earth and DOI 10.1186/s40645-017-0141-x Planetary Science RESEARCH ARTICLE Open Access Distribution, morphology, and morphometry of circular mounds in the elongated basin of northern Terra Sirenum, Mars Ryodo Hemmi and Hideaki Miyamoto* Abstract An elongated, flat-floored basin, located in the northern part of Terra Sirenum on Mars, holds numerous enigmatic mounds (100 m wide) on the surface of its floor. We investigated their geological context, spatial distribution, morphological characteristics, and morphometric parameters by analyzing a variety of current remote sensing data sets of Mars. Over 700 mounds are identified; mapping of the mounds shows the spatial density of about 21 per 100 km2 and appearances of several clusters, coalescence, and/or alignment. Most of the mounds have smoother surface textures in contrast to the rugged surrounding terrain. Some of the mounds display depressions on their summits, meter-sized boulders on their flanks, and distinct lobate features. We also perform high-resolution topographic analysis on 50 isolated mounds, which reveals that their heights range from 6 to 43 m with a mean of 18 m and average flank slopes of most mounds are below 10°. These characteristics are consistent with the deposition and extension of mud slurries with mud breccia and gases extruded from subsurface, almost equivalent to terrestrial mud volcanism. If so, both abundance of groundwater and abrupt increase in pore fluid pressure are necessary for triggering mud eruption. Absolute crater retention ages suggest that the floor of the basin located among middle Noachian-aged highland terrains has been resurfaced during the Late Hesperian Epoch. -
Last Glacial Aeolian Landforms and Deposits in the Rhône Valley
Last Glacial aeolian landforms and deposits in the Rhône Valley (SE France): Spatial distribution and grain-size characterization Mathieu Bosq, Pascal Bertran, Jean-Philippe Degeai, Sebastian Kreutzer, Alain Queffelec, Olivier Moine, Eymeric Morin To cite this version: Mathieu Bosq, Pascal Bertran, Jean-Philippe Degeai, Sebastian Kreutzer, Alain Queffelec, et al.. Last Glacial aeolian landforms and deposits in the Rhône Valley (SE France): Spatial dis- tribution and grain-size characterization. Geomorphology, Elsevier, 2018, 318, pp.250 - 269. 10.1016/j.geomorph.2018.06.010. hal-01844757 HAL Id: hal-01844757 https://hal.archives-ouvertes.fr/hal-01844757 Submitted on 16 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last Glacial aeolian landforms and deposits in the Rhône Valley (SE France): Spatial distribution and grain-size characterization Mathieu Bosqa, Pascal Bertrana,b, Jean-Philippe Degeaic, Sebastian Kreutzerd, Alain Queffeleca, Olivier Moinee, Eymeric Morinf,g a PACEA, UMR 5199 CNRS - Université Bordeaux, Bâtiment B8, allée Geoffroy