Exploring the Interaction Between Rivers and Sand Dunes – Implications for Fluvial-Aeolian Geomorphology

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Interaction Between Rivers and Sand Dunes – Implications for Fluvial-Aeolian Geomorphology THE UNIVERSITY OF HULL Exploring the interaction between rivers and sand dunes – implications for fluvial-aeolian geomorphology being a Thesis submitted for the Degree of Doctor of Philosophy in the University of Hull by Baoli Liu MSc from Xiamen University, China September, 2014 For my mum Chunrong (杨春荣) and young brother Zehua (刘泽华) And in memory of my father Kefu (刘克富) Abstract The interaction between fluvial and aeolian processes can significantly influence landforms. When rivers and sand dunes meet, the interaction of sediment transport between the two systems can lead to change in either one or both systems. However, these two systems are usually studied independently which leaves many questions unresolved in terms of how they interact. This study investigated interactions between fluvial and aeolian processes, focusing on the triggers that switch the dominance between one process and the other, and the consequent changes in geomorphology that may occur. Firstly, a global inventory of fluvial-aeolian interactions at 230 globally distributed locations was collected using satellite imagery. At each site, the following attributes were measured: net sand transport direction, fluvial-aeolian meeting angle, dune type and river channel pattern. From these data, six different types of interaction were classified that reflect a shift in dominance between the fluvial and aeolian systems. Results from this classification confirm that only certain types of interaction were significant: the meeting angle and dune type, the meeting angle and interaction type and finally the channel pattern and interaction type. These results show the importance of fluvial – aeolian interactions, but also reveal the difficulties of understanding dynamic geomorphic systems from images taken at a single moment in time. A highly novel cellular fluvial and aeolian/dune model was then developed to simulate the process interactions over longer periods of time. Results from the global inventory were used to set up the computational domain and different flow regimes (perennial and ephemeral) were simulated interacting with different magnitudes of aeolian sand transport. The model results demonstrated the same six types of interaction that were identified in the global survey, and also provided a better understanding of the dynamics of landform change which cannot be interpreted from single ‘snapshot’ images. In perennial fluvial systems, when the ratio between fluvial discharge (Rs) and aeolian sand transport rate (Dc) was in a range of critical values, the landscape exhibited cyclic behaviour with abrupt large-scale changes in the absence of external forcing. River channels would avulse around dunes significantly altering the river/dune i configuration and affecting sediment output. The interaction types observed in the modelled scenarios also exhibited transient characteristic with gradual or rapid shifts between various interaction types even under stable conditions. In contrast, landform evolution in ephemeral fluvial systems was very different from perennial environments. Dunes crossed the river channel more easily in ephemeral environments and channel development was more irregular with wetland areas developing and frequent changes in channel pattern. The results suggest that the duration of the wet season is more important than the timing of the wet season on the sediment output rates. This study has demonstrated the importance of fluvial-aeolian interactions for understanding landform development in certain fluvial-aeolian environments and has shown that these systems may show complex responses even with constant input conditions. ii Acknowledgements I cannot express enough thanks to my principle supervisor Professor Tom Coulthard for his continued support and encouragement. The inspiration, thoughtful guidance and critical comments from every meeting and discussion with him not only helped me to get through my PhD study and finish writing my thesis but also altered my perception about research. The considerable help of my second supervisor, Dr Stuart McLelland, has also been invaluable, for which I am very grateful. The encouragement, comprehensive advice and feedback from Dr Andreas Baas (King’s College London, UK), Professor Martin Williams (University of Adelaide, AU), Professor Jonathan Phillips (University of Kentucky, USA) and all the other researchers I have met have enriched my research - it means so much to a junior researcher like me. I would like to extend my grateful thanks to all of the people from the department of Geography, Environment and Earth Sciences at University of Hull. Sincerely thanks to Dr Malcolm Lillie, for equipment, advice, mentoring, and help during the final stage of corrections. Thanks also to Dr Jane Reed, Mike Dennett, Dr Sonja Boehmer- Christiansen and Dr Jane Bunting, for their good advice, support and friendship all of which have been so valuable on both academic and personal levels. The understanding and help from other PhD students, especially Tim Horsfield with whom I shared an office and faced the challenge of writing together to the end, have been very important and made my PhD a bit easier. Also, I would like to take this opportunity to thank the joint scholarship from the University of Hull and China Scholarship Council, and the support from Professor Wenzhi Cao (Xiamen University, China). Without this support, I would not have been able to come to study in England, which has been one of the most important experiences in my life. Heartfelt thanks also go to all the friends and people I have met during my PhD life, for their help and good wishes for the successful completion of this study. Finally, I am forever indebted to my mum and my young brother for their understanding, endless support and love. To all of the above and any I have forgotten to mention, my sincere thanks. iii Contents Abstract ..................................................................................................................... i Acknowledgements .......................................................................................................... iii List of figures ................................................................................................................. viii List of tables ................................................................................................................... xi List of symbols ................................................................................................................. xii Chapter 1 Introduction ................................................................................................ 1 1.1 Fluvial and aeolian systems versus geomorphologys....................................... 1 1.2 Aims and contributions .................................................................................... 1 1.2.1 Aims ............................................................................................................. 1 1.2.2 Contributions .............................................................................................. 2 1.3 Approach .......................................................................................................... 2 1.4 Summary ........................................................................................................... 2 Chapter 2 Literature review ........................................................................................ 3 2.1 Introduction ...................................................................................................... 3 2.2 Aeolian geomorphology ................................................................................... 3 2.2.1 Dune type classification .............................................................................. 4 2.2.2 Dune morphology ....................................................................................... 5 2.2.3 Dune field metrics ..................................................................................... 11 2.2.4 Dune dynamics and migration .................................................................. 15 2.3 River geomorphology ..................................................................................... 19 2.3.1 River and channel pattern ......................................................................... 19 2.3.2 Channel dynamics ..................................................................................... 20 2.4 Fluvial-aeolian interaction .............................................................................. 23 2.4.1 Fluvial-aeolian interaction examples ........................................................ 25 2.4.2 Current approaches to the study of fluvial-aeolian interactions .............. 31 iv 2.5 Numerical modelling of landscape development .......................................... 33 2.5.1 Computational simulation of dune field development ............................ 34 2.5.2 Computational simulation of fluvial landscapes ....................................... 36 2.6 Synthesis ......................................................................................................... 38 Chapter 3 Mapping fluvial-aeolian interaction ........................................................ 41 3.1 Introduction .................................................................................................... 41 3.2 Methodology .................................................................................................. 41 3.2.1 Field identification
Recommended publications
  • Sand Dunes Computer Animations and Paper Models by Tau Rho Alpha*, John P
    Go Home U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Sand Dunes Computer animations and paper models By Tau Rho Alpha*, John P. Galloway*, and Scott W. Starratt* Open-file Report 98-131-A - This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this program has been used by the U.S. Geological Survey, no warranty, expressed or implied, is made by the USGS as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. * U.S. Geological Survey Menlo Park, CA 94025 Comments encouraged tralpha @ omega? .wr.usgs .gov [email protected] [email protected] (gobackward) <j (goforward) Description of Report This report illustrates, through computer animations and paper models, why sand dunes can develop different forms. By studying the animations and the paper models, students will better understand the evolution of sand dunes, Included in the paper and diskette versions of this report are templates for making a paper models, instructions for there assembly, and a discussion of development of different forms of sand dunes. In addition, the diskette version includes animations of how different sand dunes develop. Many people provided help and encouragement in the development of this HyperCard stack, particularly David M. Rubin, Maura Hogan and Sue Priest.
    [Show full text]
  • Aeolian Processes and Landforms
    Aeolian Processes and Landforms Ms. Deithra L. Archie, New Mexico State University Abstract I will present an overview of Aeolian processes and landforms on Mars. The overview will consist of two components. Component one is an overview of Aeolian processes and landforms on Earth and Mars, where the two planetary bodies are shown in Figures 1a and 1b respectively The second part of this paper will consist of image comparisons using satellite and MOC (Mars Orbiter Camera) images. Figure 1a Figure 1b Introduction Understanding the aeolian activity on the planet Mars and other planets begins with the study and knowledge of similar processes on Earth. Therefore, I will discuss the following: wind, particle entrainment and landforms found in the aeolian environment. This discussion will lead into my later discussion of the Martian sand seas and sand dunes. See Table 1 for a glossary of the terms used throughout this paper. In aeolian processes, wind transports and deposits particles of sediment. Aeolian features form in areas where wind is the primary source of erosion. The particles deposited are of sand, silt and clay size (see Table 2). The particles are entrained in by one of four processes. Creep is when a particle rolls or slides across the surface. Lift is when a particle rises off the surface due to the Bernoulli effect, the same mechanism which causes aircraft to rise. If the airflow is turbulent, larger particles are trajected by a process known as saltation. Finally, impact transport occurs which one particle strikes another causing the second particle to move. Erosional Landforms Wind eroded landforms are rarely preserved on the surface of the Earth except in arid regions.
    [Show full text]
  • Fluvial Sedimentary Patterns
    ANRV400-FL42-03 ARI 13 November 2009 11:49 Fluvial Sedimentary Patterns G. Seminara Department of Civil, Environmental, and Architectural Engineering, University of Genova, 16145 Genova, Italy; email: [email protected] Annu. Rev. Fluid Mech. 2010. 42:43–66 Key Words First published online as a Review in Advance on sediment transport, morphodynamics, stability, meander, dunes, bars August 17, 2009 The Annual Review of Fluid Mechanics is online at Abstract fluid.annualreviews.org Geomorphology is concerned with the shaping of Earth’s surface. A major by University of California - Berkeley on 02/08/12. For personal use only. This article’s doi: contributing mechanism is the interaction of natural fluids with the erodible 10.1146/annurev-fluid-121108-145612 Annu. Rev. Fluid Mech. 2010.42:43-66. Downloaded from www.annualreviews.org surface of Earth, which is ultimately responsible for the variety of sedi- Copyright c 2010 by Annual Reviews. mentary patterns observed in rivers, estuaries, coasts, deserts, and the deep All rights reserved submarine environment. This review focuses on fluvial patterns, both free 0066-4189/10/0115-0043$20.00 and forced. Free patterns arise spontaneously from instabilities of the liquid- solid interface in the form of interfacial waves affecting either bed elevation or channel alignment: Their peculiar feature is that they express instabilities of the boundary itself rather than flow instabilities capable of destabilizing the boundary. Forced patterns arise from external hydrologic forcing affect- ing the boundary conditions of the system. After reviewing the formulation of the problem of morphodynamics, which turns out to have the nature of a free boundary problem, I discuss systematically the hierarchy of patterns observed in river basins at different scales.
    [Show full text]
  • Nature-Based Coastal Defenses in Southeast Florida Published by Coral Cove Dune Restoration Project
    Nature-Based Coastal Defenses Published by in Southeast Florida INTRODUCTION Miami Beach skyline ©Ines Hegedus-Garcia, 2013 ssessments of the world’s metropolitan areas with the most to lose from hurricanes and sea level rise place Asoutheast Florida at the very top of their lists. Much infrastructure and many homes, businesses and natural areas from Key West to the Palm Beaches are already at or near sea level and vulnerable to flooding and erosion from waves and storm surges. The region had 5.6 million residents in 2010–a population greater than that of 30 states–and for many of these people, coastal flooding and erosion are not only anticipated risks of tomorrow’s hurricanes, but a regular consequence of today’s highest tides. Hurricane Sandy approaching the northeast coast of the United States. ©NASA Billions of dollars in property value may be swept away in one storm or slowly eroded by creeping sea level rise. This double threat, coupled with a clearly accelerating rate of sea level rise and predictions of stronger hurricanes and continued population growth in the years ahead, has led to increasing demand for action and willingness on the parts of the public and private sectors to be a part of solutions. Practical people and the government institutions that serve them want to know what those solutions are and what they will cost. Traditional “grey infrastructure” such as seawalls and breakwaters is already common in the region but it is not the only option. Grey infrastructure will always have a place here and in some instances it is the only sensible choice, but it has significant drawbacks.
    [Show full text]
  • Alternatives for Coastal Storm Damage Mitigation
    The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL ZONE/ISLAND SYSTEMS MANAGEMENT CHAPTER 5 ALTERNATIVES FOR COASTAL STORM DAMAGE MITIGATION By DAVE BASCO, PhD Professor, Civil and Environmental Engineering Department Old Dominion University Norfolk, Virginia, USA Organized by Department of Civil Engineering, The University of the West Indies, in conjunction with Old Dominion University, Norfolk, VA, USA and Coastal Engineering Research Centre, US Army, Corps of Engineers, Vicksburg, MS , USA. Antigua, West Indies, June 18-22, 2001 ALTERNATIVESALTERNATIVES FORFOR COASTALCOASTAL STORMSTORM DAMAGEDAMAGE MITIGATIONMITIGATION Dave Basco Old Dominion University, Norfolk, Virginia, USA National Park Service Photo STRUCTURALSTRUCTURAL ((changes to natural, physical system) • hardening (seawalls, bulkheads, revetments) • modification (headland breakwaters, nearshore breakwaters, groins) • soft (beach nourishment, dune rebuilding, sand bypassing) • combinations US Army Corps of Engineers NONNON--STRUCTURALSTRUCTURAL ((changes to man’s system) • adaptation (zoning, building codes, setback limits) • retreat (relocation, abandonment, demolition) CombinationsCombinations DoDo NothingNothing US Army Corps of Engineers COASTALCOASTAL ARMORINGARMORING STRUCTURESSTRUCTURES • seawalls and dikes • bulkheads • revetments US Army Corps of Engineers Figure V-3-6 Virginia Beach seawall/boardwalk (a) artist’s perspective (b) aerial
    [Show full text]
  • Mapping the Interactions Between Rivers and Sand Dunes
    Mapping the interactions between rivers and sand dunes: Implications for fluvial and aeolian geomorphology Baoli, Liu∗, Tom, J, Coulthard Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom Keywords: Fluvial-aeolian interaction; Dunes; River; Net transport direction; River direction; Geomorphology ABSTRACT The interaction between fluvial and aeolian processes can significantly change Earth surface morphology. When rivers and sand dunes meet, the interaction of sediment transport between the two systems can lead to change in either or both systems. However, these two systems are usually studied independently, which leaves many questions unresolved in terms of how they interact. This paper carries out a global inventory, using satellite imagery to identify 230 sites where there are significant fluvial-aeolian interactions. At each location key attributes such as wind/river direction, net sand transport direction, fluvial-aeolian meeting angle, dune type and river channel pattern were identified and relationships between each ∗ Corresponding author contact: Tel: +44(0)1482 465039, Fax: +44(0)1482 466340, Email: [email protected] © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ factor were analyzed. From these data, six different types of interaction were classified that reflect a shift in dominance between the fluvial and aeolian systems. Results from this classification confirm that only certain types of interaction were significant: the meeting angle and dune type, the meeting angle and interaction type and finally the channel pattern and interaction type. However, the findings also indicate the difficulties of classifying dynamic geomorphic systems from snapshot satellite images.
    [Show full text]
  • Systems Description of Krogen
    Building with Nature: Systems Description of Krogen August 2018 Project Building with Nature (EU-InterReg) Start date 01.11.2016 End date 01.07.2020 Project manager (PM) Ane Høiberg Nielsen Project leader (PL) Anni Lassen Project staff (PS) Mie Thomsen, Sofie Kamille Astrup Time registering 35410206 Approved date 10.08.2018 Signature Report Systems Description of Krogen Author Mie Thomsen, Sofie Kamille Astrup, Anni Lassen Keyword Joint Agreement, Krogen, Coastal, protection, nourishment Distribution www.kyst.dk, www.northsearegion.eu/building-with-Nature/ Referred to as Kystdirektoratet, BWN Krogen, 2018 2 Building with Nature: Systems Description of Krogen Contents 1 Introduction 5 1.1 Building with Nature 5 1.2 The Joint Agreement (on the North Sea coast) 6 1.3 Safety Level of Joint Agreement from Lodbjerg to Nymindegab 7 2 The Area of Krogen 9 2.1 The Landscape at Krogen 10 2.2 Threats to the Krogen Area 12 2.3 Coastal Protection at Krogen 14 2.4 Effect of the Coastal Protection at Krogen 17 3 Source-Pathway-Receptor 18 Building with Nature: Systems Description of Krogen 3 4 Building with Nature: Systems Description of Krogen 1 Introduction 1.1 Building with Nature The objective of the Building with Nature EU-InterReg project is to improve coastal adaptability and resilience to climate change by means of natural measures. As part of this project the Danish Coastal Authority (DCA) carry out research into different aspects of using natural processes and materials in coastal laboratories on Danish coasts. Through the EU InterReg project “Building with nature” a better understanding of the interactions within the coastal system is sought.
    [Show full text]
  • Quaternary Geomorphic Processes and Landform Development in the Thar Desert of Rajasthan
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/302902544 Quaternary Geomorphic Processes and Landform Development in the Thar Desert of Rajasthan Chapter · January 2011 CITATIONS READS 6 4,293 1 author: Amal Kar Central Arid Zone Research Institute (CAZRI) 90 PUBLICATIONS 1,166 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Thar Desert Natural resources and their management View project Late Quaternary paleoclimate of the Thar Desert View project All content following this page was uploaded by Amal Kar on 11 May 2016. The user has requested enhancement of the downloaded file. acb publications Landforms Processes & Environment Management Kolkata, India Editor: S. Bandyopadhyay et al. [email protected] ISBN 81-87500-58-1 2011 (223-254) Quaternary Geomorphic Processes and Landform Development in the Thar Desert of Rajasthan Amal Kar1 Abstract: Evolution of landforms in the Thar Desert of Rajasthan is very much influenced by the exogenic and endogenic processes operating in the region during the Quaternary period. Studies have revealed that several fluctuations in climate between drier and wetter phases and periodic earth movements decided the type and intensity of geomorphic processes. The paper describes the broad sedimentation pattern in the desert, known facets of Quaternary climate and landform characteristics. It also discusses the influence of Quaternary climate change, neotectonism and human activities on landform evolution. Introduction The Thar, or the Great Indian Sand Desert, is situated in the arid western part of Rajasthan state in India and the adjoining sandy terrain of Pakistan.
    [Show full text]
  • Dune Booklet
    North Carolina Sea Grant, September 2003 Please save, share or recycle T ABLEDunes OF CONTENTS Chapter 1: Introduction . .2 What is a Dune? . .2 Chapter 2: How the Beach Works . .3 Beach Shape . .4 Chapter 3: Erosion Types . .5 Seasonal Fluctuations . .5 Storm-Induced Erosion . .6 Post-Storm Recovery . .7 Long-Term Erosion . .8 Inlet Erosion . .9 Science Versus Myth: Do Dunes Help Stop Long-Term Erosion? . .9 Chapter 4: Dune Vegetation . .11 Influence of Climate . .12 Dune Plant Species . .12 Sea Oats . .12 American Beachgrass . .13 Bitter Panicum . .14 Saltmeadow Cordgrass . .14 Seashore Elder . .15 Fertilizing Tips . .15 Fertilizer and Irrigation . .16 Other Planting Suggestions . .16 Dune Plant Communities . .16 Science Versus Myth: Do Dune Plants Stop Erosion? . .17 Natural Dune Recovery . .17 Chapter 5: Dune Management Practices . .20 Plant Spacing Guidelines . .20 Sand Fences . .21 Advantages of Fencing . .23 Rope Fencing . .23 Christmas Trees . .23 Protecting Beach Accessways . .24 Vehicular Ramps . .25 Science Versus Myth: Is Beach Scraping Useful for Building Dunes? . .25 Permits . .26 Chapter 6: Summary . .27 Related Reading . .28 Glossary . .28 1 Chapter 1: ChapterIntroduction 1 Thirty years ago, sand dunes and dune vegetation shoreline where people, buildings and roads are already often were considered nuisances to be flattened before in place. However, the practices are not intended to be starting coastal development. Fortunately, times have applied to undeveloped shorelines where wildlife or changed. Dune vegetation is now recognized as an impor- natural area management is the primary goal. In areas tant asset for providing protection from natural hazards where the dunes and dune vegetation interact with other and aesthetic benefits.
    [Show full text]
  • Last Glacial Aeolian Landforms and Deposits in the Rhône Valley
    Last Glacial aeolian landforms and deposits in the Rhône Valley (SE France): Spatial distribution and grain-size characterization Mathieu Bosq, Pascal Bertran, Jean-Philippe Degeai, Sebastian Kreutzer, Alain Queffelec, Olivier Moine, Eymeric Morin To cite this version: Mathieu Bosq, Pascal Bertran, Jean-Philippe Degeai, Sebastian Kreutzer, Alain Queffelec, et al.. Last Glacial aeolian landforms and deposits in the Rhône Valley (SE France): Spatial dis- tribution and grain-size characterization. Geomorphology, Elsevier, 2018, 318, pp.250 - 269. 10.1016/j.geomorph.2018.06.010. hal-01844757 HAL Id: hal-01844757 https://hal.archives-ouvertes.fr/hal-01844757 Submitted on 16 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last Glacial aeolian landforms and deposits in the Rhône Valley (SE France): Spatial distribution and grain-size characterization Mathieu Bosqa, Pascal Bertrana,b, Jean-Philippe Degeaic, Sebastian Kreutzerd, Alain Queffeleca, Olivier Moinee, Eymeric Morinf,g a PACEA, UMR 5199 CNRS - Université Bordeaux, Bâtiment B8, allée Geoffroy
    [Show full text]
  • Doi: 10.1103/Physreve.84.031304
    ChinaXiv合作期刊 J Arid Land (2019) 11(5): 701–712 https://doi.org/ 10.1007/s40333-019-0108-4 Science Press Springer-Verlag Wind regime for long-ridge yardangs in the Qaidam Basin, Northwest China GAO Xuemin1,2,3*, DONG Zhibao4, DUAN Zhenghu1, LIU Min5, CUI Xujia5, LI Jiyan5,6 1 Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Tourism and Public Administration, Jinzhong University, Jinzhong 030619, China; 4 School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China; 5 School of Geography Science, Taiyuan Normal University, Jinzhong 030619, China; 6 Key Laboratory of Education Ministry on Environment and Resources in Tibetan Plateau, Qinghai Normal University, Xining 810008, China Abstract: Yardangs are typical aeolian erosion landforms, which are attracting more and more attention of geomorphologists and geologists for their various morphology and enigmatic formation mechanisms. In order to clarify the aeolian environments that influence the development of long-ridge yardangs in the northwestern Qaidam Basin of China, the present research investigated the winds by installing wind observation tower in the field. We found that the sand-driving winds mainly blow from the north-northwest, northwest and north, and occur the most frequent in summer, because the high temperature increases atmospheric instability and leads to downward momentum transfer and active local convection during these months. The annual drift potential and the ratio of resultant drift potential indicate that the study area pertains to a high-energy wind environment and a narrow unimodal wind regime.
    [Show full text]
  • Transverse Aeolian Ridges on Mars: First Results from Hirise Images
    Geomorphology 121 (2010) 22–29 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Transverse Aeolian Ridges on Mars: First results from HiRISE images James R. Zimbelman ⁎ Center for Earth and Planetary Studies, MRC 315, National Air and Space Museum, Smithsonian Institution, Washington, D.C. 20013-7012, United States article info abstract Article history: Three images obtained by the High Resolution Imaging Science Experiment (HiRISE) were analyzed for the Received 11 July 2008 information they could provide regarding Transverse Aeolian Ridges (TARs) on Mars. TARs from five locations Received in revised form 23 February 2009 in a HiRISE image of the floor of Ius Chasma show remarkably symmetric (cross-sectional) profiles, with Accepted 26 May 2009 average slopes for the entire feature of ~15°; these results apply to TARs that span an order of magnitude in Available online 2 June 2009 wavelength and a factor of 6 in height. A HiRISE image of Gamboa impact crater in the northern lowlands shows low albedo sand patches b2 m high that are covered with sand ripples, surrounded by larger TAR-like Keywords: fi Sand ripples that are very similar in pro le to surveyed granule ripples on Earth. TARs in a HiRISE image from Terra Dune Sirenum, in the cratered southern highlands, are comparable in height to those in Ius Chasma, but many have Ripple tapered extensions that are more consistent with them being erosional remnants rather than the result of Granule ripple extension of the TAR by deposition from the tapered end. The new observations generally support a reversing Topography transverse dune origin for TARs with heights ≥1 m, and a granule ripple origin for TAR-like ripples with Transverse dune heights ≤0.5 m.
    [Show full text]